首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Mining and milling of base metal ore deposits can result in the release of metals to the environment. When sulfide minerals contained in mine tailings are exposed to oxygen and water, they oxidize and dissolve. Two principal antagonistic geochemical processes affect the migration of dissolved metals in tailings impoundments: sulfide oxidation and acid neutralization. This study focuses on acid neutralization reactions occurring in the saturated zone of tailings impoundments. To simulate conditions prevailing in many tailings impoundments, 0.1 mol/L sulfuric acid was passed continuously through columns containing fresh, unoxidized tailings, collected at Kidd Creek metallurgical site. The results of this column experiment represent a detailed temporal observation of pH, Eh, and metal concentrations. The results are consistent with previous field observations, which suggest that a series of mineral dissolution-precipitation reactions control pH and metal mobility. Typically, the series consists of carbonate minerals, Al and Fe(III) hydroxides, and aluminosilicates. In the case of Kidd Creek tailings, the dissolution series consists of ankerite-dolomite, siderite, gibbsite, and aluminosilicates. In the column experiment, three distinct pH plateaus were observed: 5.7, 4.0, and 1.3. The releases of trace elements such as Cd, Co, Cr, Cu, Li, Ni, Pb, V, and Zn were observed to be related to the pH buffering zones. High concentrations of Zn, Ni, and Co were observed at the first pH plateau (pH 5.7), whereas Cd, Cr, Pb, As, V, and Al were released as the pH of the pore water decreased to 4.0 or less.  相似文献   

2.
The Sarcheshmeh is one of the largest Oligo-Miocene porphyry Cu deposits in the world. Comparative hydrochemical, mineralogical and chemical fractionation associated with mining efflorescence salts and processing wastes of this mine are discussed. Hydrochemical results showed that rock waste dumps, reject wastes and old impoundments of tailings are the main sources of acid mine drainage waters (AMD) that contain potentially toxic metals such as Cd, Co, Cu, Mn, Ni and Zn as well as Al. Episodic fluxes of highly contaminated acidic waters were produced in a tailings dam over a short period of time. Secondary soluble minerals provide important controls on the quality of AMD produced, especially in old, dry tailings impoundments. Secondary sulfate minerals such as gypsum, magnesiocopiapite, hydronium jarosite, kornelite and coquimbite were found in rock waste drainages and in old weathered reject wastes. Highly soluble secondary minerals such as gypsum, eriochalcite, and bonattite are also observed in an evaporative layer on old tailings impoundments. Chemical fractionation patterns of potentially toxic elements showed that the geochemical behavior of metals is primarily controlled by the mineralogical composition of waste samples. Elements such as Co, Cr, Cu, Mn, Ni and Zn are readily released into the water soluble fraction from efflorescence salts associated with rock waste drainages, as well as from the evaporative layer of old tailings. Potentially toxic elements, such as As, Mo and Pb, are principally adsorbed or co-precipitated with amorphous and crystalline Fe oxides, but they may also be associated with oxidizing, primary sulfides and residual fractions. Following the development of the dammed tailings pond, the secondary minerals were dissolved, producing acidic waters contaminated by Al (154 mg L−1), Cu (150 mg L−1), Cd (0.31 m gL−1), Co (2.13 mg L−1), Mn (73.7 mg L−1), Ni (1.74 mg L−1), Zn (20.3 mg L−1) and Cl (1690 mg L−1). Therefore, the potential use of recycled water from the Sarcheshmenh dammed tailings pond is diminished by the presence of corrosive ions like Cl in highly acidic fluids that promote corrosion of pipes and pumps in the water recycling system.  相似文献   

