首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Meteorological stations, which measure all the required meteorological parameters to estimate reference evapotranspiration (ETo) using the Food and Agriculture Organization Penman?CMonteith (FAO56-PM) method, are limited in Korea. In this study, alternative methods were applied to estimate these parameters, and the applicability of these methods for ETo estimation was evaluated by comparison with a complete meteorological dataset collected in 2008 in Korea. Despite differences between the estimation and observation of radiation and wind speed, the comparison of ETo showed small differences [i.e., mean bias error (MBE) varying ?0.22 to 0.25?mm?day?1 and root-mean-square-error (RMSE) varying 0.06?C0.50?mm?day?1]. The estimated vapor pressure differed considerably from the observed, resulting in a larger discrepancy in ETo (i.e., MBE of ?0.50?mm?day?1 and RMSE of 0.60?C0.73?mm?day?1). Estimated ETo showed different sensitivity to variations of the meteorological parameters??in order of vapor pressure?>?wind speed?>?radiation. It is clear that the FAO56-PM method is applicable for reasonable ETo estimation at a daily time scale especially in data-limited regions in Korea.  相似文献   

2.
Soil temperature (T S) strongly influences a wide range of biotic and abiotic processes. As an alternative to direct measurement, indirect determination of T S from meteorological parameters has been the focus of attention of environmental researchers. The main purpose of this study was to estimate daily T S at six depths (5, 10, 20, 30, 50 and 100?cm) by using a multilayer perceptron (MLP) artificial neural network (ANN) model and a multivariate linear regression (MLR) method in an arid region of Iran. Mean daily meteorological parameters including air temperature (T a), solar radiation (R S), relative humidity (RH) and precipitation (P) were used as input data to the ANN and MLR models. The model results of the MLR model were compared to those of ANN. The accuracy of the predictions was evaluated by the correlation coefficient (r), the root mean-square error (RMSE) and the mean absolute error (MAE) between the measured and predicted T S values. The results showed that the ANN method forecasts were superior to the corresponding values obtained by the MLR model. The regression analysis indicated that T a, RH, R S and P were reasonably correlated with T S at various depths, but the most effective parameters influencing T S at different depths were T a and RH.  相似文献   

3.
MLP-based drought forecasting in different climatic regions   总被引:1,自引:0,他引:1  
Water resources management is a complex task and is further compounded by droughts. This study applies a multilayer perceptron network optimized using Levenberg–Marquardt (MLP) training algorithm with a tangent sigmoid activation function to forecast quantitative values of standardized precipitation index (SPI) of drought at five synoptic stations in Iran. The study stations are located in different climatic regions based on De Martonne aridity index. In this study, running series of total precipitation corresponding to 3, 6, 9, 12, and 24?months were used and the corresponding SPIs were calculated: SPI3, SPI6, SPI9, SPI12, and SPI24. The multilayer perceptrons (MLPs) for SPIs with the 1-month lead time forecasting, were tested and validated. Four different input vectors were considered during network development. In the first model, MLP constructed by importing antecedent SPI with 1-, 2-, 3-, and 4-month time lags and antecedent precipitation with 1- and 2-month time lags (MLP1). Addition of antecedent North Atlantic Oscillation or antecedent Southern Oscillation Index with 1-month time lag or both of them to MLP1 led to MLP2, MLP3, and MLP4, respectively. The MLP models were evaluated using the root mean square error (RMSE) and the coefficient of determination (R 2). The results showed that MLP4 had a higher prediction efficiency than the other MLPs. The more satisfactory results of RMSE and R 2 values of MLP4 for 1-month lead time for validation phase were equal to 0.35 and 0.92, respectively. Also, results indicated that MLPs can forecast SPI24 and SPI12 more accurately than the other SPIs.  相似文献   

4.
This study employed two artificial neural network (ANN) models, including multi-layer perceptron (MLP) and radial basis function (RBF), as data-driven methods of hourly air temperature at three meteorological stations in Fars province, Iran. MLP was optimized using the Levenberg–Marquardt (MLP_LM) training algorithm with a tangent sigmoid transfer function. Both time series (TS) and randomized (RZ) data were used for training and testing of ANNs. Daily maximum and minimum air temperatures (MM) and antecedent daily maximum and minimum air temperatures (AMM) constituted the input for ANNs. The ANN models were evaluated using the root mean square error (RMSE), the coefficient of determination (R 2) and the mean absolute error. The use of AMM led to a more accurate estimation of hourly temperature compared with the use of MM. The MLP-ANN seemed to have a higher estimation efficiency than the RBF ANN. Furthermore, the ANN testing using randomized data showed more accurate estimation. The RMSE values for MLP with RZ data using daily maximum and minimum air temperatures for testing phase were equal to 1.2°C, 1.8°C, and 1.7°C, respectively, at Arsanjan, Bajgah, and Kooshkak stations. The results of this study showed that hourly air temperature driven using ANNs (proposed models) had less error than the empirical equation.  相似文献   

