首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arid saline soils are well-distributed over the globe, with a variety of nomenclature. Along the seaboard of the Arabian Gulf, these soils exist widely and are known as “sabkhas”. Despite the cemented and saline characteristics of the sabkha matrix, a recent investigation indicated that flooding the saline sabkha with distilled water in the conventional oedometer apparatus was incapable of producing a sudden reduction in volume and/or a significant collapse. This study proposes a modification to the conventional oedometer on undisturbed sabkha specimens to consolidating specimens under a constant head. Tests were, therefore, conducted on undisturbed sabkha specimens to assess their compressibility and collapse potential whereby percolation of water was commenced under two pressures to evaluate the role of sustained pressure on the collapse mechanisms.

Despite the low compressibility of sabkhas, results of these tests indicated that these arid, saline soils possess a high collapse potential attributable primarily to dissolution of sodium chlorides, leaching of calcium ions and soil grain adjustment. The collapse potential increases with an increase in the acting pressure at which percolation of water takes place. In contrast to other typical soils, the collapse of arid, saline soils is not instantaneous but requires sufficient volume of water to percolate in order to enhance the dissolution of the cementing agents.  相似文献   


2.
Modeling soil collapse by artificial neural networks   总被引:1,自引:0,他引:1  
The feasibility of using neural networks to model the complex relationship between soil parameters, loading conditions, and the collapse potential is investigated in this paper. A back propagation neural network process was used in this study. The neural network was trained using experimental data. The experimental program involved the assessment of the collapse potential using the one-dimensional oedometer apparatus. To cover the broadest possible scope of data, a total of eight types of soils were selected covering a wide range of gradation. Various conditions of water content, unit weights and applied pressures were imposed on the soils. For each placement condition, three samples were prepared and tested with the measured collapse potential values averaged to obtain a representative data point. This resulted in 414 collapse tests with 138 average test values, which were divided into two groups. Group I, consisting of 82 data points, was used to train the neural networks for a specific paradigm. Training was carried out until the mean sum squared error (MSSE) was minimized. The model consisting of eight hidden nodes and six variables was the most successful. These variables were: soil coefficient of uniformity, initial water content, compaction unit weight, applied pressure at wetting, percent sand and percent clay. Once the neural networks have been deemed fully trained its accuracy in predicting collapse potential was tested using group II of the experimental data. The model was further validated using information available in the literature. The data used in both the testing and validation phases were not included in the training phase. The results proved that neural networks are very efficient in assessing the complex behavior of collapsible soils using minimal processing of data. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
蔡江东 《岩土力学》2011,32(Z2):401-406
深厚覆盖地区,煤矿开采会在地表形成塌陷盆地;采动塌陷不但改变了原有的地貌形态,还会对周边场地环境及一定范围内土的工程性质产生影响;采用非线性动力学理论对塌陷周边场地土层的静力触探孔比贯入阻力的数据进行分析,结果表明:采动、塌陷对其周边场地土的影响存在显著的空间效应。具体在分形特征上表现为:同一勘探线上,随远离塌陷中心距离的增加,静力触探的分维数表现出显著的趋势性特征。这不但与场地土土工试验指标相吻合,同时配分函数标度区间变化也证实了这一结论。  相似文献   

4.
The research studies the applicability of two elastoplastic models for the collapse prediction of the lateritic soil profile from Southeastern Brazil. These tropical soils have peculiar geotechnical behavior, due to their mineralogical composition and porous structure coming from intense process of formation. Two elastoplastic models were analyzed: the Barcelona Basic Model (BBM) and another one based on BBM, however developed for tropical soils. Oedometric tests with suction control were performed at three distinct depths of the soil profile. The BBM was not suitable for the upper layer of the soil profile, because BBM considers the compressible behavior of the soil in function of the reduction of the elastoplastic compressibility index with the increase of the matric suction. The model developed for tropical soils showed better suited to the compressible behavior of the soil profile, resulting in good prediction of the collapse potential, mainly by accepting increasing values of the elastoplastic compressibility index of the soil profile with the matric suction rise.  相似文献   

