首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the potential for the geologic storage of CO2 in saline sedimentary aquifers, 1600 ton of CO2 were injected at 1500 m depth into a 24-m sandstone section of the Frio Formation — a regional reservoir in the US Gulf Coast. Fluid samples obtained from the injection and observation wells before, during and after CO2 injection show a Na–Ca–Cl type brine with 93,000 mg/L TDS and near saturation of CH4 at reservoir conditions. As injected CO2 gas reached the observation well, results showed sharp drops in pH (6.5 to 5.7), pronounced increases in alkalinity (100 to 3000 mg/L as HCO3) and Fe (30 to 1100 mg/L), and significant shifts in the isotopic compositions of H2O and DIC. Geochemical modeling indicates that brine pH would have dropped lower, but for buffering by dissolution of calcite and Fe oxyhydroxides. Post-injection results show the brine gradually returning to its pre-injection composition.  相似文献   

2.
For the last 5 a, the authors have been investigating the transport, fate, natural attenuation and ecosystem impacts of inorganic and organic compounds in releases of produced water and associated hydrocarbons at the Osage-Skiatook Petroleum Environmental Research (OSPER) “A” and “B” sites, located in NE Oklahoma. Approximately 1.0 ha of land at OSPER “B”, located within the active Branstetter lease, is visibly affected by salt scarring, tree kills, soil salinization, and brine and petroleum contamination. Site “B” includes an active production tank battery and adjacent large brine pit, two injection well sites, one with an adjacent small pit, and an abandoned brine pit and tank battery site. Oil production in this lease started in 1938, and currently there are 10 wells that produce 0.2–0.5 m3/d (1–3 bbl/d) oil, and 8–16 m3/d (50–100 bbl/d) brine. Geochemical data from nearby oil wells show that the produced water source is a Na–Ca–Cl brine (∼150,000 mg/L TDS), with high Mg, but low SO4 and dissolved organic concentrations. Groundwater impacts are being investigated by detailed chemical analyses of water from repeated sampling of 41 boreholes, 1–71 m deep. The most important results at OSPER “B” are: (1) significant amounts of produced water from the two active brine pits percolate into the surficial rocks and flow towards the adjacent Skiatook reservoir, but only minor amounts of liquid petroleum leave the brine pits; (2) produced-water brine and minor dissolved organics have penetrated the thick (3–7 m) shale and siltstone units resulting in the formation of three interconnected plumes of high-salinity water (5000–30,000 mg/L TDS) that extend towards the Skiatook reservoir from the two active and one abandoned brine pits; and (3) groundwater from the deep section of only one well, BR-01 located 330 m upslope and west of the site, appear not to be impacted by petroleum operations.  相似文献   

3.
The geochemical effects of brine and supercritical CO2 (SCCO2) on reservoir rocks from deep (1500–2000 m) saline aquifers were examined via experimental simulation at in situ conditions. Dry sandstone samples were mounted in a triaxial cell and autoclave system, evacuated, and saturated with 1 M NaCl solution. The brine-rock system was allowed to react at 30 MPa confining pressure, 15 MPa pore fluid pressure, and 60 °C while SCCO2 was injected at a pressure gradient of 1–2 MPa. The experiment was conducted for a period of 1496 h, during which fluids were periodically sampled and analyzed. The pH measured in partially degassed fluid samples at 25 °C decreased from a starting value of 7.0–4.3 (9 days) and finally 5.1 after saturation with SCCO2.  相似文献   