5.
The objective of this study was to test an artificial neural network (ANN) for estimating the evaporation from pan (E Pan) as a function of air temperature data in the Safiabad Agricultural Research Center (SARC) located in Khuzestan plain in the southwest of Iran. The ANNs (multilayer perceptron type) were trained to estimate E Pan as a function of the maximum and minimum air temperature and extraterrestrial radiation. The data used in the network training were obtained from a historical series (1996–2001) of daily climatic data collected in weather station of SARC. The empirical Hargreaves equation (HG) is also considered for the comparison. The HG equation calibrated for converting grass evapotranspiration to open water evaporation by applying the same data used for neural network training. Two historical series (2002–2003) were utilized to test the network and for comparison between the ANN and calibrated Hargreaves method. The results show that both empirical and neural network methods provided closer agreement with the measured values (R 2?>?0.88 and RMSE?<?1.2 mm day?1), but the ANN method gave better estimates than the calibrated Hargreaves method.  相似文献   

6.

Soil temperature is a meteorological data directly affecting the formation and development of plants of all kinds. Soil temperatures are usually estimated with various models including the artificial neural networks (ANNs), adaptive neuro-fuzzy inference system (ANFIS), and multiple linear regression (MLR) models. Soil temperatures along with other climate data are recorded by the Turkish State Meteorological Service (MGM) at specific locations all over Turkey. Soil temperatures are commonly measured at 5-, 10-, 20-, 50-, and 100-cm depths below the soil surface. In this study, the soil temperature data in monthly units measured at 261 stations in Turkey having records of at least 20 years were used to develop relevant models. Different input combinations were tested in the ANN and ANFIS models to estimate soil temperatures, and the best combination of significant explanatory variables turns out to be monthly minimum and maximum air temperatures, calendar month number, depth of soil, and monthly precipitation. Next, three standard error terms (mean absolute error (MAE, °C), root mean squared error (RMSE, °C), and determination coefficient (R 2)) were employed to check the reliability of the test data results obtained through the ANN, ANFIS, and MLR models. ANFIS (RMSE 1.99; MAE 1.09; R 2 0.98) is found to outperform both ANN and MLR (RMSE 5.80, 8.89; MAE 1.89, 2.36; R 2 0.93, 0.91) in estimating soil temperature in Turkey.

  相似文献   

7.
This paper examines the potential for the use of artificial neural networks (ANNs) to estimate the reference crop evapotranspiration (ET0) based on air temperature data under humid subtropical conditions on the southern coast of the Caspian Sea situated in the north of Iran. The input variables for the networks were the maximum and minimum air temperature and extraterrestrial radiation. The temperature data were obtained from eight meteorological stations with a range of latitude, longitude, and elevation throughout the study area. A comparison of the estimates provided by the ANNs and by Hargreaves equation was also conducted. The FAO-56 Penman–Monteith model was used as a reference model for assessing the performance of the two approaches. The results of this study showed that ANNs using air temperature data successfully estimated the daily ET0 and that the ANNs with an R 2 of 0.95 and a root mean square error (RMSE) of 0.41 mm day?1 simulated ET0 better than the Hargreaves equation, which had an R 2 of 0.91 and a RMSE of 0.51 mm day?1.  相似文献   

8.
In this study, weighing lysimeters were used to investigate the daily crop coefficient and evapotranspiration of wheat and maize in the Fars province, Iran. The locally calibrated Food and Agriculture Organization (FAO) Penman–Monteith equation was used to calculate the reference crop evapotranspiration (ETo). Micro-lysimetry was used to measure soil evaporation (E). Transpiration (T) was estimated by the difference between crop evapotranspiration (ETc) and E. The single crop coefficient (K c) was calculated by the ratio of ETc to ETo. Furthermore, the dual crop coefficient is composed of the soil evaporation coefficient (K e) and the basal crop coefficients (K cb) calculated from the ratio of E and T to ETo, respectively. The maximum measured evapotranspiration rate for wheat was 9.9 mm?day?1 and for maize was 10 mm?day?1. The total evaporation from the soil surface was about 30 % of the total wheat ETc and 29.8 % of total maize ETc. The single crop coefficient (K c) values for the initial, mid-, and end-season growth stages of maize were 0.48, 1.40, and 0.31 and those of wheat were 0.77, 1.35, and 0.26, respectively. The measured K c values for the initial and mid-season stages were different from the FAO recommended values. Therefore, the FAO standard equation for K c-mid was calibrated locally for wheat and maize. The K cb values for the initial, mid-, and end-season growth stages were 0.23, 1.14, and 0.13 for wheat and 0.10, 1.07, and 0.06 for maize, respectively. Furthermore, the FAO procedure for single crop coefficient showed better predictions on a daily basis, although the dual crop coefficient method was more accurate on seasonal scale.  相似文献   

