首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Sun  Zhongcong  Hu  Chaochen  Wu  Di  Chen  Guopeng  Lu  Xiaoqiang  Liu  Xueyan 《中国地球化学学报》2021,40(2):176-183
Acta Geochimica - Water stable isotopes (δ2H and δ18O) can record surface water evaporation, which is an important hydrological process for understanding watershed structure and function...  相似文献   

2.
Twenty private wells and ten stream locations were sampled to assess the source and fate of dissolved nitrate in the Cedar River watershed of Iowa, USA. The average levels of nitrate in groundwater decreased from 39.5 mg/L in May, to 38 mg/L in July, to 30 mg/L in September. Although several surface water samples exceeded MCL in May, most values dropped to below 20 mg/L by July and September. The decreasing N levels were attributed to the gradual uptake of nitrate by growing crops as well as the cyanobacterial growth in the aquatic systems. The δ15N values of dissolved nitrate in groundwater ranged from +0.45 to +5.35‰, whereas those in surface water ranged from +1.48 to +5.16‰. The results suggested that commercial fertilizers and soil organic nitrogen were probably mixed up in their transport pathways. A fertilizer-only source would provide much lower delta values, whereas soil nitrogen would provide higher than observed delta values. Denitrification was considered unlikely because of the low δ15N values, high nitrate concentrations, and moderately high DO content in groundwater. Animal wastes were not found as a possible source of nitrate in the water. This is supported by the low chloride concentrations and lower than 10‰ delta values in the water samples. The study demonstrates that nitrogen isotope data in coordination with the dissolved nitrate levels and land use can be effectively used in nitrogen source identification and its transformation studies.  相似文献   

3.
4.
We examined the relationship between variation in origin of organic matter and benthic secondary production in a shallow, macrotidal estuary on the United States Pacific Northwest coast, Willapa Bay, Washington. Spatial variation in energy sources and benthic productivity were investigated at both local (vertical height and cross-bank components) and regional (sites within the bay) scales. We determined the stable carbon isotope ratios of oysters (Crassostrea gigas) to evaluate marine versus terrestrial energy sources, compared growth rates of oysters, and made time series measurements of physical variablest at estuarine channel and intertidal stations. The stable carbon isotope ratios of oysters ranged from ?22‰ in inner portions of the estuary to ?18‰ near the mouth and oysters grown on the substrate surface were enriched in δ13C relative to those grown in the water column. These patterns are consistent with terrigenous inputs away from the estuary mouth and benthic microalgae in the diets of on-bottom oysters. The highest oyster growth was found at an inner estuary site where riverine inputs are relatively high and coincided, with high ammonium in the water column. However, for most sites in Willapa Bay, oyster growth actually declined away from the estuary mouth. Reducing the time available for feeding by transplanting oysters higher in the intertidal zone had significant negative effects on growth(e.g., a reduction of 27–35% over 0.5 m). Despite the fact that oysters grown on-bottom had access to different resources than those in the water column, their growth was slower at amy given tidal elevation, which may be due to on-bottom competition with other suspension feeders, boundary layer effects, or interference from turbidity. In a practical sense, oyster growers have been adjusting to allochthonous energetic support of food webs in Willapa Bay for more than a century, because they have traditionally moved oysters from southern parts of the bay where recruitment is relatively high to beds where market-size oysters can be grown closer to the mouth. This study provides mechanistic support for these practices and suggests that climatic events on a variety of temporal scales (Pacific Decadal Oscillation, upwelling events) could have economic consequences for aquaculture.  相似文献   