4.
Fluid inclusions in quartz globules and quartz veins of a 3.8-3.7 Ga old, well-preserved pillow lava breccia in the northeastern Isua Greenstone Belt (IGB) were studied using microthermometry, Raman spectrometry and SEM Cathodoluminescence Imaging. Petrographic study of the different quartz segregations showed that they were affected by variable recrystallization which controlled their fluid inclusion content. The oldest unaltered fluid inclusions found are present in vein crystals that survived dynamic and static recrystallization. These crystals contain a cogenetic, immiscible assemblage of CO2-rich (+H2O, +graphite) and brine-rich (+CO2, +halite, +carbonate) inclusions. The gas-rich inclusions have molar volumes between 44.8 and 47.5 cm3/mol, while the brine inclusions have a salinity of ∼33 eq. wt% NaCl. Modeling equilibrium immiscibility using volumetric and compositional properties of the endmember fluids indicates that fluid unmixing occurred at or near peak-metamorphic conditions of ∼460 °C and ∼4 kbar. Carbonate and graphite were precipitated cogenetically from the physically separated endmember fluids and were trapped in fluid inclusions.In most quartz crystals, however, recrystallization obliterated such early fluid inclusion assemblages and left graphite and carbonate as solid inclusions in recrystallized grains. Intragranular fluid inclusion trails in the recrystallized grains of breccia cementing and crosscutting quartz veins have CO2-rich assemblages, with distinctly different molar volumes (either between 43.7 and 47.5 cm3/mol or between 53.5 and 74.1 cm3/mol), and immiscible, halite-saturated H2O-CO2-NaCl(-other salt) inclusions. Later intergranular trails have CH4-H2 (XH2 up to ∼0.3) inclusions of variable density (ranging from 48.0 to >105.3 cm3/mol) and metastable H2O-NaCl(-other salt?) brines (∼28 eq. wt% NaCl). Finally, the youngest fluid inclusion assemblages are found in non-luminescent secondary quartz and contain low-density CH4 (molar volume > 105.33 cm3/mol) and low-salinity H2O-NaCl (0.2-3.7 eq. wt% NaCl). These successive fluid inclusion assemblages record a retrograde P-T evolution close to a geothermal gradient of ∼30 °C/km, but also indicate fluid pressure variations and the introduction of highly reducing fluids at ∼200-300 °C and 0.5-2 kbar. The quartz globules in the pillow fragments only contain sporadic CH4(+H2) and brine inclusions, corresponding with the late generations present in the cementing and crosscutting veins. We argue that due to the large extent of static recrystallization in quartz globules in the pillow breccia fragments, only these relatively late fluid inclusions have been preserved, and that they do not represent remnants of an early, seafloor-hydrothermal system as was previously proposed.Modeling the oxidation state of the fluids indicates a rock buffered system at peak-metamorphic conditions, but suggests a change towards fluid-graphite disequilibrium and a logfH2/fH2O above the Quartz-Fayalite-Magnetite buffer during retrograde evolution. Most likely, this indicates a control on redox conditions and on fluid speciation by ultramafic rocks in the IGB.Finally, this study shows that microscopic solid graphite in recrystallized metamorphic rocks from Isua can be deposited inorganically from a fluid phase, adding to the complexity of processes that formed reduced carbon in the oldest, well-preserved supracrustal rocks on Earth.  相似文献   

5.
δ13C values of dissolved inorganic C (DIC), dissolved organic C (DOC), and particulate organic C (POC) together with δ18O and δ2H values of water, δ34S values of dissolved SO4, and major ion concentrations were measured in the Murray River and its tributaries between November 2005 and April 2007 to constrain the origins and behaviour of riverine C. δ13CDIC values in the Murray River vary between −9.5 and −4.7‰ with a range of <3‰ within any sampling round. δ13CDIC values of the tributaries are −11.0‰ to −5.1‰. DIC concentrations of the Murray River increase from ∼25 mg/L in the middle and upper reaches of the river to 45–55 mg/L in the lower reaches. However, the mass ratio of DIC as a proportion of the total dissolved solids (TDS) decreases from ∼0.6–0.7 in the headwaters to ∼0.2–0.3 in the lower reaches of the river, with similar downstream changes in DIC/Cl ratios. This precludes simple evaporative concentration of DIC and is interpreted as the river evading CO2; this interpretation is consistent with pCO2 values that are in the range 550–11,200 ppm volume (ppmv), which are far higher than those in equilibrium with the atmosphere (∼360 ppmv). The δ13CDIC values are similar to those that would be produced by the weathering of marine limestone (δ13C ∼ 0‰). However, the lack of marine limestones cropping out in the Murray–Darling Basin and the relatively uniform δ13CDIC values of the Murray River (even in upland reaches where the dominant rock types are metamorphosed silicates and granites) make this unlikely. Rather the high pCO2 values and δ13CDIC values are best explained by a combination of mineralisation of low δ13C organic C and evasion to the atmosphere. The rate of these two processes may attain near steady state and control both DIC concentrations and δ13C values.  相似文献   