3.
Tailings generated during processing of sulfide ores represent a substantial risk to water resources. The oxidation of sulfide minerals within tailings deposits can generate low-quality water containing elevated concentrations of SO4, Fe, and associated metal(loid)s. Acid generated during the oxidation of pyrite [FeS2], pyrrhotite [Fe(1−x)S] and other sulfide minerals is neutralized to varying degrees by the dissolution of carbonate, (oxy)hydroxide, and silicate minerals. The extent of acid neutralization and, therefore, pore-water pH is a principal control on the mobility of sulfide-oxidation products within tailings deposits. Metals including Fe(III), Cu, Zn, and Ni often occur at high concentrations and exhibit greater mobility at low pH characteristic of acid mine drainage (AMD). In contrast, (hydr)oxyanion-forming elements including As, Sb, Se, and Mo commonly exhibit greater mobility at circumneutral pH associated with neutral mine drainage (NMD). These differences in mobility largely result from the pH-dependence of mineral precipitation–dissolution and sorption–desorption reactions. Cemented layers of secondary (oxy)hydroxide and (hydroxy)sulfate minerals, referred to as hardpans, may promote attenuation of sulfide-mineral oxidation products within and below the oxidation zone. Hardpans may also limit oxygen ingress and pore-water migration within sulfide tailings deposits. Reduction–oxidation (redox) processes are another important control on metal(loid) mobility within sulfide tailings deposits. Reductive dissolution or transformation of secondary (oxy)hydroxide phases can enhance Fe, Mn, and As mobility within sulfide tailings. Production of H2S via microbial sulfate reduction may promote attenuation of sulfide-oxidation products, including Fe, Zn, Ni, and Tl, via metal-sulfide precipitation. Understanding the dynamics of these interrelated geochemical and mineralogical processes is critical for anticipating and managing water quality associated with sulfide mine tailings.  相似文献   

4.
Metals released from oxidation and weathering of sulphide minerals in mine tailings are to a high degree retained at deeper levels within the tailings themselves. To be able to predict what could happen in the future with these secondarily retained metals, it is important to understand the retention mechanisms. In this study an attempt to use laser ablation high-resolution ICP-MS (LA-ICP-SMS) to quantify enrichment of trace elements on pyrite surfaces in mine tailings was performed. Pyrite grains were collected from a profile through the pyrite-rich tailings at the Kristineberg mine in northern Sweden. At each spot hit by the laser, the surface layer was analyzed in the first shot, and a second shot on the same spot gave the chemical composition of the pyrite immediately below. The crater diameter for a laser shot was known, and by estimating the crater depth and total pyrite surface, the total enrichment on pyrite grains was calculated. Results are presented for As, Cd, Co, Cu, Ni and Zn. The results clearly show that there was an enrichment of As, Cd, Cu and Zn on the pyrite surfaces below the oxidation front in the tailings, but not of Co and Ni. Arsenic was also enriched on the pyrite grains that survived in the oxidized zone. Copper has been enriched on pyrite surfaces in unoxidized tailings in the largest amount, followed by Zn and As. However, only 1.4 to 3.1% of the Cd and Zn released by sulphide oxidation in the oxidized zone have been enriched on the pyrite surfaces in the unoxidized tailings, but for As and Cu corresponding figures are about 64 and 43%, respectively. There were many uncertainties in these calculations, and the results shall not be taken too literally but allowed the conclusion that enrichment on pyrite surfaces is an important process for retention of As and Cu below the oxidation front in pyrite rich tailings. Laser ablation is not a surface analysis technique, but more of a thin layer method, and gives no information on the type of processes resulting in enrichment on the pyrite surfaces. Although only pyrite grains that appeared to be fresh and without surface coatings were used in this study, the possibility that a thin layer of Fe-hydroxides occurred must be considered. Both adsorption to the pyrite directly or to Fe-oxyhydroxides may explain the enrichment of As, Cd, Cu and Zn on the pyrite surfaces, and, in the case of Cu, also the replacement of Fe(II) by Cu(II) in pyrite.  相似文献   