5.
Geotechnical engineering practice for collapsible soils   总被引:3,自引:0,他引:3  
Conditions in arid and semi-arid climates favor the formation of the most problematic collapsible soils. The mechanisms that account for almost all naturally occurring collapsible soil deposits are debris flows, rapid alluvial depositions, and wind-blown deposits (loess). Collapsible soils are moisture sensitive in that increase in moisture content is the primary triggering mechanism for the volume reduction of these soils. One result of urbanization in arid regions is an increase in soil moisture content. Therefore, the impact of development-induced changes in surface and groundwater regimes on the engineering performance of moisture sensitive arid soils, including collapsible soils, becomes a critical issue for continued sustainable population expansion into arid regions.In practicing collapsible soils engineering, geotechnical engineers are faced with (1) identification and characterization of collapsible soil sites, (2) estimation of the extent and degree of wetting, (3) estimation of collapse strains and collapse settlements, and (4) selection of design/mitigation alternatives. Estimation of the extent and degree of wetting is the most difficult of these tasks, followed by selection of the best mitigation alternative.  相似文献   

6.
The climatic zones where residual soils occur are often characterized by alternate wet and dry seasons. Laboratory studies of earlier workers have established that the alternate wetting and drying process affects the swell-shrink potentials, water content, void ratio and particle cementation of expansive soils. The influence of cyclic wetting and drying on the collapse behaviour of residual soils has not been examined. This paper examines the influence of alternate wetting and drying on the collapse behaviour of compacted residual soil specimens from Bangalore District. Results of such a study are useful in anticipating changes in collapse behaviour of compacted residual soil fills. Experimental results indicated that the cyclic wetting and drying process increased the degree of expansiveness of the residual soils and reduced their collapse tendency. Changes in the swell/collapse behaviour of compacted residual soil specimens from wetting drying effects are attributed to reduction in water content, void ratio and possible growth of cementation bonds.  相似文献   

7.
Expansive soils have received attentions of several investigators in the past half of century in the problematic soils context. Volume change behavior of unsaturated compacted soils in presence of water and change of degree of saturation was observed in two form of heave or collapse. Low water content and low density compacted soils in presence of enough surcharge pressure lose stability and collapse, because of their metastable and susceptible structure to change of degree of saturation. Free-swell and swelling pressure of five compacted clays, covering low to high plastic clays have been investigated in respect to compaction states and swelling pressure was compared with collapse pressure threshold. The results of experiments were utilized in two Artificial Neural Networks to predict free-swell percent and swelling pressure of a soil sample based on index properties and compaction state.  相似文献   

8.
Collapsible soils are problematic by nature. They undergo collapse or sudden settlement or subsidence under a given stress when their water content is increased. Collapse is characterised by collapse potential expressed as ΔH/H x 100, where ΔH is collapse compression. The amount of stress applied and the water content at the time of collapse govern the amount of collapse. In other words, collapse potential depends upon the amount of stress and the water content. Loess and other wind-blown silts are examples of collapsible soils. This paper presents a parametric study on the collapse behaviour of a lateritic soil. Remoulded specimens of a lateritic soil passing through a 425 µm sieve were compacted in 1-D consolidometer or oedometer at a density of 13 kN/m3 for studying collapse under varied initial moisture contents and initial surcharge pressures. Collapse compression of the samples was induced by saturating the specimens with water contents corresponding to 100% degree of saturation. After collapse occurred, the 1-D consolidation tests were continued up to an applied stress of 160 kPa. Collapse behaviour was studied for the applied initial pressures (σi) of 10, 20 and 40 kPa and for the initial water contents (wi) of 5%, 10%, 15% and 20%. Collapse compression and collapse potential decreased with increasing wi for all σi.  相似文献   

9.
鉴于西北地区干-湿与冻-融交替循环的气候特征、砾质土料储存量丰富以及土工织物膨润土垫(GCLs)防渗新技术在国内外已逐步得到推广应用,提出了宽级配砾质土料、土工织物粘土垫层(GCLs)和土工膜(GM)组合作为垃圾填埋场防渗系统的构想。通过对宽级配砾质土料的室内试验数据和国内外有关文献资料的分析研究表明,以GCLs/GM作为隔渗层,以宽级配砾质土代替粘土作为隔渗层的保护层所构成的复合防渗系统,能有效抵御干-湿与冻-融交替循环作用的影响,显著提高垃圾填埋场长期防渗能力和整体稳定性。对于处在西北地区特殊环境中的垃圾填埋场而言,文中所建议的复合防渗系统设置方法,可能是一种值得期待的垃圾填埋场防渗型式。  相似文献   