6.
Mud volcanoes are important pathways for CH4 emission from deep buried sediments; however, the importance of gas fluxes have hitherto been neglected in atmospheric source budget considerations. In this study, gas fluxes have been monitored to examine the stability of their chemical compositions and fluxes spatially, and stable C isotopic ratios of CH4 were determined, for several mud volcanoes on land in Taiwan. The major gas components are CH4 (>90%), “air” (i.e. N2 + O2 + Ar, 1–5%) and CO2 (1–5%) and these associated gas fluxes varied slightly at different mud volcanoes in southwestern Taiwan. The Hsiao-kun-shui (HKS) mud volcano emits the highest CH4 concentration (CH4 > 97%). On the other hand, the Chung-lun mud volcano (CL) shows CO2 up to 85%, and much lower CH4 content (<37%). High CH4 content (>90%) with low CO2 (<0.2%) are detected in the mud volcano gases collected in eastern Taiwan. It is suggestive that these gases are mostly of thermogenic origin based on C1 (methane)/C2 (ethane) + C3 (propane) and δ13CCH4 results, with the exception of mud volcanoes situated along the Gu-ting-keng (GTK) anticline axis showing unique biogenic characteristics. Only small CH4 concentration variations, <2%, were detected in four on-site short term field-monitoring experiments, at Yue-shi-jie A, B, Kun-shui-ping and Lo-shan A. Preliminary estimation of CH4 emission fluxes for mud volcanoes on land in Taiwan fall in a range between 980 and 2010 tons annually. If soil diffusion were taken into account, the total amount of mud volcano CH4 could contribute up to 10% of total natural CH4 emissions in Taiwan.  相似文献   

7.
The Neogene Guantao formation in the Beitang sag in the Bohai Bay Basin (BBB) of North China, a Mesozoic–Cenozoic sedimentary basin of continental origin, has been chosen as a candidate for a pilot field test of CO2 sequestration. Hydrogeological and geochemical investigations have been carried out to assess its suitability, taking advantage of many existing geothermal wells drilled to 2000 m or greater depths. Water samples from 25 wells and drill cores of three sections of the Guantao formation were collected for measurements of mineralogy, water chemistry and isotopes (δ18O, δD, δ13C, 14C). Formation temperature estimated by chemical geothermometry is in the range of 60–80 °C. Geochemical modeling of water–rock–CO2 interaction predicts a strong geochemical response to CO2 injection. Besides the elevated porosity (33.6–38.7%) and high permeability (1150–1980 mD) of the Ng-III formation and a favorable reservoir–caprock combination, it is also found that the formation contains carbonates that will react with CO2 after injection. The low salinity (TDS < 1.6 g/L) offers high CO2 solubility. The 14C age of the formation water indicates a quasi-closed saline aquifer system over large time scales, the lateral sealing mechanism for CO2 sequestration requires further investigation. The CO2 storage capacity of the Guantao formation within the Beitang sag is estimated to be 17.03 Mt, assuming pure solubility trapping.  相似文献   

8.
Diffuse CO2 efflux near the Ukinrek Maars, two small volcanic craters that formed in 1977 in a remote part of the Alaska Peninsula, was investigated using accumulation chamber measurements. High CO2 efflux, in many places exceeding 1000 g m−2 d−1, was found in conspicuous zones of plant damage or kill that cover 30,000–50,000 m2 in area. Total diffuse CO2 emission was estimated at 21–44 t d−1. Gas vents 3-km away at The Gas Rocks produce 0.5 t d−1 of CO2 that probably derives from the Ukinrek Maars basalt based on similar δ13C values (∼−6‰), 3He/4He ratios (5.9–7.2 RA), and CO2/3He ratios (1–2 × 109) in the two areas. A lower 3He/4He ratio (2.7 RA) and much higher CO2/3He ratio (9 × 1010) in gas from the nearest arc-front volcanic center (Mount Peulik/Ugashik) provide a useful comparison. The large diffuse CO2 emission at Ukinrek has important implications for magmatic degassing, subsurface gas transport, and local toxicity hazards. Gas–water–rock interactions play a major role in the location, magnitude and chemistry of the emissions.  相似文献   

9.
Crushed rock from two caprock samples, a carbonate-rich shale and a clay-rich shale, were reacted with a mixture of brine and supercritical CO2 (CO2–brine) in a laboratory batch reactor, at different temperature and pressure conditions. The samples were cored from a proposed underground CO2 storage site near the town of Longyearbyen in Svalbard. The reacting fluid was a mixture of 1 M NaCl solution and CO2 (110 bar) and the water/rock ratio was 20:1. Carbon dioxide was injected into the reactors after the solution had been bubbled with N2, in order to mimic O2-depleted natural storage conditions. A control reaction was also run on the clay-rich shale sample, where the crushed rock was reacted with brine (CO2-free brine) at the same experimental conditions. A total of 8 batch reaction experiments were run at temperatures ranging from 80 to 250 °C and total pressures of 110 bar (∼40 bar for the control experiment). The experiments lasted 1–5 weeks.Fluid analysis showed that the aqueous concentration of major elements (i.e. Ca, Mg, Fe, K, Al) and SiO2 increased in all experiments. Release rates of Fe and SiO2 were more pronounced in solutions reacted with CO2–brine as compared to those reacted with CO2-free brine. For samples reacted with the CO2–brine, lower temperature reactions (80 °C) released much more Fe and SiO2 than higher temperature reactions (150–250 °C). Analysis by SEM and XRD of reacted solids also revealed changes in mineralogical compositions. The carbonate-rich shale was more reactive at 250 °C, as revealed by the dissolution of plagioclase and clay minerals (illite and chlorite), dissolution and re-precipitation of carbonates, and the formation of smectite. Carbon dioxide was also permanently sequestered as calcite in the same sample. The clay-rich shale reacted with CO2–brine did not show major mineralogical alteration. However, a significant amount of analcime was formed in the clay-rich shale reacted with CO2-free brine; while no trace of analcime was observed in either of the samples reacted with CO2–brine.  相似文献   