5.
The Pb-isotope composition of soils and sediments has been measured from both highly contaminated and non-contaminated regions of Bayou Trepagnier, a bayou in southern Louisiana that has had oil refinery effluent discharged into it over the past 66 years. Spoil banks created by the dredging of the bayou bottom approximately 50 years ago are the main source of contamination within the ecosystem. The 206Pb/207Pb isotope composition of the contaminant is relatively constant averaging 1.275 ±0.008. A literature search reveals that such radiogenic values are typical of ores from southeastern Missouri. When surficial soil 206Pb/208Pb and 206Pb/207Pb isotope ratios are plotted against each other, a straight line is defined (r2=0.99). The linear correlation suggests mixing between Pb from the spoil banks and Pb from a natural source. The latter source may consist of Pb in soil that has been leached of its natural radiogenic component during weathering processes. Mixing calculations indicate that transport of contaminant Pb is widespread and occurs several hundred meters from the spoil banks. Despite the low Pb concentrations of some of the soils, the isotope data demonstrate that a significant amount of the Pb is derived from the pollutant source. Received: 12 July 1999 · Accepted: 14 September 1999  相似文献   

6.
近年来,随着同位素分析方法的不断突破和新一代多接收电感耦合等离子体质谱(MC- ICP- MS)测试技术的广泛应用,Cu、Sn、Ag等非传统同位素在古代金属制品溯源研究中显示出较好的应用前景。本文综述了近20年来Cu、Sn、Ag同位素在古代金属制品应用研究的相关进展,并展望了其应用前景:① 由于不同矿床之间Cu、Sn、Ag同位素存较大重叠,这些同位素均难以作为独立的证据追溯金属制品的地质来源;② Cu同位素在原生矿石与表生矿石之间存在较大的分馏,是示踪铜矿石类型的可靠方法,Ag同位素也具推断银矿石类型的潜力;③ 将Cu、Sn、Ag同位素与Pb同位素、微量元素相结合,并采用合理的统计方法,开展综合溯源研究将是今后应用非传统同位素进行古代金属制品溯源研究的发展方向。  相似文献   

7.
Stable sulfur and oxygen isotope ratios and naturally occurring 35SSO4 activities were used to examine sulfate sources, address the role of sulfur dynamics, and estimate residence times of atmospherically derived sulfate in Loch Vale Watershed, Colorado. In 1996, surface water samples from small streams flowing through talus, forest, and wetland areas had '34SSO4 values ranging from 1.8 to 3.7‰. Values of '18OSO4 at the three sites ranged from -1.3 to 3.7‰. Average '34SSO4 and '18OSO4 values in Loch Vale precipitation (1991-1999) are higher (5.2 and 13.6, respectively) than surface water values, indicating that some of the deposited sulfate is transformed and/or mixed with other sulfur sources in the watershed (e.g. mineral and organic sulfur). Sulfate ages determined by 35SSO4 activities support this and show that deposited sulfate may be stored on a timescale of 1 year or more prior to being released to surface waters.  相似文献   

8.
Naturally occurring stable and radioactive isotopes were used as environmental tracers to investigate contaminant metal mobilization processes in a metal smelter dump mainly consisting of slag. Water emerging from the dump at a spring is heavily contaminated by metals. The smelter dump contains minor amounts of flue dust, a material which shows a high potential for metal mobilization. Nearby dumps mainly consist of low-grade ore. Concentration patterns of 238U, 226Ra and 210Pb determined in sediment deposited close to the contaminated spring reveal the flue dust to be the major local metal source rather than the slag or the low-grade ore. Contamination pathways inside the dump were investigated using hydrological, chemical and isotopic data. Strong negative correlation between water discharge and metal concentration in the spring water suggests, besides short-term dilution of the metal concentration by direct rainwater runoff, distinct long-term dilution of the spring water by groundwater being discharged at a significantly increased rate as a result of heavy rains. δ18O and δD signatures of rain, local groundwater and spring water confirm the importance of groundwater derived from the local aquifer. Another hydrological component with importance for metal mobilization was found to be water that is recharged in the dump itself. Tritium analysis allowed an assessment of the probable residence time of that water component in the smelter dump. Since that water component seems to represent a major local contamination pathway the findings of the study are of substantial importance for site remediation planning. As a primary result it could be stated that covering the dump would not result in any noteworthy short-term improvement of the spring water quality. First significant effects would only be visible after 2–3 decades at the earliest.  相似文献   