5.
Mineral extraction and processing, especially metal mining, produces crushed and milled waste; such material, exposed to weathering, poses the potential threat of environmental contamination. In this study, mill tailings from inactive Pb-Zn mines in New Mexico, southwest USA, have been examined for their potential environmental impacts by means of detailed mineralogical and geochemical characterization. The principal ore minerals remaining in the tailings material are sphalerite, chalcopyrite, and very minor galena, smithsonite, and cerrusite, accompanied by the gangue minerals pyrite, pyrrhotite, magnetite, hematite, garnet, pyroxene, quartz, and calcite. White precipitate occurring on tailings surfaces is composed of gypsum and hydrated magnesium sulfates. Pyrite is mostly unaltered or shows only micron-scale rims of oxidation (goethite/hematite) in some surface samples. This iron oxide rim on pyrite is the only indication of weathering-derived minerals found by microscopy. There are variations in element concentrations with depth that reflect primary variations through time as the tailings ponds were filled. Cadmium and Zn concentrations increase with depth and Ag and Pb are low for the uppermost core samples, while Cu, Ni, and Co concentrations are generally high for the uppermost core samples. These elemental distributions indicate that little or no leaching has taken place since emplacement of the tailings because no accumulation or enrichment of these metals is observed in Hanover tailings, even in reducing portions of tailings piles. Element concentrations of surface samples surrounding the tailings reflect underlying mineralized zones rather than tailings-derived soil contamination. We observed no successive decreasing metal concentrations in prevalent wind directions away from the tailings. Stream sediment samples from Hanover Creek have somewhat elevated Zn, Cd, and Pb concentrations in areas that receive sediments from erosion of the tailings. However, input from tributaries downstream of the ponds appears to be principal source of heavy metals in Hanover Creek. The results of this study indicate that there is low risk for groundwater heavy-metal contamination from Hanover tailings. Tailings material do not show significant geochemical oxidation/alteration or metal leaching with depth. Our studies indicate that neutralizing minerals present in the tailings are sufficient to keep the tailings material chemically stable. Geochemically, however, tailings materials are being eroded and may pose a threat to Hanover Creek via siltation.  相似文献   

6.
The 7-year-old mine tailings pile P2 from Concepción del Oro has been revegetated spontaneously by xerophyte grasses, covering about the 30% of its surface. To elucidate the effect of the grass cover in the geochemical behavior of the sulfide minerals (SM) and metals, the strata of four selected profiles (P2-I, P2-II, P2-III and P2-IV, with high, middle, low, and null grass cover, respectively) were analyzed mineralogically and chemically, using scanner electron microscopy, X-ray diffractometer and performing a six-step sequential extraction method. An older (50-year-old) and uncovered (without grass cover) profile of the tailings pile P3 was also analyzed. In all the profiles from P2, the SM oxidation is not yet an extended process; however, the samples from the uncovered profile P2-IV showed evidences of SM (pyrite and chalcocite) oxidation, as well as the presence of gypsum and Fe oxides, as the major secondary phases resulted from the SM oxidation. Additionally, the carbonate content and pH values in P2-IV were lower than in the covered profiles from P2. The oldest and uncovered P3-I profile showed an extensive oxidation of sulfurs which resulted in the depletion of carbonates and a pH 2. Another distinctive characteristics of the covered profiles was that Pb, Cu, and Zn were mainly associated with the reducible fractions (carbonates and/or amorphous oxides); meanwhile, in the uncovered (P2-IV and P3-I) such metals were mainly associated with the oxidizable fraction (crystalline oxides). The results suggest that the mineralogical transformations control metal stability in plant-covered impoundments (phytostabilization): the occurrence of a thick grass cover, with an efficient water usage and retention, seems to shun both the acidic dissolution of carbonates and the reductive dissociation of the formerly present oxyhydroxides, which is desired for remediation tasks. This is the first report about the effects of grass cover for a carbonaceous and unsaturated mine tailings from a semiarid region, that can help in a better understanding of the scope of phytoremediation in such conditions.  相似文献   

7.
Z. Lin 《Environmental Geology》1997,30(3-4):152-162
 Wastes from the sulfuric acid industry are an environmental concern, because of the emission of acids, heavy metals, and sulfate to the environment. The wastes in Falun consist of 70–80% iron oxides, 10–20% silicates, less than 10% residual sulfides, and small amounts of secondary precipitates (iron hydroxides and Fe-, Zn- and Cu-sulfates). Due to the different behavior of sulfides during the roasting process, pyrrhotite and sphalerite are the major sulfide residues associated with lesser amounts of pyrite, chalcopyrite, and galena. The leachates are low-pH and enriched in Zn, Fe, and SO4. The acid ferric Fe-rich solution promotes the dissolution of sphalerite and favors the formation of Pb-sulfate coatings on galena, providing an armoring effect which slows down the further oxidation of the galena. The residual sulfides are the potential source for acid generation and metal release. During the roasting process, iron oxides retain small amounts of sulfur and sphalerite forms alteration rims containing Zn-oxides. The iron oxides and Zn-oxides are important contributors to SO4 and Zn in the leachates. The conditions in the waste deposit are favorable for the precipitation of Zn-, Cu-Fe-sulfates (e.g. gunningite, chalcanthite, Zn-copiapite). The highly soluble sulfates play important roles in controlling the concentrations of Cd, Cu, Fe, Zn, and SO4 in the leachates. The mineralogical and geochemical data help to develop the reclamation strategies of this type of industrial wastes. Received: 26 April 1996 · Accepted: 27 July 1996  相似文献   

