首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Batch and column experiments were conducted to examine the capability of naturally formed hematite and siderite to remove As from drinking water. Results show that both minerals were able to remove As from aqueous solutions, but with different efficiencies. In general, each material removed arsenate much more efficiently than As–DMA (dimethylarsinic acid), with the lowest adsorption efficiency for arsenite. The best removal efficiency for As species was obtained using a hematite, with a grain size range between 0.25 and 0.50 mm. The adsorption capacity for inorganic As(V) reached 202 μg/g. The pH generally had a great impact on the arsenate removal by the Fe minerals studied, while arsenite removal was slightly dependent on the initial pH of between 3 and 10. The presence of phosphate always had a negative effect on arsenate adsorption, due to competitive adsorption between them. A column packed with hematite in the upper half and siderite in the lower half with a grain size range of 0.25–0.5 mm proved to be an efficient reactive filter for the removal of all As species, causing a decrease in As concentration from 500 μg/L (including 200 μg/L As(V) as arsenate, 200 μg/L As(III) as arsenite and 100 μg/L As(V) as DMA) to less than 10 μg/L after 1055 pore volumes of water were filtered at a flow rate of 0.51 mL/min. After 2340 pore volumes passed through the column filter, the total inorganic As in the effluent was less than 5 μg/L. The total As load in the column filter was estimated to be 0.164 mg/g. Results of μ-synchrotron X-ray fluorescence analysis (μ-XRFA) suggest that coatings of fresh Fe(III) oxides, formed on the surface of the siderite grains after two weeks of operation, greatly increased the adsorption capacity of the filling material towards As.  相似文献   

2.
Surfactant-modified natural zeolites (SMNZs) with different coverage types were prepared by loading cetylpyridinium bromide onto the surface of natural zeolites. The resulting SMNZs were characterized and used as adsorbents to remove bisphenol A (BPA) from aqueous solution. The monolayer and bilayer SMNZs were effective for removing BPA from aqueous solution. The BPA adsorption capacity for the monolayer SMNZ increased slightly with increasing pH from 4 to 9, but decreased significantly with increasing pH from 9 to 11. The BPA adsorption capacity for the bilayer SMNZ was relatively high at pH 9–10, but decreased with decreasing pH from 9 to 4 or increasing pH from 10 to 11. The equilibrium adsorption data of BPA on the monolayer and bilayer SMNZs under the experimental condition could be well described by the Langmuir and Freundlich isotherm models. The adsorption kinetics of BPA on the monolayer and bilayer SMNZs followed a pseudo-second-order model. The adsorption of BPA on the monolayer and bilayer SMNZs took place in three different stages: a fast external surface adsorption, a gradual adsorption controlled by both the external mass transfer and the intra-particle diffusion, and a final equilibrium stage. The adsorption of BPA on the monolayer and bilayer SMNZs is spontaneous and exothermic. The mechanisms for BPA adsorption onto the monolayer SMNZ at pH 4–11 include the hydrophobic interaction and hydrogen bonding. The mechanisms for BPA adsorption onto the bilayer SMNZ at pH 4–8 include the organic partitioning and hydrogen bonding. The mechanisms for BPA adsorption onto the bilayer SMNZ at pH 8–11 include the organic partitioning, hydrogen bonding and electrostatic attraction.  相似文献   

3.
The removal of poisonous Pb (II) from wastewater by different low-cost abundant adsorbents was investigated. Rice husks, maize cobs and sawdust, were used at different adsorbent/metal ion ratios. The influence of pH, contact time, metal concentration, adsorbent concentration on the selectivity and sensitivity of the removal process was investigated. The adsorption efficiencies were found to be pH dependent, increasing by increasing the solution pH in the range from 2.5 to 6.5. The equilibrium time was attained after 120 min and the maximum removal percentage was achieved at an adsorbent loading weight of 1.5 gm. The equilibrium adsorption capacity of adsorbents used for lead were measured and extrapolated using linear Freundlich, Langmuir and Temkin isotherms and the experimental data were found to fit the Temkin isotherm model.  相似文献   

4.
The sorption of phosphorus by using four different natural materials (marble dust, sawdust, soil, and rice husk) was studied by conducting batch tests and kinetic sorption model. The kinetic sorption model based on a pseudo equation was applied to predict the rate constant of sorption. Thorough investigations to understand the mechanism of phosphorus sorption onto the natural materials using kinetic sorption models, pseudo first- and second-order kinetic sorption model showed that the kinetic sorption is consistent with the second-order model, from which it can be inferred that the mechanism of sorption is chemisorption. Batch tests and kinetic sorption model results showed that by using marble dust as sorbent, among other materials, could remove more than 93 % of phosphorus from aqueous solution.  相似文献   