9.
湘东北地区有色金属矿床成矿物质来源综合研究相对缺乏。以桃林铅锌矿、栗山铅锌矿、井冲钴铜多金属矿为研究对象,分析矿床主成矿期矿石硫化物单矿物的硫、铅同位素地质特征,结合七宝山铜多金属矿等研究现状,综合研究湘东北地区有色金属矿床的成矿物质来源规律。硫同位素特征表明,4个矿床的成矿物质整体为深部岩浆硫源,其中,七宝山矿床为较典型的岩浆硫源,桃林、栗山、井冲等矿床混入了少量地层硫源,且桃林矿床比栗山、井冲矿床混入地层硫源的比例更高。铅同位素特征表明,4个矿床的成矿物质来源以上地壳为主,但混入了少部分幔源物质,且七宝山、井冲的幔源物质混入比例更高。  相似文献   

10.
This study represents an attempt to determine the sources of vermillion found in ancient Japanese burial mounds of the 1st–6th centuries A.D., by comparing their ratios of sulfur isotopes with those of cinnabar ore samples collected in Japan and China. Cinnabar ore samples were taken from three mines in central Japan (Niu in Mie, Yamato in Nara, and Sui in Tokushima prefectures), and from Wanshan in China, where mining activity has been recorded back to the 6th century A.D. and earlier. When the ratios of a 34S and 32S were compared with the Canyon Diablo meteorite standard, a high δ34S value of +22.6 ± 3.6‰ was found for the Wanshan mine, as opposed to low values ranging from −7.3 ± 1.9 to −2.1 ± 1.6‰ for the Japanese mines. The ratios of sulfur isotopes in vermillion collected from ancient Japanese burial mounds also divided into two groups. High ratios (+11.1 to +22.8‰) were found in 1st‐ and 2nd‐ century burials in the western regions of northern Kyushu and San'in, suggesting that local, powerful chiefs obtained vermillion through relations with China. Lower ratios (−8.4 to −2.0‰) were found in burials of the 2nd through 6th centuries in central Japan, where the ancient Yamato dynasty emerged as the first unified polity around the end of the 2nd century A.D. We, therefore, conclude that the Yamato dynasty exploited local sources of vermillion, rather than depending solely on China. The present study demonstrates the feasibility of determining sources of vermillion using sulfur isotope ratios, and the relevance of such findings for archaeological research. © 2005 Wiley Periodicals, Inc.  相似文献   

11.
The formulation of watershed management strategies to protect water resources threatened by soil erosion and sedimentation requires a thorough understanding of sediment sources and factors that drive soil movement in the watershed. This paper describes a study of medium-term water-driven soil erosion rates in a mountainous watershed of the Shihmen Reservoir in Taiwan. A total of 60 sampling sites were selected along a hillslope. At each sampling site, the inventory 137Cs activity was determined and then calculated with the diffusion and migration model to derive soil erosion rates. The rates are one to two orders of magnitude lower than estimates using the Universal Soil Loss Equation, a soil erosion model often used in Taiwan. Results of multiple regression analysis indicate that the spatial variability of soil erosion rates is associated with the relative position of a sampling site to the nearest ridge and soil bulk densities (r 2 = 0.33, p < 0.01). Finally, the patterns of soil redistribution rates on the hillslope follow the 137Cs hillslope model as soil erosion increases in the downslope direction. No deposition site is found at footslope because soil deposition is swept away by regular flooding along the stream channel. This study is an important first step in using 137Cs as a tracer of soil redistribution in mountainous watersheds of Taiwan.  相似文献   