8.
The oxidation and subsequent dissolution of sulfide minerals within mine tailings impoundments releases H+, Fe(II), SO4 and trace elements to the tailings pore water. Subsequent pH-buffering and hydrolysis reactions result in the precipitation of secondary phases such as gypsum, goethite and jarosite. In areas of intense precipitation, cemented layers or “hardpans” often form within the shallow tailings. Three cemented layers within pyrrhotite-bearing mine tailings at the Fault Lake, Nickel Rim and East Mine impoundments located near Sudbury, Canada, were examined. The location of the three cemented layers within the tailings stratigraphy varies as does their location relative to the water table. The morphology, mineralogy and chemical composition of the cemented layers also vary between sites. The bulk density within the three cemented layers all showed an increase relative to the surrounding uncemented tailings ranging from 9% to 29%. The porosity of each cemented layer decreased relative to the surrounding uncemented tailings ranging from an 8% to 18% decrease. The cemented layers also showed relative enrichment of total sulfur, carbon and trace elements relative to the surrounding uncemented tailings. Arsenic concentrations showed an enrichment in the cemented layers of up to 132%, Cd up to 99%, Co up to 84%, Cu up to 144%, Ni up to 693% and Zn up to 145% relative to the surrounding uncemented tailings. All the cemented layers studied show an evolution of the secondary phases with time from a gypsum–jarosite-based cement to a goethite-rich cement. The formation of these layers could potentially have a significant effect on the environmental impacts of sulfide-bearing mine waste.  相似文献   

9.
《Applied Geochemistry》2006,21(8):1301-1321
Low-quality pore waters containing high concentrations of dissolved H+, SO4, and metals have been generated in the East Tailings Management Area at Lynn Lake, Manitoba, as a result of sulfide-mineral oxidation. To assess the abundance, distribution, and solid-phase associations of S, Fe, and trace metals, the tailings pore water was analyzed, and investigations of the geochemical and mineralogical characteristics of the tailings solids were completed. The results were used to delineate the mechanisms that control acid neutralization, metal release, and metal attenuation. Migration of the low-pH conditions through the vadose zone is limited by acid-neutralization reactions, resulting in the development of distinct pore-water pH zones at depth; the neutralization reactions involve carbonate (pH  5.7), Al-hydroxide (pH  4.0), and aluminosilicate solids. As the zone of low-pH pore water expands, the pH will then be primarily controlled by less soluble solids, such as Fe(III) oxyhydroxides (pH < 3.5) and the relatively more recalcitrant aluminosilicates (pH  1.3). Precipitation/dissolution reactions involving secondary Fe(III) oxyhydroxides and hydroxysulfates control the concentrations of dissolved Fe(III). Concentrations of dissolved SO4 are principally controlled by the formation of gypsum and jarosite. Geochemical extractions indicate that the solid-phase concentrations of Ni, Co, and Zn are associated predominantly with reducible and acid-soluble fractions. The concentrations of dissolved trace metals are therefore primarily controlled by adsorption/complexation and (or) co-precipitation/dissolution reactions involving secondary Fe(III) oxyhydroxide and hydroxysulfate minerals. Concentrations of dissolved metals with relatively low mobility, such as Cu, are also controlled by the precipitation of discrete minerals. Because the major proportion of metals is sequestered through adsorption and (or) co-precipitation, the metals are susceptible to remobilization if low-pH or reducing conditions develop within the tailings.  相似文献   