5.
Pb-contaminated water is a dangerous threat occurring near metallurgic and mining industries. This circumstance produces serious environment concern, due to Pb(II) high toxic effects. Several reactive materials have been reported for Pb(II) adsorption, but not all reached final Pb(II) suitable concentrations, or they are expensive and rejected in massive remediation technologies; hence, natural materials are good options. The adsorption behavior of a volcanic scoria (two sieved fractions 1425 and <425 µm) was studied toward synthetic Pb(II) water solutions in batch experiments (170.4–912.3 mg L?1) with high removal efficiencies (97%). The Langmuir model fits both fractions with high linear correlation coefficients (0.9988 and 0.9949) with high maximum capacity values (588.23 and 555.55 mg g?1). Separation factor R L parameter varies with initial concentration, and the empirical equation predicts the limits of the material usefulness, a criterion proposed in this paper for conditions’ selection. The Lagergren pseudo-second-order analysis demonstrates chemisorption; calculated rate constant (416.66 mg g?1 min?1). Weber–Morris intraparticle model proves that the adsorption phenomena occur fast on the material surface (k inst = 72 g mg?1 min?0.5). The characterization of the volcanic material afforded the elemental composition (X-ray fluorescence), and the empirical formula was proposed. X-ray diffraction patterns verify the material structure as basalt, with a plagioclase structure that matches anorthite and albite, mostly composed of quartz. The presence of oxides on the material surface explain the high Pb(II) adsorption capacity, observed on the surface by scanning electronic microscopy. The studied volcanic scoria has potential use as a Pb(II) adsorbent in water remediation technologies.  相似文献   

6.
This paper present the possible alternative removal options for the development of safe drinking water supply in the chromium-affected areas. The Cr (VI) state is of particular concern because of its toxicity. The mordenite has suitable mineralogical properties that enable them to be used for ion-exchange processes. This includes total cation exchange capacity. However, in the present work, the modified-natural zeolite was used as an adsorbent for the removal of Cr (VI) from aqueous solution. The ability of modified natural zeolite (mordenite) to remove inorganic anion was investigated. Laboratory experiments were conducted examining the effect of the sorption of cationic surfactants. On the basis of the results of this study, the HDTMA-HSO4 modified zeolite appears suitable as a sorbent for hexavalent chromium whereas EHDDMA-modified zeolite were not removed with the same efficiency. The sorption of chromate on HDTMA-zeolite results from a combination of entropic, coulombic, hydrophobic effects, and HDTMA counterion.  相似文献   

7.
Due to the severity of arsenic contamination of soil and water resources around the world, finding new adsorbents for arsenic removal from the water is of high importance. The present study investigates the possible use and effectiveness of starch-stabilized Fe/Cu nanoparticles for adsorption of arsenic from aqueous solutions. First, Fe/Cu nanoparticles at various starch concentrations of 0, 0.02, 0.04 and 0.06 wt% were synthesized and characterized by X-ray diffraction, transmission electron microscopy and zeta potential/particle size analyzer. Then 0.04 wt% stabilized Fe/Cu nanoparticles were tested for the sorption of As(III) and As(V) from synthetic arsenic-contaminated water. To have an understanding about the arsenic adsorption mechanism of nanoparticles, X-ray photoelectron spectroscopy (XPS) was performed before and after adsorption. The results showed that starch provides nanoparticles with a neutral surface and stabilization of nanoparticles is possible with 0.04 wt% or higher concentrations of starch. For 0.04 wt% starch-stabilized Fe/Cu nanoparticles, the adsorption isotherms fit well within the Langmuir equation, with maximum sorption capacities of 90.1 mg/g for As(III) and 126.58 mg/g for As(V) at a pH of 7.0 from the aqueous arsenic solutions. Examining the XPS spectra of nanoparticles before and after adsorption showed that arsenic adsorption by this nanoparticle can be due to the formation of inner-sphere arsenic complexes on the particle surface, and the surface oxygen-containing functional groups involved in adsorption. The high sorption capacity suggests the potential for applying starch-stabilized Fe/Cu nanoparticles to the contaminated waters for removal of arsenic.  相似文献   