9.
This study describes the results of artificial neural network (ANN) models to estimate net radiation (R n), at surface. Three ANN models were developed based on meteorological data such as wind velocity and direction, surface and air temperature, relative humidity, and soil moisture and temperature. A comparison has been made between the R n estimates provided by the neural models and two linear models (LM) that need solar incoming shortwave radiation measurements as input parameter. Both ANN and LM results were tested against in situ measured R n. For the LM ones, the estimations showed a root mean square error (RMSE) between 34.10 and 39.48?W?m?2 and correlation coefficient (R 2) between 0.96 and 0.97 considering both the developing and the testing phases of calculations. The estimates obtained by the ANN models showed RMSEs between 6.54 and 48.75?W?m?2 and R 2 between 0.92 and 0.98 considering both the training and the testing phases. The ANN estimates are shown to be similar or even better, in some cases, than those given by the LMs. According to the authors?? knowledge, the use of ANNs to estimate R n has not been discussed earlier, and based on the results obtained, it represents a formidable potential tool for R n prediction using commonly measured meteorological parameters.  相似文献   

10.
Estimation of reference evapotranspiration (ET0) is needed to support irrigation design and scheduling, and watershed hydrology studies. There are many available methods to estimate evapotranspiration from a water surface, comprising both direct and indirect methods. In the first part of this study, the generalized regression neural networks model (GRNN) and radial basis function neural network (RBFNN) are developed and compared in order to estimate the reference ET0 for the first time in Algeria. Various daily climatic data, that is, daily mean relative humidity, sunshine duration, maximum, minimum and mean air temperature, and wind speed from Dar El Beida, Algiers, Algeria, are used as inputs to the GRNN and RBFNN models to estimate the ET0 obtained using the FAO-56 Penman-Monteith equation (PM56). The performances of the models are evaluated using root mean square errors (RMSE), mean absolute error (MAE), Willmott index of agreement (d) and correlation coefficient (CC) statistics. In the second part of the study, the empirical Hargreaves-Samani (HG) and Priestley-Taylor (PT) equations are also considered for the comparison. Based on the comparisons, the GRNN was found to perform better than the RBFNN, Priestley-Taylor and Hargreaves-Samani models. The RBFNN model is ranked as the second best model.  相似文献   

11.
Using surface observations from 58 widely distributed stations over India, a highly significant (99.9 %) decreasing trend of pan evaporation (Epan) of 9.24 mm/a/a is calculated for 1971 to 2010. This constitutes a ~10 % reduction of Epan over the last four decades. While Epan is decreasing during the wet summer monsoon season (JJAS), as well as during the dry rest of the year, the rate of decrease during the dry season is much larger than that during the wet season. Apart from increasing solar dimming, surface winds are also persistently decreasing over the Indian sub-continent at the rate of ?0.02 m/s/a resulting in ~40 % reduction over the last four decades. Based on PenPan model, it is shown that both the above factors contribute significantly to the decreasing trend in Epan. On a continental scale, annual mean potential evaporation (Ep) is larger than rainfall (P or Ep-P > 0, moisture divergence) indicating that India is water-limited. However, during wet monsoon P > Ep (or Ep-P < 0, moisture convergence) indicating that India is energy-limited during this season. Long term data shows that annually Ep-P follows a significant decreasing trend indicating that water limitation is decreasing with time. This is largely due to stronger decreasing trend of Ep-P during the dry season compared to weaker increasing trend of Ep-P during the wet monsoon season. The scatter plot of Ep-P versus Ep also conveys that the decrease in Ep leads to increase in moisture convergence in wet season and decrease in moisture divergence in dry season.  相似文献   