10.
The Rio Tinto in SW Spain drains Cu and pyrite mines which have been in operation since at least the Bronze Age. Extensive metal mining, especially from 1873 to 1954, has resulted in contamination of the Rio Tinto alluvium with As, Cu, Pb, Ag and Zn. X-ray diffraction (XRD), wavelength-dispersive X-ray mapping, scanning electron microscope petrography and X-ray energy-dispersive (EDX) analysis has revealed that 4 major groups of contaminant metal and As-bearing minerals, including sulphides, Fe-As oxides, Fe oxides/hydroxides/oxyhydroxides, and Fe oxyhydroxysulphates, occur in the alluvium. Sulphide minerals, including pyrite, chalcopyrite, arsenopyrite and sphalerite, occur in alluvium near the mining areas. Iron hydroxides and oxyhydroxides such as goethite and possibly ferrihydrite occur in cements in both the mining areas and alluvium downstream, and carry minor amounts of As, Cu and Zn. Iron oxyhydroxysulphates, including jarosite, plumbojarosite and possibly schwertmannite, are the most common minerals in alluvium downstream of the mining areas, and are major hosts of Cu, Pb, Zn and of As, next to the Fe-As minerals. This work, and other field observations, suggest that (1) the extreme acidity and elevated metal concentrations of the river water will probably be maintained for some time due to oxidation of pyrite and other sulphides in the alluvium and mine-waste tips, and from formation of secondary oxide and oxyhydroxysulphates; (2) soluble Fe oxyhydroxysulphates such as copiapite, which form on the alluvium, are a temporary store of contaminant metals, but are dissolved during periods of high rainfall or flooding, releasing contaminants to the aqueous system; (3) relatively insoluble Fe oxyhydroxysulphates and hydroxides such as jarosite and goethite may be the major long-term store of alluvial contaminant metals; and (4) raising river pH will probably cause precipitation of Fe oxyhydroxides and oxides/hydroxides/oxyhydroxides and thus have a positive effect on water quality, but this action may destabilise some of these contaminant metal-bearing minerals, releasing metals back to the aqueous system.  相似文献   

11.
Redistribution of potentially harmful metals and As was studied based on selective extractions in two active sulphide mine tailings impoundments in Finland. The Hitura tailings area contains residue from Ni ore processing, while the Luikonlahti site includes tailings from the processing of Cu–Co–Zn–Ni and talc ores. To characterize the element solid-phase speciation with respect to sulphide oxidation intensity and the water saturation level of the tailings, drill cores were collected from border zones and mid-impoundment locations. The mobility and solid-phase fractionation of Ni, Cu, Co, Zn, Cr, Fe, Ca, Al, As, and S were analysed using a 5-step non-sequential (parallel) selective extraction procedure. The results indicated that metal redistribution and sulphide oxidation intensity were largely controlled by the disposal history and strategy of the tailings (sorting, exposure of sulphides due to delayed burial), impoundment structure and water table, and reactivity of the tailings. Metal redistribution suggested sulphide weathering in the tailings surface, but also in unsaturated proximal areas beside the earthen dams, and in water-saturated bottom layers, where O2-rich infiltration is possible. Sulphide oxidation released trace metals from sulphide minerals at both locations. In the Hitura tailings, with sufficient buffering capacity, pH remained neutral and the mobilized metals were retained by secondary Fe precipitates deeper in the oxidized zone. In contrast, sulphide oxidation-induced acidity and rise in the water table after oxidation apparently remobilized the previously retained metals in Luikonlahti. In general, continuous disposal of tailings decreased the sulphide oxidation intensity in active tailings, unless there was a delay in burial and the reactive tailings were unsaturated after deposition.  相似文献   

12.
In the old mining area of Rodalquilar, mine wastes, soil and sediments were characterized and the results revealed high concentration of Au, Ag, As, Bi, Cu, Fe, Mn, Pb, Se, Sb and Zn in tailings and sediments. The contaminant of greatest environmental concern is As. The mean concentration in the tailings was 679.9, and 345 mg/kg in the sediments of Playazo creek. The groundwater samples from the alluvial aquifer showed high concentration of Al, As, Cd, Fe, Hg, Mn, Ni, Pb, Se, Sb and Zn and very high concentration of chloride and sulfate, which were above the concentration defined in the European standards for drinking water. The presence of As in groundwater may be caused by the oxidation of arsenian pyrite, the possible As desorption from goethite and ferrihydrite and the jarosite dissolution. Groundwater concentrations of Cd, Fe, Mn, and possibly Cu, were associated with low values of Eh, indicating the possible dissolution of oxy-hydroxides of Fe and Mn. The mobility of metals in the column experiments show the release of Al, Fe, Mn, Cr, Cu, Ni, V and Zn in significant concentrations but below the detected values in groundwater. However, As, Cd, Sb, Se Pb and Au, are generally mobilized in concentrations above the detected values in groundwater. The possible mass transfer processes that could explain the presence of the contaminants in the aquifer and the leachates was simulated with the PHREEQC numerical code and revealed the possible dissolution of the following mineral phases: jarosite, natrojarosite, arsenian pyrite, alunite, chlorite, kaolinite and calcite.  相似文献   