8.
Adsorption characteristics of water hyacinth roots powder for the removal of Indosol Dark-blue GL dye were investigated in batch mode. Operating variables, such as initial solution pH, presence of detergent, adsorbent dosage, initial concentration and contact time, were studied. The results showed that the adsorption of dye increased with increasing the initial concentration and contact time. The adsorption is highly pH dependent and adsorption capacity increased with decrease in pH. Kinetic study revealed that the uptake of Indosol Dark-blue GL was very rapid within the first 15 min and equilibrium time was independent of initial concentration. Batch equilibrium experiments were carried out at different pH and found that equilibrium data fitted well to Langmuir isotherm model. The maximum sorption capacity of the adsorbent was found as 86 mg g?1 at pH 3 which reduced to 64 mg g?1 at pH 5. The presence of detergent reduced the sorption capacity of the adsorbent significantly. Using equilibrium and kinetic data, the forward and backward rate constants were determined from the unified approach model. Desorption study revealed that the dye can be recovered by swing the pH from low to high.  相似文献   

9.
Beidellite, a low-cost, locally available and natural mineral was used as an adsorbent for the removal of lead and cadmium ions from aqueous solutions in batch experiments. The kinetics of adsorption process was tested for the pseudo first-order, pseudo second-order reaction and intra-particle diffusion models. The rate constants of adsorption for all these kinetic models were calculated. Comparison amongst the models showed that the sorption kinetics was best described by the pseudo second-order model. Langmuir and Freundlich isotherm models were applied to the experimental equilibrium data for different temperatures. The adsorption capacities (Q°) of beidellite for lead and cadmium ions were calculated from the Langmuir isotherm. It was found that adsorption capacity was in the range of 83.3–86.9 for lead and 42–45.6 mg/g for cadmium at different temperatures. Thermodynamic studies showed that the metal uptake reaction by beidellite was endothermic in nature. Binary metal adsorption studies were also conducted to investigate the interactions and competitive effects in binary adsorption process. Based on the optimum parameters found, beidellite can be used as adsorbent for metal removal processes.  相似文献   

10.
用铁/铝盐水解法制备了凹凸棒石/铝氢氧化物(PNCMⅠ)、凹凸棒石/铁氢氧化物(PNCMⅡ)和凹凸棒石/铁铝氢氧化物(PNCMⅢ)3种凹凸棒石纳米复合材料。对比了这3种纳米复合材料对水中磷的吸附净化能力,并利用吸附动力学实验探讨了3种材料对磷的吸附机理。结果发现:负载了铝/铁氢氧化物后凹凸棒石的晶体结构没有改变;温度对于3种吸附剂吸附磷的动力学参数影响不显著;3种吸附剂对磷的实际吸附量、理论吸附量和初始吸附速率均随着磷的初始浓度增大而增大。PNCMⅠ对磷的理论吸附量为18.18 mg/g,较其他2种吸附剂大。当磷的初始浓度从5 mg/L增加到50 mg/L,PNCM I对磷的初始吸附速率从0.125 mg/(g·min)增加到1.425 mg/(g·min)。3种凹凸棒石黏土纳米复合材料对磷的吸附符合准二级动力学方程,表明其吸附均为化学吸附。  相似文献   

11.
研究了羟基磷灰石(HAP)对水溶液中Fe3+的吸附动力学及热力学。研究表明,HAP对水溶液中Fe3+的吸附符合Langmiur等温吸附,ct/q=0.006 4 ct+0.018 3;该吸附反应符合一级反应动力学方程,ln CR=-0.043 5 t+4.324 4;吸附反应活化能为Ea=36.26 k J/mol;标准摩尔反应焓为正值表明反应过程吸热;当温度大于285.7 K时,吉布斯自由能小于0,反应可自发进行。  相似文献   

12.
Copper smelting and toxic emissions in Sarcheshmeh Copper Complex have resulted in soil pollution especially in the vicinity of the smelting plant. Calculated geoaccumulation index, contamination factor (C f), and contamination degree (C deg) indicate surface soil enrichment in potentially toxic metals (As, Cu, Pb, Zn, Mo, and Cd). The results also indicate that most contaminated areas are located in the prevailing wind directions (N and NE). However, continuous copper smelting can result in extensive pollution in the study area. This is especially alarming for adjacent townships. Since, the sampled sites are also used as grazing land, the soils are likely to become phytotoxic and provide a potential pathway for the toxic elements to enter the food chain. C f based on distance and direction give more reasonable results; that is, the decrease of contamination degree with distance. This is in agreement with I geo and also statistical analysis, which show a decreasing trend of metal loadings of soil with distance from the smelter. Statistical analysis reaffirms the polluting role of the smelting plant.  相似文献   