12.
The role of different minerals in base cation release and thus the increase of buffering capacity of groundwater against acid deposition is controversially discussed in the literature. The 87Sr/86Sr ratios and base cation concentration were investigated in whole rock leachates, mineral separates, precipitation, soil solution, groundwater and stream water samples in the Lehstenbach catchment (Germany) to identify the weathering sequence of the granite bedrock. Three different approaches were followed in parallel. It was assumed that the contribution of different minerals to base cation supply of the groundwater with increasing weathering intensity would be observed by investigating (1) unweathered rock leachates, deep groundwater and shallow groundwater, (2) groundwater samples from new groundwater wells, reflecting the initial weathering of the drilled bedrock, and groundwater from wells that were drilled in 1988, (3) stream water during baseflow, dominated by deep groundwater, and stream water during high flow, being predominantly shallow groundwater. Whereas the first approach yielded consistent patterns, there was some evidence that groundwater from the new wells initially reflected contamination by the filter gravel rather than cation release in an initial stage of weathering. Time series samples of stream water and groundwater solute concentrations and isotope ratios turned out to reflect varying fractions of soil water and precipitation water at baseflow and high flow conditions rather than varying contributions of different minerals that prevail at different stages of granite weathering.  相似文献   

13.
The global composition of the early solar system is thought to be roughly chondritic in terms of refractory components, and this means that metal and silicate should be present together in early planetesimals. To fully understand the metal-silicate differentiation process within the eucrite parent body (EPB), it is important to try and identify the metal reservoir that is complementary to the silicate part. The isotope 182 of tungsten (W), a siderophile element, is partly formed from the decay of 182Hf, and W isotopes are useful for examining metal-silicate segregation. The W isotopic composition expected for the metal that is complementary to eucrites falls in the range of iron meteorites. However, mesosiderites seem to be genetically linked to eucrites based on petrologic and oxygen isotopic similarities. Therefore, we undertook the analysis of the metal phase of these stony-irons. Here we present tungsten isotopic data for mesosiderite and pallasite metal to characterize their parent body (bodies) and to assess possible relationships with eucrites.All stony-iron metals are depleted in radiogenic tungsten by −1.3 to −4.2 ε units, relative to the terrestrial standard, while chondrites, for comparison, are depleted by −1.9 ε units. In addition to W isotopic heterogeneity from one stony-iron to another, there is also W isotopic heterogeneity within individual meteorites. A formation model is tentatively proposed, where we show that mesosiderites, pallasites, and eucrites could possibly come from the same parent body. Several hypotheses are discussed to explain the isotopic heterogeneity: the production of cosmogenic tungsten, the in situ decay of hafnium present in inclusions, and tungsten diffusion processes after metal-silicate mixing during the cooling of the meteorites. The two latter hypotheses provide the best explanation of our data.  相似文献   

14.
Multivariate statistical approach is used to identify the sources of heavy metals (Bi, Cd, Co, Cr, Mn, Pb, U, V, and Zn) in surface water and freshly deposited riverine sediment samples in Yangzhong city, China. The metal concentration data for the water and sediment samples are reported in terms of basic statistical parameters and metal-to-metal correlations. In both surface water and sediment samples, significant correlations are observed between some metals. Principal component analysis and cluster analysis distinguishes factors of lithogenic and anthropogenic origin. Bismuth, Cd, Co, and Pb (Co only for water samples) contents are controlled by the regional lithogenic high background factor; Co, Mn, U, and V (Co only for sediment samples) are interpreted to be mainly inherited from soil parent materials, while Cr, Zn, and Mn in the two kinds of samples are recognized as the tracer of industrial pollution. Obvious similarity between factor loadings of the two kinds of samples is observed, evidencing that metal variability in the two kinds of samples is controlled by the same sources. Statistical analysis agrees with discussion based on background value and field survey of point-source pollutant affected sediment, making this statistical discussion more convincing.  相似文献   