13.
The geochemistry and mineralogy of samples collected along depth profiles from an As-rich tailing deposit with abundant calcite was studied to determine the processes that influence the mobility of Fe, Zn, Cu, Ni, Cd, As, Sb, Cr and Tl. In spite of their near neutral pH, almost all of them are acid potential generators. Total concentrations decreased as: Fe > As > Zn > Pb > Cu > Sb > Cd > Cr > Ni > Tl. Soluble contents were lower and followed a slightly different order. Mobility decreased as: Tl > Cd, Zn, Cu, Sb, Ni, As > Fe, Pb > Cr. Higher soluble concentrations of Fe, Cu, Zn, As, Pb, and Ni were found in low-pH samples and of Sb and Tl in near-neutral samples. Sulfide oxidation processes are developing in the tailing’s dam. These processes do not have a trend with depth but occur mainly in acid layers. Near neutral layers formed by primary sulfides and calcite probably correspond to wastes produced from the processing of ore coming mainly from pods within the skarn, and acid layers with abundant secondary minerals from material mined from chimneys and mantos. The presence of calcite influences speciation, neutralizes acid mine drainage (AMD), and decreases the mobility of most toxic metals and metalloids (TMMs). However, a hard-pan layer was not observed in the studied profiles. Retention of TMM within tailings probably occurs through the formation of low solubility metal carbonates and from elevation of pH that promotes Fe hydroxides precipitation that may retain As, Sb and metals. Calcite occurrence promotes As, Cd, Cu, Fe, Zn, Pb, Cd and Cr retention, does not play a role on Tl and Ni mobilization, and increases Sb release.  相似文献   

14.
Tailings deposited over the Castanheira, a stream which flows through the old Ag–Pb–Zn Terramonte mine area, showed a great potential environmental risk due to sulphide weathering, facilitated by the tailings–water interaction. The high concentrations of Al, Fe, Pb and Zn in the tailings are associated with the exchangeable, reducible and sulphide fractions and suggest sphalerite and pyrite occurrences. Oxidation of pyrite is responsible for the low pH values (3.38–4.89) of the tailings. The water from the Castanheira stream is not suitable for human consumption due to high concentrations of SO4 2?, Mn, Al, Cd, Ni, and Pb. The lowest concentrations of metals and metalloids were detected in downstream stretches of the Castanheira. However, As, Fe and Zn in deeper sediments tend to increase downstream. Significant concentrations of trivalent forms of arsenic were detected in water samples. In downstream stretches of the Castanheira, some free ions (Fe2+, Mn2+ and Zn2+) also predominate and the water is saturated with ferrihydrite, goethite, hematite, lepidocrosite and magnetite.  相似文献   

15.
作为华南大面积低温成矿域的重要组成部分,川滇黔铅锌矿集区是我国重要的铅锌银等资源基地之一,同时该矿集区也是Ge、Cd、Ga和In等稀散元素的超常富集区域。毛坪矿床是该矿集区内第二大铅锌矿床,累计探明铅锌金属储量超过3Mt(Pb+Zn平均品位≥18%),锗(Ge)保有储量182t。本文以新发现的Ⅵ矿带(铅锌金属已探明储量≥60万t,Pb+Zn平均品位≥20%)为研究对象,利用LA-ICPMS对主要矿石矿物闪锌矿和黄铁矿进行了微区原位微量元素组成和Mapping分析。研究结果显示Ⅵ矿带闪锌矿普遍富集Ge(最高580×10^(-6),均值81.1×10^(-6))、Cd(最高3486×10^(-6),均值1613×10^(-6))和Ga(最高190×10^(-6),均值44.4×10^(-6));黄铁矿普遍富集Mn、As、Pb、Cu、Ag和Sb。与Ⅰ和Ⅱ号矿带闪锌矿相比,Ⅵ号矿带闪锌矿更富集Ge和Ga。闪锌矿中Fe和Pb以类质同象为主,偶见黄铁矿和方铅矿显微包体;Cu、Ge、Ag和As赋存形式主要为类质同象,替代方式为Ge^(4+)+2(Cu+,Ag+,As+)↔3Zn^(2+);Cd以类质同象方式赋存为主,替代机制为Cd^(2+)↔Zn^(2+);Ga和In可能主要以类质同象方式存在。黄铁矿中Pb和Mn主要以方铅矿和碳酸盐矿物显微包体为主;Cu、As和Sb以类质同象形式存在于黄铁矿中;Ag和Zn可能以独立矿物形式赋存;Co和Ni以类质同象方式替代Fe进入黄铁矿晶格中,替代方式为Ni^(2+)+Co^(2+)↔2Fe^(2+)。毛坪矿床新发现Ⅵ矿带硫化物相比典型MVT矿床硫化物具有不同的In和Ge含量以及Cd/Fe比值,结合矿床地质特征和其他证据,表明毛坪矿床成因类型特殊,有别于经典MVT铅锌矿床,属于川滇黔型铅锌矿床。  相似文献   