10.
Geological sequestration of CO2 in depleted oil reservoirs is a potentially useful strategy for greenhouse gas management and can be combined with enhanced oil recovery. Development of methods to estimate CO2 leakage rates is essential to assure that storage objectives are being met at sequestration facilities. Perfluorocarbon tracers (PFTs) were added as three 12 h slugs at about one week intervals during the injection of 2090 tons of CO2 into the West Pearl Queen (WPQ) depleted oil formation, sequestration pilot study site located in SE New Mexico. The CO2 was injected into the Permian Queen Formation. Leakage was monitored in soil–gas using a matrix of 40 capillary adsorbent tubes (CATs) left in the soil for periods ranging from days to months. The tracers, perfluoro-1,2-dimethylcyclohexane (PDCH), perfluorotrimethylcyclohexane (PTCH) and perfluorodimethylcyclobutane (PDCB), were analyzed using thermal desorption, and gas chromatography with electron capture detection. Monitoring was designed to look for immediate leakage, such as at the injection well bore and at nearby wells, and to develop the technology to estimate overall CO2 leak rates based on the use of PFTs. Tracers were detected in soil–gas at the monitoring sites 50 m from the injection well within days of injection. Tracers continued to escape over the following years. Leakage appears to have emanated from the vicinity of the injection well in a radial pattern to about 100 m and in directional patterns to 300 m. Leakage rates were estimated for the 3 tracers from each of the 4 sets of CATs in place following the start of CO2 injection. Leakage was fairly uniform during this period. As a first approximation, the CO2 leak rate was estimated at about 0.0085% of the total CO2 sequestered per annum.  相似文献   

11.
Acid mine drainage (AMD) from the Zn–Pb(–Ag–Bi–Cu) deposit of Cerro de Pasco (Central Peru) and waste water from a Cu-extraction plant has been discharged since 1981 into Lake Yanamate, a natural lake with carbonate bedrock. The lake has developed a highly acidic pH of ∼1. Mean lake water chemistry was characterized by 16,775 mg/L acidity as CaCO3, 4330 mg/L Fe and 29,250 mg/L SO4. Mean trace element concentrations were 86.8 mg/L Cu, 493 mg/L Zn, 2.9 mg/L Pb and 48 mg/L As, which did not differ greatly from the discharged AMD. Most elements showed increasing concentrations from the surface to the lake bottom at a maximal depth of 41 m (e.g. from 3581 to 5433 mg/L Fe and 25,609 to 35,959 mg/L SO4). The variations in the H and O isotope compositions and the element concentrations within the upper 10 m of the water column suggest mixing with recently discharged AMD, shallow groundwater and precipitation waters. Below 15 m a stagnant zone had developed. Gypsum (saturation index, SI ∼ 0.25) and anglesite (SI ∼ 0.1) were in equilibrium with lake water. Jarosite was oversaturated (SI ∼ 1.7) in the upper part of the water column, resulting in downward settling and re-dissolution in the lower part of the water column (SI ∼ −0.7). Accordingly, jarosite was only found in sediments from less than 7 m water depth. At the lake bottom, a layer of gel-like material (∼90 wt.% water) of pH ∼1 with a total organic C content of up to 4.40 wet wt.% originated from the kerosene discharge of the Cu-extraction plant and had contaminant element concentrations similar to the lake water. Below the organic layer followed a layer of gypsum with pH 1.5, which overlaid the dissolving carbonate sediments of pH 5.3–7. In these two layers the contaminant elements were enriched compared to lake water in the sequence As < Pb ≈ Cu < Cd < Zn = Mn with increasing depth. This sequence of enrichment was explained by the following processes: (i) adsorption of As on Fe-hydroxides coating plant roots at low pH (up to 3326 mg/kg As), (ii) adsorption at increasing pH near the gypsum/calcite boundary (up to 1812 mg/kg Pb, 2531 mg/kg Cu, and 36 mg/kg Cd), and (iii) precipitation of carbonates (up to 5177 mg/kg Zn and 810 mg/kg Mn; all data corrected to a wet base). The infiltration rate was approximately equal to the discharge rate, thus gypsum and hydroxide precipitation had not resulted in complete clogging of the lake bedrocks.  相似文献   