10.
Collapsing soils, which undergo a large decrease in bulk volume virtually instantaneously upon saturation and/or load application, are found in arid and semi-arid regions of the world. In the western and midwestern U.S., problems resulting from collapsing soils are being recognized due to rapid industrial and urban developments. A probabilistic analysis of the distribution of such soils would be a rational approach for quantifying risk involved for a project in an area where such soils are found. Indicator kriging was applied to seven sets of collapse and collapse-related soil parameters to obtain the probability that a certain parameter is more or less than a predefined critical value for low, medium, and high collapse susceptibility. Results are presented in the form of probability contour plots with known variance of estimation of the probability. The ability to predict the probability of occurrence of collapse and collapse-related soil parameters for different critical values with a known degree of certainty is invaluable to planners, developers, and geotechnical engineers.  相似文献   

11.
《Applied Geochemistry》1994,9(4):431-454
Thousands of solution-collapse breccia pipes crop out in the canyons and on the plateaus of northwestern Arizona; some host high-grade uranium deposits. The mineralized pipes are enriched in Ag, As, Ba, Co, Cu, Mo, Ni, Pb, Sb, Se, V and Zn. These breccia pipes formed as sedimentary strata collapsed into solution caverns within the underlying Mississippian Redwall Limestone. A typical pipe is approximately 100 m (300 ft) in diameter and extends upward from the Redwall Limestone as much as 1000 m (3000 ft).Unmineralized gypsum and limestone collapses rooted in the Lower Permian Kaibab Limestone or Toroweap Formation also occur throughout this area. Hence, development of geochemical tools that can distinguish these unmineralized collapse structures, as well as unmineralized breccia pipes, from mineralized breccia pipes could significantly reduce drilling costs for these orebodies commonly buried 300–360 m (1000–1200 ft) below the plateau surface.Design and interpretation of soil sampling surveys over breccia pipes are plagued with several complications. (1) The plateau-capping Kaibab Limestone and Moenkopi Formation are made up of diverse lithologies. Thus, because different breccia pipes are capped by different lithologies, each pipe needs to be treated as a separate geochemical survey with its own background samples. (2) Ascertaining true background is difficult because of uncertainties in locations of poorly-exposed collapse cones and ring fracture zones that surround the pipes.Soil geochemical surveys were completed on 50 collapse structures, three of which are known mineralized breccia pipes. Each collapse structure was treated as an independent geochemical survey. Geochemical data from each collapse feature were plotted on single-element geochemical maps and processed by multivariate factor analysis. To contrast the results between geochemical surveys (collapse structures), a means of quantifying the anomalousness of elements at each site was developed. This degree of anomalousness, named the “correlation value”, was used to rank collapse features by their potential to overlie a deeply-buried mineralized breccia pipe.Soil geochemical results from the three mineralized breccia pipes (the only three of the 50 that had previously been drilled) show that: (1) Soils above the SBF pipe contain significant enrichment of Ag, Al, As, Ba, Ga, K, La, Mo, Nd, Ni, Pb, Sc, Th, U and Zn, and depletion in Ca, Mg and Sr, in contrast to soils outside the topographic and structural rim; (2) Soils over the inner treeless zone of the Canyon pipe show Mo and Pb enrichment anf As and Ga depletion, in contrast to soils from the surrounding forest; and (3) The soil survey of the Mohawk Canyon pipe was a failure because of the rocky terrane and lack of a B soil horizon, or because the pipe plunges. At least 11 of the 47 other collapse structures studied contain anomalous soil enrichments similar to the SBF uranium ore-bearing pipe, and thus have good potential as exploration targets for uranium. One of these 11, #1102, does contain surface mineralized rock. These surveys suggest that soil geochemical sampling is a useful tool for the recognition of many collapse structures with underlying ore-bearing breccia pipes.  相似文献   