15.
16.
Carbonate-hosted Zn-Pb (± barite, fluorite) occurrences in the Franklinian Basin of North Greenland were studied using the Rb-Sr method, applied to sphalerite, and combined Sr and Pb isotope analysis of ore and gangue minerals, to place constraints on their age and genesis. The occurrences are located in the easternmost part of the basin in Peary Land and Kronprins Christian Land, and are hosted by Upper Ordovician to lowermost Silurian dolostones of the Turesø Formation.Sphalerite samples from the Zn-Pb occurrence at Børglum, in Peary Land, reflect undisturbed Rb-Sr systems and return an isochron age of 388 ± 4 Ma (MSWD = 1.6, 87Sr/86Sri = 0.70930 ± 1). Sphalerites and their fluid inclusion fractions from an adjacent Zn-Pb occurrence, at Tvilum, exhibit various degrees of isotopic disturbance caused by secondary fluid overprint. They yield no age, however, reconstructive modelling of their Rb-Sr and Pb-Pb signatures indicates original isotope systematics consistent with the Børglum data. Likewise, due to a lack of suitable samples, no Rb-Sr age could be determined for a third occurrence in southeastern Peary Land at Løgum, however, the time-integrated Pb isotopic evolution of fluorite and calcite from this mineralization over c. 390 Ma is compatible with modelled initial signatures for Tvilum and Børglum ores. Consequently, a contemporaneous formation at c. 390 Ma can be assumed for all studied locations in Peary Land. For the Zn-Pb occurrence in Kronprins Christian Land farther east, a Rb-Sr sphalerite age of c. 360–365 Ma has been obtained through a combined isochron and paleomixing line approach.The absolute ages obtained at the studied occurrences, corresponding to Middle to Upper Devonian ages, are in no conflict with the age of the host dolostones of the Turesø Formation, which placed a maximum age limit for the mineralization. Actually, the fact that mineralization was emplaced at least 50 Ma after deposition of the host rocks, which would have been completely lithified by then, warrants the classification of the studied occurrences as epigenetic Mississippi Valley-Type, rather than diagenetic Irish-type. Furthermore, the obtained ages are contemporaneous to the Middle or Upper Devonian to the Lower Carboniferous Ellesmerian Orogeny, indicating that the mineralization likely formed from basinal brines expelled by tectonism and/or hydraulic head caused by Ellesmerian orogenic uplift, as previously suggested for the Polaris carbonate-hosted Zn-Pb deposit (Cornwallis Island, Canada).Pb isotope systematics of base metal mineralization in the Franklinian Basin point to principal metal sources located in the crystalline basement and in basement-derived clastic sediments. These two reservoirs define radiogenic and unradiogenic end components from which lead was mobilized and mixed in different proportions during discrete periods of hydrothermal activity. Distinct thorogenic Pb isotope signatures indicate that specific local sources (lower crustal basement, carbonate rocks and possibly organic-rich shales) were also involved in mineralization.  相似文献   

17.
由于多年冻土区流域土壤冻融过程对水循环影响的复杂性,水循环物理过程观测存在困难和不足,而利用稳定同位素方法可以有效地解决该问题。因此,基于2009年长江源风火山流域夏季定点降水和河水δD和δ18O,对研究区降水河水稳定同位素特征进行分析。结果表明,研究区夏季降水δD和δ18O受到降水量和温度的双重影响,即受海洋性和大陆局地气团的交替影响。河水氢氧同位素的季节变化和空间差异与壤中流、地下水补给河流的季节差异和植被覆盖的空间差异有关。随着地温升高和土壤冻融锋面的迁移,河水补给来源和同位素特征发生改变,表明土壤冻融变化对多年冻土流域径流过程起到重要作用。此外,蒸发分馏作用是研究区河水同位素的重要影响因素。  相似文献   