12.
To study the geological control on groundwater As concentrations in Red River delta, depth-specific groundwater sampling and geophysical logging in 11 monitoring wells was conducted along a 45 km transect across the southern and central part of the delta, and the literature on the Red River delta’s Quaternary geological development was reviewed. The water samples (n = 30) were analyzed for As, major ions, Fe2+, H2S, NH4, CH4, δ18O and δD, and the geophysical log suite included natural gamma-ray, formation and fluid electrical conductivity. The SW part of the transect intersects deposits of grey estuarine clays and deltaic sands in a 15–20 km wide and 50–60 m deep Holocene incised valley. The NE part of the transect consists of 60–120 m of Pleistocene yellowish alluvial deposits underneath 10–30 m of estuarine clay overlain by a 10–20 m veneer of Holocene sediments. The distribution of δ18O-values (range −12.2‰ to −6.3‰) and hydraulic head in the sample wells indicate that the estuarine clay units divide the flow system into an upper Holocene aquifer and a lower Pleistocene aquifer. The groundwater samples were all anoxic, and contained Fe2+ (0.03–2.0 mM), Mn (0.7–320 μM), SO4 (<2.1 μM–0.75 mM), H2S (<0.1–7.0 μM), NH4 (0.03–4.4 mM), and CH4 (0.08–14.5 mM). Generally, higher concentrations of NH4 and CH4 and low concentrations of SO4 were found in the SW part of the transect, dominated by Holocene deposits, while the opposite was the case for the NE part of the transect. The distribution of the groundwater As concentration (<0.013–11.7 μM; median 0.12 μM (9 μg/L)) is related to the distribution of NH4, CH4 and SO4. Low concentrations of As (?0.32 μM) were found in the Pleistocene aquifer, while the highest As concentrations were found in the Holocene aquifer. PHREEQC-2 speciation calculations indicated that Fe2+ and H2S concentrations are controlled by equilibrium for disordered mackinawite and precipitation of siderite. An elevated groundwater salinity (Cl range 0.19–65.1 mM) was observed in both aquifers, and dominated in the deep aquifer. A negative correlation between aqueous As and an estimate of reduced SO4 was observed, indicating that Fe sulphide precipitation poses a secondary control on the groundwater As concentration.  相似文献   

13.
The active acid gas (H2S–CO2 mixture) injection operations in North America provide practical experience for the operators in charge of industrial scale CO2 geological storage sites. Potential leakage via wells and their environmental impacts make well construction durability an issue for efficiency/safety of gas geological storage. In such operations, the well cement is in contact with reservoir brines and the injected gas, meaning that gas–water–solid chemical reactions may change the physical properties of the cement and its ability to confine the gas downhole. The cement-forming Calcium silicate hydrates carbonation (by CO2) and ferrite sulfidation (by H2S) reactions are expected. The main objective of this study is to determine their consequences on cement mineralogy and transfer ability. Fifteen and 60 days duration batch experiments were performed in which well cement bars were immersed in brine itself caped by a H2S–CO2 phase at 500 bar–120 °C. Scanning electron microscopy including observations/analyses and elemental mapping, mineralogical mapping by micro-Raman spectroscopy, X-ray diffraction and water porosimetry were used to characterize the aged cement. Speciation by micro-Raman spectroscopy of brine trapped within synthetic fluid inclusions were also performed. The expected calcium silicate hydrates carbonation and ferrite sulfidation reactions were evidenced. Furthermore, armouring of the cement through the fast creation of a non-porous calcite coating, global porosity decrease of the cement (clogging) and mineral assemblage conservation were demonstrated. The low W/R ratio of the experimental system (allowing the cement to buffer the interstitial and external solution pH at basic values) and mixed species diffusion and chemical reactions are proposed to explain these features. This interpretation is confirmed by reactive transport modelling performed with the HYTEC code. The observed cement armouring, clogging and mineral assemblage conservation suggest that the tested cement has improved transfer properties in the experimental conditions. This work suggests that in both acid gas and CO2 geological storage, clogging of cement or at least mineral assemblage conservation and slowing of carbonation progress could occur in near-well zones where slight water flow occurs e.g. in the vicinity of caprock shales.  相似文献   