12.
The paper discusses some aspects of the Barcelona Basic Model (BBM), which is one of the most widely used elasto‐plastic models for unsaturated soils. In addition to modelling those unsaturated soils where the collapse potential increases with increasing net stress (as envisaged by the original authors), the BBM can also be used to model soils where the collapse potential decreases with increasing net stress, by selecting suitable values for the model parameters r and pc. A practical procedure is suggested for selecting a value for the important model parameter pc from laboratory test data. Problems with use of the BBM are discussed, including the difficulty of correctly matching the locations of the normal compression lines for different values of suction and the possibility of non‐convexity of the yield curve. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
At present, several of the existing elastoplastic constitutive models are adapted for describing the stress–strain behavior of unsaturated soils. However, most of them present certain limitations in this field. These limitations can be related to the basic model and/or added unsaturated state variables and formulations. In this regard, inability to model the hydro‐mechanical behavior in constant water (CW) conditions is an example of these limitations. In this paper, an advanced version of CJS model is selected for adaptation to the unsaturated states. Adaptation to unsaturated states is achieved in the framework of effective stress approach. Effective stress equation and unsaturated state variables are selected based on the recent research existing in the literature. The developed model is capable of describing the complex behavior of unsaturated soil in the CW condition in addition to predicting the behavior at failure and post–failure, nonlinear elastoplastic behavior at low levels of stress and strain (by selecting a very small elastic domain), as well as wetting and collapse behaviors. In order to validate the model, results of triaxial tests in CD and CW conditions are used. The validation results indicate the good capability of the proposed model. Behavior of the unsaturated soils during wetting is an important issue. For this reason, the model is also evaluated based on the results of wetting and collapse triaxial tests. A comparison between the tests and simulation results shows that the model is able to predict the soil behavior under the wetting path. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
梁桥  杨小礼  张佳华  周文权 《岩土力学》2016,37(9):2585-2592
基于对数螺旋破坏模式,考虑黏土的非均质特征,采用极限分析上限法推导了盾构隧道掌子面支护力计算公式,通过优化计算得到了不同条件下的最优上限解。采用该破坏模式与已有的模型试验、工程实例进行对比,验证了在非均质土中采用双对数螺旋极限分析上限法的适用性;同时详细分析了在土体不同参数条件下,隧道掌子面支护力、滑动面范围的变化趋势以及工程影响,结果显示在非均质土中,掌子面支护效率的主导因素是初始黏聚力与掌子面超前核心土,最后通过归一化处理得到了非均质土中极限支护力的设计推荐图,可为工程中初步确定盾构隧道掌子面支护压力提供理论依据。  相似文献   

15.
Geobotanical, biogeochemical and geochemical studies were carried out over the Seruwila copper-magnetite prospect near Trincomalee in Sri Lanka. Soil and plant samples were collected along a 180-m transect across the ore body near a gossanous outcrop at Kollan Kulam. Eighteen elements were determined in plant foliage and soil samples. The data showed that in the soils, the concentrations of the ore elements copper and iron and of the pathfinders Ca, Co, Mg, Mn, Mo, Ni and P, were highly indicative of the position of the ore body as determined by a drilling programme.Plant mapping showed that only two species (Glycosmis mauritiana and Pterospermum canescens) were sufficiently ubiquitous to be of use for biogeochemical prospecting in this area. Neither species had a foliar copper content related to Cu levels in the soils, but G. mauritiana had P levels which related well to the position of the ore body and to the concentrations of Fe, Cu and pathfinders in the soils.Principal components and factor analysis of the biogeochemical and geochemical data showed that most of the variance in the plant-soil system was accounted for by the concentrations of ore elements in the soils. It is concluded that the data will be of use for further geochemical and botanical exploration studies in the region or in other genetically similar ore occurrences in South Asia.  相似文献   

16.
岩溶塌陷发育机理模式研究   总被引:6,自引:5,他引:1  
姜伏伟 《中国岩溶》2017,36(6):759-763
岩溶塌陷是我国岩溶区常见的地质灾害。目前,关于岩溶塌陷发育机理模式主要以力学分析为主。文章以岩溶塌陷过程为基础,探讨分析岩溶塌陷发育机理模式。依据地下水埋藏条件,土体分为包气带非饱和土体、潜水层饱和土体及承压水层承压性土体。根据“水-+土”相互作用,在包气带、潜水层和承压水层分别建立崩解作用、潜蚀作用和水力裂隙作用三种岩溶塌陷发育机理模式。   相似文献   