16.
A sequential extraction procedure derived from Tessier et al. (1979) was applied in the area west of Montevecchio to abandoned mine tailings which give rise to a neutralised drainage highly contaminated by heavy metals. The results were compared with mineralogical studies of the weathering processes. The proposed sequential extraction procedure confirms the general alteration modalities observed in the area through mineralogical studies: i.e., a relatively easy dissolution of Zn and Cd and strong immobilisation of Fe, Mn, Cu and Ni. The behaviour of Pb and Co is intermediate.A generalization of a chemical approach to the comprehension of the weathering process is outlined, though an improvement of the methodology should include a more appropriate sequential extraction procedure capable of distinguishing siderite from iron oxyhydroxides, of leaching anglesite in a single step and of including calcium and magnesium among the analysed elements because of the role of their carbonates in buffering the drainage.  相似文献   

17.
Data on the mineral and chemical composition of samples of sulfide deposits from the Broken Spur and TAG (Mid-Atlantic Ridge) are presented. The main minerals in the Broken Spur field are marcasite, pyrrhotite, pyrite, chalcopyrite, and sphalerite; in sample from TAG: chalcopyrite, pyrite, and marcasite. It has been established that these sulfide minerals of Fe, Cu, and Zn are natural ion exchangers and belong to the class of adsorbents. Exchange capacity of sulfide minerals in terms of heavy metal cations (Ni2+, Co2+, Cd2+, and Pb2+) is 0.022–0.32 mg-equiv/g. In the exchange reaction products, the mineral composition of sulfide deposits is retained, and new phases do not appear. It is suggested that the adsorbed heavy metal cations populate either vacant cationic or interstitial defect sites in the structures of sulfide minerals. Bond strength of the adsorbed heavy metal cations with the main structural elements of minerals is low, which is confirmed by their high extraction in an acid medium. The results of adsorption-desorption experiments indicate two forms of heavy metal cations in sulfide minerals: adsorbed (basic) and chemically bound.  相似文献   

18.
The distribution characteristics and existing state of cadmium in the Jinding Pb-Zn deposit were studied. It was discovered that Cd was mainly distributed in sphalerite as an isomorphic impurity. There was a good correla-tion between Cd and Zn in the primary ore. With the oxidation and resolution of pyrite, sphalerite, sulfide, and etc., many secondary minerals, such as colloform sphalerite and smithsonite, were formed. The distribution of Cd is not symmetrical, and enrichment and dilution were observed in partial area of the oxidation zone in the deposit. Cd, except in external pore space or cracks of secondary minerals as independent minerals, such as greenockite, was mainly distributed in sphalerite as an isomorphic impurity in the secondary sphalerate and smithsonite in the oxida-tion zone. The research showed that Cd showed a very strong active transfer ability in the oxidation process, not only indicating that supergene leaching might be the main reason for Cd enrichment in some Pb-Zn deposits, but also reflecting that Cd was easily mobilizeed and transferred to pollute ore areas in the oxidation process. Furthermore, Cd in oxidation ore was more easily mobilized and transferred to induce bad hazards for ore areas with the effect from AMD which was produced from oxidation of sulfides.  相似文献   