18.
This paper investigated the sources and behaviors of sulfate in groundwater of the western North China Plain using sulfur and oxygen isotopic ratios. The groundwaters can be categorized into karst groundwater (KGW), coal mine drainage (CMD) and pore water (subsurface saturated water in interstices of unconsolidated sediment). Pore water in alluvial plain sediments could be further classified into unconfined groundwater (UGW) with depth of less than 30 m and confined groundwater (CGW) with depth of more than 60 m. The isotopic compositions of KGW varied from 9.3‰ to 11.3‰ for δ34SSO4 with the median value of 10.3‰ (n = 4) and 7.9‰ to 15.6‰ for δ18OSO4 with the median value of 14.3‰ (n = 4) respectively, indicating gypsum dissolution in karst aquifers. δ34SSO4 and δ18OSO4 values of sulfate in CMD ranged from 10.8‰ to 12.4‰ and 4.8‰ to 8.7‰ respectively. On the basis of groundwater flow path and geomorphological setting, the pore water samples were divided as three groups: (1) alluvial–proluvial fan (II1) group with high sulfate concentration (median values of 2.37 mM and 1.95 mM for UGW and CGW, respectively) and positive δ34SSO4 and δ18OSO4 values (median values of 8.8‰ and 6.9‰ for UGW, 12.0‰ and 8.0‰ for CGW); (2) proluvial slope (II2) group with low sulfate concentration (median values of 1.56 mM and 0.84 mM for UGW and CGW, respectively) and similar δ34SSO4 and δ18OSO4 values (median values of 9.0‰ and 7.4‰ for UGW, 10.2‰ and 7.7‰ for CGW); and (3) low-lying zone (II3) group with moderate sulfate concentration (median values of 2.13 mM and 1.17 mM for UGW and CGW, respectively) and more positive δ34SSO4 and δ18OSO4 values (median values of 10.7‰ and 7.7‰ for UGW, 20.1‰ and 8.8‰ for CGW). In the present study, three major sources of sulfate could be differentiated as following: sulfate dissolved from Ordovician to Permian rocks (δ34SSO4 = 10–35‰ and δ18OSO4 = 7–20‰), soil sulfate (δ34SSO4 = 5.9‰ and δ18OSO4 = 5.8‰) and sewage water (δ34SSO4 = 10.0‰ and δ18OSO4 = 7.6‰). Kinetic fractionations of sulfur and oxygen isotopes as a result of bacterial sulfate reduction (BSR) were found to be evident in the confined aquifer in stagnant zone (II3), and enrichment factors of sulfate–sulfur and sulfate–oxygen isotopes calculated by Rayleigh equation were −12.1‰ and −4.7‰ respectively along the flow direction of groundwater at depths of 60–100 m. The results obtained in this study confirm that detailed hydrogeological settings and identification of anthropogenic sources are critical for elucidating evolution of δ34SSO4 and δ18OSO4 values along with groundwater flow path, and this work also provides a useful framework for understanding sulfur cycling in alluvial plain aquifers.  相似文献   

19.
20.
The uranium (U) content and 234U/238U activity ratio were determined for water samples collected from Korea's Han River in spring, summer, and winter 2006 to provide data that might constrain the origin of U isotope fractionation in river water and the link between U isotope systematics in river waters and the lithological nature of the corresponding bedrock. The large difference in the major dissolved loads between the two major branches of the Han River, the North Han River (NHR) and South Han River (SHR), is reflected in the contrasting U content and 234U/238U activity ratio between the tributaries: low U content (0.08–0.75 nM; average, 0.34 nM) and small 234U/238U activity ratio (1.03–1.22; average, 1.09) in the NHR; and high U content (0.65–1.98 nM; average, 1.44 nM) and large 234U/238U activity ratio (1.05–1.45; average, 1.24) in the SHR. The large spatial differences in U content and 234U/238U activity ratio are closely related to both lithological differences between the two tributaries and groundwater input. The low U content and small 234U/238U activity ratio in the NHR arise mainly from a combination of surface and meteoric weathering of the dominant silicate rocks in this branch and congruent dissolution of already weathered (secular equilibrium) materials. In contrast, the high U content and large 234U/238U activity ratio in the SHR are ascribed to the dissolution of carbonates and black shales along with significant inputs of deep groundwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号