14.
A unique dataset from paired low- and high-temperature vents at 9°50′N East Pacific Rise provides insight into the microbiological activity in low-temperature diffuse fluids. The stable carbon isotopic composition of CH4 and CO2 in 9°50′N hydrothermal fluids indicates microbial methane production, perhaps coupled with microbial methane consumption. Diffuse fluids are depleted in 13C by ∼10‰ in values of δ13C of CH4, and by ∼0.55‰ in values of δ13C of CO2, relative to the values of the high-temperature source fluid (δ13C of CH4 =−20.1 ± 1.2‰, δ13C of CO2 =−4.08 ± 0.15‰). Mixing of seawater or thermogenic sources cannot account for the depletions in 13C of both CH4 and CO2 at diffuse vents relative to adjacent high-temperature vents. The substrate utilization and 13C fractionation associated with the microbiological processes of methanogenesis and methane oxidation can explain observed steady-state CH4 and CO2 concentrations and carbon isotopic compositions. A mass-isotope numerical box model of these paired vent systems is consistent with the hypothesis that microbial methane cycling is active at diffuse vents at 9°50′N. The detectable 13C modification of fluid geochemistry by microbial metabolisms may provide a useful tool for detecting active methanogenesis.  相似文献   

15.
Carbon dioxide emissions and heat flow have been determined from the Ohaaki hydrothermal field, Taupo Volcanic Zone (TVZ), New Zealand following 20 a of production (116 MWe). Soil CO2 degassing was quantified with 2663 CO2 flux measurements using the accumulation chamber method, and 2563 soil temperatures were measured and converted to equivalent heat flow (W m−2) using published soil temperature heat flow functions. Both CO2 flux and heat flow were analysed statistically and then modelled using 500 sequential Gaussian simulations. Forty subsoil CO2 gas samples were also analysed for stable C isotopes. Following 20 a of production, current CO2 emissions equated to 111 ± 6.7 T/d. Observed heat flow was 70 ± 6.4 MW, compared with a pre-production value of 122 MW. This 52 MW reduction in surface heat flow is due to production-induced drying up of all alkali–Cl outflows (61.5 MW) and steam-heated pools (8.6 MW) within the Ohaaki West thermal area (OHW). The drying up of all alkali–Cl outflows at Ohaaki means that the soil zone is now the major natural pathway of heat release from the high-temperature reservoir. On the other hand, a net gain in thermal ground heat flow of 18 MW (from 25 MW to 43.3 ± 5 MW) at OHW is associated with permeability increases resulting from surface unit fracturing by production-induced ground subsidence. The Ohaaki East (OHE) thermal area showed no change in distribution of shallow and deep soil temperature contours despite 20 a of production, with an observed heat flow of 26.7 ± 3 MW and a CO2 emission rate of 39 ± 3 T/d. The negligible change in the thermal status of the OHE thermal area is attributed to the low permeability of the reservoir beneath this area, which has limited production (mass extraction) and sheltered the area from the pressure decline within the main reservoir. Chemistry suggests that although alkali–Cl outflows once contributed significantly to the natural surface heat flow (∼50%) they contributed little (<1%) to pre-production CO2 emissions due to the loss of >99% of the original CO2 content due to depressurisation and boiling as the fluids ascended to the surface. Consequently, the soil has persisted as the major (99%) pathway of CO2 release to the atmosphere from the high temperature reservoir at Ohaaki. The CO2 flux and heat flow surveys indicate that despite 20 a of production the variability in location, spatial extent and magnitude of CO2 flux remains consistent with established geochemical and geophysical models of the Ohaaki Field. At both OHW and OHE carbon isotopic analyses of soil gas indicate a two-stage fractionation process for moderate-flux (>60 g m−2 d−1) sites; boiling during fluid ascent within the underlying reservoir and isotopic enrichment as CO2 diffuses through porous media of the soil zone. For high-flux sites (>300 g m−2 d−1), the δ13CO2 signature (−7.4 ± 0.3‰ OHW and −6.5 ± 0.6‰ OHE) is unaffected by near-surface (soil zone) fractionation processes and reflects the composition of the boiled magmatic CO2 source for each respective upflow. Flux thresholds of <30 g m−2 d−1 for purely diffusive gas transport, between 30 and 300 g m−2 d−1 for combined diffusive–advective transport, and ?300 g m−2 d−1 for purely advective gas transport at Ohaaki were assigned. δ13CO2 values and cumulative probability plots of CO2 flux data both identified a threshold of ∼15 g m−2 d−1 by which background (atmospheric and soil respired) CO2 may be differentiated from hydrothermal CO2.  相似文献   