19.
The formation of iron sulphide minerals exerts significant control on the behaviour of trace elements in sediments. In this study, three short sediment cores, retrieved from the remote Antinioti lagoon (N. Kerkyra Island, NW Greece), are investigated concerning the solid phase composition, distribution, and partitioning of major (Al, Fe) and trace elements (Cd, Cu, Mn, Pb, and Zn). According to 210Pb, the sediments sampled correspond to depositions of the last 120 years. The high amounts of organic carbon (4.1–27.5%) result in the formation of Fe sulphides, predominantly pyrite, already at the surface sediment layers. Pyrite morphologies include monocrystals, polyframboids, and complex FeS–FeS2 aggregates. According to synchrotron-generated micro X-ray fluorescence and X-ray absorption near-edge structure spectra, authigenically formed, Mn-containing, Fe(III) oxyhydroxides (goethite type) co-exist with pyrite in the sediments studied. Microscopic techniques evidence the formation of galena, sphalerite and CuS, whereas sequential extractions show that carbonates are important hosts for Mn, Cd, and Zn. However, significant percentages of non-lattice held elements are bound to Fe/Mn oxyhydroxides that resist reductive dissolution (on average 60% of Pb, 46% of Cd, 43% of Zn and 9% of Cu). The partitioning pattern changes drastically in the deeper part of the core that is influenced by freshwater inputs. In these sediments, the post-depositional pyritization mechanism, illustrated by overgrowths of Fe monosulphides on pre-existing pyrite grains, results in relatively high degree of pyritization that reaches 49% for Cd, 66% for Cu, 32% for Zn and 7% for Pb.  相似文献   

20.
《Applied Geochemistry》2005,20(3):639-659
The oxidation of sulfide minerals from mine wastes results in the release of oxidation products to groundwater and surface water. The abandoned high-sulfide Camp tailings impoundment at Sherridon, Manitoba, wherein the tailings have undergone oxidation for more than 70 a, was investigated by hydrogeological, geochemical, and mineralogical techniques. Mineralogical analysis indicates that the unoxidized tailings contain nearly equal proportions of pyrite and pyrrhotite, which make up to 60 wt% of the total tailings, and which are accompanied by minor amounts of chalcopyrite and sphalerite, and minute amounts of galena and arsenopyrite. Extensive oxidation in the upper 50 cm of the tailings has resulted in extremely high concentrations of dissolved SO4 and metals and As in the tailings pore water (pH < 1, 129,000 mg L−1 Fe, 280,000 mg L−1 SO4, 55,000 mg L−1 Zn, 7200 mg L−1 Al, 1600 mg L−1 Cu, 260 mg L−1 Mn, 110 mg L−1 Co, 97 mg L−1 Cd, 40 mg L−1 As, 15 mg L−1 Ni, 8 mg L−1 Pb, and 3 mg L−1 Cr). The acid released from sulfide oxidation has been extensive enough to deplete carbonate minerals to 6 m depth and to partly deplete Al-silicate minerals to a 1 m depth. Below 1 m, sulfide oxidation has resulted in the formation of a continuous hardpan layer that is >1 m thick. Geochemical modeling and mineralogical analysis indicate that the hardpan layer consists of secondary melanterite, rozenite, gypsum, jarosite, and goethite. The minerals indicated mainly control the dissolved concentrations of SO4, Fe, Ca and K. The highest concentrations of dissolved metals are observed directly above and within the massive hardpan layer. Near the water table at a depth of 4 m, most metals and SO4 sharply decline in concentration. Although dissolved concentrations of metals and SO4 decrease below the water table, these concentrations remain elevated throughout the tailings, with up to 60,600 mg L−1 Fe and 91,600 mg L−1 SO4 observed in the deeper groundwater. During precipitation events, surface seeps develop along the flanks of the impoundment and discharge pore water with a geochemical composition that is similar to the composition of water directly above the hardpan. These results suggest that shallow lateral flow of water from a transient perched water table is resulting in higher contaminant loadings than would be predicted if it were assumed that discharge is derived solely from the deeper primary water table. The abundance of residual sulfide minerals, the depletion of aluminosilicate minerals in the upper meter of the tailings and the presence of a significant mass of residual sulfide minerals in this zone after 70 a of oxidation suggest that sulfide oxidation will continue to release acid, metals, and SO4 to the environment for decades to centuries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号