13.
14.
《Applied Geochemistry》2003,18(8):1267-1278
At the abandoned As mine in Nishinomaki, Japan, discharged water from the mining and waste dump area is acidic and rich in As. However, the As concentration in the drainage has been decreased to below the maximum contaminant level (0.01 mg/l for drinking water, Japan) without any artificial treatments before mixing with a tributary to populated areas. This implies that the As concentration in water from the waste dump area has been naturally attenuated. To elucidate the reaction mechanisms of the natural attenuation, analysis of water quality and characterization of the precipitates from the stream floor were performed by measuring pH, ORP and electric conductivity on-site, as well as X-ray diffraction, ICP-mass spectrometry and ion-chromatography. Selective extractions and mineral alteration experiments were also conducted to estimate the distribution of As in constituent phases of the precipitates and to understand the stability of As-bearing phases, respectively. The water contamination resulted from oxidation of sulfide minerals in the waste rocks, i.e., the oxidation of pyrite and realgar and subsequent release of Fe, SO4, As(V) and proton. The released Fe(II) transformed to Fe(III) by bacterial oxidation; schwertmannite then formed immediately. While the As concentrations in the stream were lowered nearly to background level downstream, those in the ochreous precipitates were up to several tens of mg/g. The As(V) was effectively removed by the formed schwertmannite and had been naturally attenuated. Although schwertmannite is metastable with respect to goethite, the experiments show that the transformation of schwertmannite to goethite may be retarded by the presence of absorbed As(V) in the structure. Therefore, the attenuation of As in the drainage and the retention of As by schwertmannite are expected to be maintained for the long term.  相似文献   

15.
One of the key challenges in water treatment industry is the removal of organic compounds by cost-effective methods. This study evaluated the adsorptive removal of dissolved organic carbon (DOC) from reservoir water using fuller’s earth (FE) in comparison with natural (SQ) and modified quartz (MSQ) sands. The removal capacities of FE at different contact times, pH levels, adsorbent dosages and initial DOC concentrations were compared with both the quartz sands. The optimum DOC removals by FE and SQs were achieved at contact time of 60 and 30 min, pH level of 6 and 4, and at adsorbent dose of 1.5 g/150 mL and 10 g/100 mL, respectively. The adsorption capacity of FE (1.05 mg/g) was much higher compared to the MSQ (0.04 mg/g) and SQ (0.01 mg/g). Adsorption equilibrium data better fitted to the Freundlich model than to the Langmuir model, suggesting that adsorption occurred primarily through multilayer formation onto the surfaces of FE and SQ. The pseudo-second-order model described the uptake kinetics more effectively than the pseudo-first-order and intra-particle diffusion models, indicating that the mechanism was primarily governed by chemisorption. These observations were well supported by the physiochemical characteristics and charge behaviour of the adsorbents. In mass-transfer study, the results of liquid film diffusion model showed that the adsorption of DOC on FE was not controlled by film diffusion, but other mechanisms also played an essential role. This study demonstrates that FE is an effective adsorbent for the removal of DOC in surface water treatment.  相似文献   

16.
It has been suggested that the highly hydrated character of the Mg2+ ion in aqueous solution is responsible for the often encountered difficulty of precipitating stable, anhydrous phases of magnesium carbonate and calcium-magnesium carbonate. In an effort to investigate this, a study of magnesite crystallization kinetics was undertaken, utilizing the reaction of hydromagnesite plus CO2 to yield magnesite at 126°C. The reactions were characterized by prolonged initial quiescent periods prior to the onset of detectable crystallization. The length of the initial period was found to vary with Mg concentration, pCO2 and ionic strength. Contrary to classical kinetics, the reaction studied was inhibited by increased Mg concentration. Ionic strength and pCO2 acted as positive catalysts.  相似文献   