16.
Twenty-nine wells were selected for groundwater sampling in the town of Shahai, in the Hetao basin, Inner Mongolia. Four multilevel samplers were installed for monitoring groundwater chemistry at depths of 2.5–20 m. Results show that groundwater As exhibits a large spatial variation, ranging between 0.96 and 720 μg/L, with 71% of samples exceeding the WHO drinking water guideline value (10 μg/L). Fluoride concentrations range between 0.30 and 2.57 mg/L. There is no significant correlation between As and F concentrations. Greater As concentrations were found with increasing well depth. However, F concentrations do not show a consistent trend with depth. Groundwater with relatively low Eh has high As concentrations, indicating that the reducing environment is the major factor controlling As mobilization. Low As concentrations (<10 μg/L) are found in groundwater at depths less than 10 m. High groundwater As concentration is associated with aquifers that have thick overlying clay layers. The clay layers, mainly occurring at depths <10 m, have low permeability and high organic C content. These strata restrict diffusion of atmospheric O2 into the aquifers, and lead to reducing conditions that favor As release. Sediment composition is an additional factor in determining dissolved As concentrations. In aquifers composed of yellowish-brown fine sands at depths around 10 m, groundwater generally has low As concentrations which is attributed to the high As adsorption capacity of the yellow–brown Fe oxyhydroxide coatings. Fluoride concentration is positively correlated with pH and negatively correlated with Ca2+ concentration. All groundwater samples are over-saturated with respect to calcite and under-saturated with respect to fluorite. Dissolution and precipitation of Ca minerals (such as fluorite and calcite), and F adsorption–desorption are likely controlling the concentration of F in groundwater.  相似文献   

17.
An investigation of the thermal waters in the Ústí nad Labem area in the northeastern part of the Eger Rift has been carried out, with the principal objective of determining their origin. Waters from geothermal reservoirs in the aquifers of the Bohemian Cretaceous Basin (BCB) from depths of 240 to 616 m are exploited here. For comparison, thermal waters of the adjacent Teplice Spa area were also incorporated into the study. Results based on water chemistry and isotopes indicate mixing of groundwater from aquifers of the BCB with groundwater derived from underlying crystalline rocks of the Erzgebirge Mts. Unlike thermal waters in Dě?ín, which are of Ca–HCO3 type, there are two types of thermal waters in Ústí nad Labem, Na–HCO3–Cl–SO4 type with high TDS values and Na–Ca–HCO3–SO4 type with low TDS values. Carbon isotope data, speciation calculations, and inverse geochemical modeling suggest a significant input of endogenous CO2 at Ústí nad Labem in the case of high TDS groundwaters. Besides CO2 input, both silicate dissolution and cation exchange coupled with dissolution of carbonates may explain the origin of high TDS thermal waters equally well. This is a consequence of similar δ13C and 14C values in endogenous CO2 and carbonates (both sources have 14C of 0 pmc, endogenous CO2 δ13C around −3‰, carbonates in the range from −5‰ to +3‰ V-PDB). The source of Cl seems to be relict brine formed in Tertiary lakes, which infiltrated into the deep rift zone and is being flushed out. The difference between high and low TDS groundwaters in Ústí nad Labem is caused by location of the high mineralization groundwater wells in CO2 emanation centers linked to channel-like conduits. This results in high dissolution rates of minerals and in different δ13C(DIC) and 14C(DIC) fingerprints. A combined δ34S and δ18O study of dissolved SO4 indicates multiple SO4 sources, involving SO4 from relict brines and oxidation of H2S. The study clearly demonstrates potential problems encountered at sites with multiple sources of C, where several evolutionary groundwater scenarios are possible.  相似文献   

18.
In 2001 a surface geochemical survey was carried out in the Carpathian Foredeep, in the area between Jaros?aw and Radymno (SE Poland) where multihorizon gas deposits were discovered. These deposits accumulate microbial CH4 with small amounts of N2 and higher molecular weight gaseous hydrocarbons. Soil–gas composition in the hydrocarbon fields in the study area is relatively different from the original composition of natural gas occurring in the subsurface reservoir. In 449 analyzed soil gas samples collected from 1.2 m depth relatively low concentrations were found for CH4 (median value 2.2 ppm) and its homologues (median value of total alkanes C2–C4 – 0.02 ppm). Alkenes were encountered in 36.3% of the analyzed samples (mean value of total alkenes C2–C4 – 0.015 ppm) together with distinctly higher concentrations of H2 (maximum value – 544 ppm, mean value – 42 ppm) and CO2 (maximum value – 10.26 vol.%, mean value – 2.27 vol.%). Individual, very high concentrations of CH4 (up to about 35 vol.%) resulted from sub-surface biochemical reactions whereas higher alkanes detected in soil gases (up to about 68 ppm) originated from deep gas accumulations. Both the H2 and alkenes may be indirect indicators of deep hydrocarbon accumulations. Carbon dioxide may also be useful for hydrocarbon exploration, revealing increased concentrations in those sampling sites where CH4 concentrations are strongly depleted, presumably due to bacterial oxidation. These relationships are valid only for the study area and should not be extended as an universal principle.  相似文献   