17.
Gypseous soils are distributed in vast areas and various regions of Iraq and other countries. Many foundation failure problems that occur in these soils are associated with percolation of water and dissolution of gypsum. Many attempts were made by several researchers to treat and improve the properties of gypseous soils to decrease the dissolution of gypsum and collapse potential of these soils. The purpose of the present work is to investigate the effect of dynamic compaction process on the behaviour of gypseous soils. Extensive laboratory tests are carried out to study the geotechnical properties and the behaviour of three gypseous soils of different gypsum contents; 60.5, 41.1 and 27?%. The tests included compaction characteristics, compressibility, and collapsibility tests for samples tested before and after treatment by dynamic compaction process under different number of blows, falling weights and heights of falling of the weights. Three weights are used to compact the samples, namely; 2, 3 and 5?kg. The number of blows is varied between 20 and 40, while three heights of drop are tried (35, 50 and 65) cm. The results showed that the best improvement in compressibility is achieved when the sample is compacted by 20 blows; above this number a negligible decrease in the compression index CC is obtained. As the gypsum content increases, the dynamic compaction has greater effect on improvement of compressibility of the soil, while as the height of drop increases, the compression index CC decreases.  相似文献   

18.
祝恩阳  李晓强 《岩土力学》2018,39(1):112-122
结构性土颗粒间的胶结使试样剪切破坏最终应力比高于相应重塑土,也限制了试样剪切时体积应变的自由发挥。在考虑结构垮塌为主的结构性土统一硬化(UH)模型基础上,将应力空间中静止的临界状态线扩展为动态的移动临界状态线。据此,通过建立新的屈服面方程并修正剪胀方程,将结构性土统一硬化(UH)模型扩展为胶结结构性土统一硬化(UH)模型。相对于原模型,新模型增加了1个模型参数,即初始胶结应力,反映土颗粒之间的初始胶结作用。通过4种结构性土试验数据与模型预测对照表明:所提模型能够较合理地描述结构性土等向压缩、常规三轴排水与不排水剪切等特性。  相似文献   

19.
A new constitutive model is developed for the mechanical behaviour of unsaturated soils based on the theory of hypoplasticity and the effective stress principle. The governing constitutive relations are presented and their application is demonstrated using several experimental data from the literature. Attention is given to the stiffening effect of suction on the mechanical response of unsaturated soils and the phenomenon of wetting‐induced collapse. All model parameters have direct physical interpretation, procedures for their quantification from test data are highlighted. Quantitative predictions of the model are presented for wetting, drying and constant suction tests. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
The August 1985 crack has focussed attention on passive earth processes in parts of Bauchi State, Nigeria. These processes, encompassing groundwater solution and roof collapse, soil shrink-swell, and gullying, are widespread in the Akko, Gombe, and Bauchi Local Government Areas (LGAs) of the State. Soils in these areas are rich in montmorillonite clay minerals and possess appreciable shrink-swell capabilities. Surface heave ranges from 8.1 to 11 cm. Preliminary data on plasticity measurement show a plasticity index (PI) of 13.4 to 15%. Consequently, in response to seasonal changes, the soil usually splits, leaving gaping cracks. These cracks, once formed, constitute channels throug which meteoric water easily penetrates the bedrock. The water is chemically acid and the underlying bedrock contains layers of limestone and shale. Systematic solution of these chemically reactive rocks results in the formation of caverns, the roof of which may ultimately collapse leaving randomly distributed sink holes. These cracks and sink holes run through villages, destroying mud buildings, which often collapse overnight, and transforming most modern block buildings into death traps. They affect roads, bridges, and other foundations, and render farmlands waste, swallowing up livestock.The expansive soil processes, solution and roof collapse phenomena currently identified in these places, are passive phenomena and have been overlooked as geologic hazards. Preliminary results of investigations on the physical and chemical properties of the soils and underlying rocks indicate that these areas of Bauchi State of Nigeria need to be monitored closely to avert disaster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号