17.
18.
Use of native soil in adsorption of phenol from industrial wastewater has been one of the attractive option for dephenolation, especially in view of low cost and ease in accessibility, as well as scope for regeneration (or, at least reuse). However, an effective usage of the adsorbent necessitates a deeper understanding of the adsorption characteristics. Most of the study of adsorption characteristics are confined to analysis of mono- and bi- parametric isotherm models (and rarely, linearized multi-parametric isotherm models), due to the difficulties in solving higher parametric models, as well as fairly satisfying results by lower-parametric models. In the present study, adsorption batch studies were carried out using a naturally and widely available common soil of south India (namely, Adhanur soil), for removal of phenol from the aqueous solution, with an explicit objective of comparison of linear and non-linear regression methods for finding variation in isotherm coefficients and fitness of the models. Six linearized isotherm models (including four linearized Langmuir models) and three non-linear isotherm model were discussed in this paper, and their coefficients were estimated. Although all the studied isotherm models showed fairly good fit to the experimental data, but Redlich—Peterson isotherm was found to be the best representative for phenol-sorption on the used soil adsorbent. Besides, it was observed that to determine the isotherm parameters non-linear isotherm models were found to be the best representative of adsorption characteristics, than their linearized counter-parts.  相似文献   

19.
《Applied Geochemistry》2004,19(2):169-180
Arsenic is present in aqueous environments in +III and +V oxidation states. In oxidizing environments, the principle attenuation mechanism of As migration is its adsorption on Fe(III) oxide and hydroxides. The adsorption affinity is higher for As(V) under lower pH conditions and for As(III) under higher pH conditions. Ferric oxide and hydroxides can dissolve under low Eh and pH conditions releasing adsorbed As. Oxidation-reduction processes often involve high organic matter content in sediments and also contamination by organics such as BTEX. Arsenic may desorb under high pH conditions. Changes of pH can be related to some redox reactions, cation exchange reactions driving dissolution of carbonates, and dissolution of silicates. In very reducing environments, where SO4 reduction takes place, secondary sulfide minerals like As-bearing pyrite and orpiment, As2S3, can incorporate As. Geochemical modeling can be divided into two principal categories: (a) forward modeling and (b) inverse modeling. Forward modeling is used to predict water chemistry after completion of predetermined reactions. Inverse modeling is used to suggest which processes take place along a flowpath. Complex coupled transport and geochemistry programs, which allow for simulation of As adsorption, are becoming available. A common modeling approach is based on forward modeling with surface complexation modeling (SCM) of As adsorption, which can incorporate the effect of different adsorbent/As ratios, adsorption sites density, area available for adsorption, pH changes and competition of As for adsorption sites with other dissolved species such as phosphate. The adsorption modeling can be performed in both batch and transport modes in codes such as PHREEQC. Inverse modeling is generally used to verify hypotheses on the origin of As. Basic prerequisites of inverse modeling are the knowledge of flow pattern (sampling points used in model have to be hydraulically connected) and information about mineralogy including As mineral phases. Case studies of geochemical modeling including modeling of As adsorption are presented.  相似文献   

20.
Yan ZHENG 《中国地质》2010,37(3):723-729
研究表明饮用水中微小数量的砷会对人类健康产生不利影响.世界上居住在贫穷地区的人数超过了100万,目前他们正直接饮用来自含水层中砷离子含量(>10μg/L)非安全标准的地下水.砷有时称为毒中之王,在水环境中常常以五价氧化物形式出现.自2000年以来,许多国家开始执行更为严格的10μg/L(WHO认可的居民安全饮水标准)饮用水标准,可以确定地说,在世界范围内的饮用水中检测到砷的情况越来越多.亚洲地区砷中毒的人数比世界其他地区总和还多.最受影响的地区位于南亚和东南亚富砷带,环绕恒河一雅鲁藏布江-梅克纳河三角洲及恒河平原上游的冲洪积扇含水层、红河三角洲、湄公河和伊洛瓦底江;在中国境内包括内蒙黄河冲积盆地,山西大同盆地、新疆准噶尔盆地,其中的地下水富含砷和氟化物而引发砷中毒和氟中毒.尽管还未完全掌握其中的水文地质及生物地球化学作用的详细过程,但对大多数沉积介质含水层,在还原条件下砷离子容易从沉积介质转移到地下水中.孟加拉研究实例表明地质时期尺度的冲刷降低了沉积介质中的As和有机物含量从而形成低砷地下水.这一认识为孟加拉国的降砷策略提供了科学指导,是未来水文学,矿物学,地质学和生物地球化学方面很有意义的研究方向,并有利于地砷病区低砷地下水的可持续利用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号