19.
In this study, the geochemistry and origin of natural gas and formation waters in Devonian age organic-rich shales and reservoir sandstones across the northern Appalachian Basin margin (western New York, eastern Ohio, northwestern Pennsylvania, and eastern Kentucky) were investigated. Additional samples were collected from Mississippian Berea Sandstone, Silurian Medina Sandstone and Ordovician Trenton/Black River Group oil and gas wells for comparison. Dissolved gases in shallow groundwaters in Devonian organic-rich shales along Lake Erie contain detectable CH4 (0.01–50.55 mol%) with low δ13C–CH4 values (−74.68 to −57.86‰) and no higher chain hydrocarbons, characteristics typical of microbial gas. Nevertheless, these groundwaters have only moderate alkalinity (1.14–8.72 meq/kg) and relatively low δ13C values of dissolved inorganic C (DIC) (−24.8 to −0.6‰), suggesting that microbial methanogenesis is limited. The majority of natural gases in Devonian organic-rich shales and sandstones at depth (>168 m) in the northern Appalachian Basin have a low CH4 to ethane and propane ratios (3–35 mol%; C1/C2 + C3) and high δ13C and δD values of CH4 (−53.35 to −40.24‰, and −315.0 to −174.6‰, respectively), which increase in depth, reservoir age and thermal maturity; the molecular and isotopic signature of these gases show that CH4 was generated via thermogenic processes. Despite this, the geochemistry of co-produced brines shows evidence for microbial activity. High δ13C values of DIC (>+10‰), slightly elevated alkalinity (up to 12.01 meq/kg) and low SO4 values (<1 mmole/L) in select Devonian organic-rich shale and sandstone formation water samples suggest the presence of methanogenesis, while low δ13C–DIC values (<−22‰) and relatively high SO4 concentrations (up to 12.31 mmole/L) in many brine samples point to SO4 reduction, which likely limits microbial CH4 generation in the Appalachian Basin. Together the formation water and gas results suggest that the vast majority of CH4 in the Devonian organic-rich shales and sandstones across the northern Appalachian Basin margin is thermogenic in origin. Small accumulations of microbial CH4 are present at shallow depths along Lake Erie and in western NY.  相似文献   

20.
The aim of this experimental study was to evaluate and compare the geochemical impact of pure and impure CO2 on rock forming minerals of possible CO2 storage reservoirs. This geochemical approach takes into account the incomplete purification of industrial captured CO2 and the related effects during injection, and provides relevant data for long-term storage simulations of this specific greenhouse gas. Batch experiments were conducted to investigate the interactions of supercritical CO2, brine and rock-forming mineral concentrates (albite, microcline, kaolinite, biotite, muscovite, calcite, dolomite and anhydrite) using a newly developed experimental setup. After up to 42 day (1000 h) experiments using pure and impure supercritical CO2 the dissolution and solution characteristics were examined by XRD, XRF, SEM and EDS for the solid, and ICP–MS and IC for the fluid reactants, respectively. Experiments with mixtures of supercritical CO2 (99.5 vol.%) and SO2 or NO2 impurities (0.5 vol.%) suggest the formation of H2SO4 and HNO3, reflected in pH values between 1 and 4 for experiments with silicates and anhydrite and between 5 and 6 for experiments with carbonates. These acids should be responsible for the general larger amount of cations dissolved from the mineral phases compared to experiments using pure CO2. For pure CO2 a pH of around 4 was obtained using silicates and anhydrite, and 7–8 for carbonates. Dissolution of carbonates was observed after both pure and impure CO2 experiments. Anhydrite was corroded by approximately 50 wt.% and gypsum precipitated during experiments with supercritical CO2 + NO2. Silicates do not exhibit visible alterations during all experiments but released an increasing amount of cations in the reaction fluid during experiments with impure CO2. Nonetheless, precipitated secondary carbonates could not be identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号