12.
In this study, unlike backpropagation algorithm which gets local best solutions, the usefulness of particle swarm optimization (PSO) algorithm, a population-based optimization technique with a global search feature, inspired by the behavior of bird flocks, in determination of parameters of support vector machines (SVM) and adaptive network-based fuzzy inference system (ANFIS) methods was investigated. For this purpose, the performances of hybrid PSO-ε support vector regression (PSO-εSVR) and PSO-ANFIS models were studied to estimate water level change of Lake Beysehir in Turkey. The change in water level was also estimated using generalized regression neural network (GRNN) method, an iterative training procedure. Root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (R 2) were used to compare the obtained results. Efforts were made to estimate water level change (L) using different input combinations of monthly inflow-lost flow (I), precipitation (P), evaporation (E), and outflow (O). According to the obtained results, the other methods except PSO-ANN generally showed significantly similar performances to each other. PSO-εSVR method with the values of minMAE = 0.0052 m, maxMAE = 0.04 m, and medianMAE = 0.0198 m; minRMSE = 0.0070 m, maxRMSE = 0.0518 m, and medianRMSE = 0.0241 m; minR 2 = 0.9169, maxR 2 = 0.9995, medianR 2 = 0.9909 for the I-P-E-O combination in testing period became superior in forecasting water level change of Lake Beysehir than the other methods. PSO-ANN models were the least successful models in all combinations.  相似文献   

13.
14.
The solar and longwave environmental irradiance geometry (SOLWEIG) model simulates spatial variations of 3-D radiation fluxes and mean radiant temperature (T mrt) as well as shadow patterns in complex urban settings. In this paper, a new vegetation scheme is included in SOLWEIG and evaluated. The new shadow casting algorithm for complex vegetation structures makes it possible to obtain continuous images of shadow patterns and sky view factors taking both buildings and vegetation into account. For the calculation of 3-D radiation fluxes and T mrt, SOLWEIG only requires a limited number of inputs, such as global shortwave radiation, air temperature, relative humidity, geographical information (latitude, longitude and elevation) and urban geometry represented by high-resolution ground and building digital elevation models (DEM). Trees and bushes are represented by separate DEMs. The model is evaluated using 5?days of integral radiation measurements at two sites within a square surrounded by low-rise buildings and vegetation in G?teborg, Sweden (57°N). There is good agreement between modelled and observed values of T mrt, with an overall correspondence of R 2?=?0.91 (p?<?0.01, RMSE?=?3.1?K). A small overestimation of T mrt is found at locations shadowed by vegetation. Given this good performance a number of suggestions for future development are identified for applications which include for human comfort, building design, planning and evaluation of instrument exposure.  相似文献   

15.
We have conducted a case study to investigate the performance of support vector machine, multivariate adaptive regression splines, and random forest time series methods in snowfall modeling. These models were applied to a data set of monthly snowfall collected during six cold months at Hamadan Airport sample station located in the Zagros Mountain Range in Iran. We considered monthly data of snowfall from 1981 to 2008 during the period from October/November to April/May as the training set and the data from 2009 to 2015 as the testing set. The root mean square errors (RMSE), mean absolute errors (MAE), determination coefficient (R 2), coefficient of efficiency (E%), and intra-class correlation coefficient (ICC) statistics were used as evaluation criteria. Our results indicated that the random forest time series model outperformed the support vector machine and multivariate adaptive regression splines models in predicting monthly snowfall in terms of several criteria. The RMSE, MAE, R 2, E, and ICC for the testing set were 7.84, 5.52, 0.92, 0.89, and 0.93, respectively. The overall results indicated that the random forest time series model could be successfully used to estimate monthly snowfall values. Moreover, the support vector machine model showed substantial performance as well, suggesting it may also be applied to forecast snowfall in this area.  相似文献   

16.
Microclimatic loggers are increasingly used to collect data from various habitats and interpolate ecologically meaningful landscape-scale topoclimatic grids. However, it is unknown how sensitive these grids are to finer-scale variations in microclimate. We performed a sensitivity analysis using three microclimatic loggers at 27 sites for 5 months in a semi-arid region of Western Australia. We partitioned the within- and between-site variance in temperature and produced 100 different topoclimatic models using a random sensor from each site. For the coldest temperatures, we found within-site variance was negligible (3 %), and models were strong (r 2?=?0.74) and the coefficients consistent. However, for the hottest temperatures, there was substantial within-site variance (39 %), and models were weaker (r 2?=?0.27) and more sensitive. We concluded that careful site design is needed to maximise the reliability of topoclimatic grids, including using large sample sizes, ensuring there is low predictor collinearity and sampling full environmental gradients.  相似文献   

17.
The accuracy of nine solar radiation (R s ) estimation models and their effects on reference evapotranspiration (ET o ) were evaluated using data from eight meteorological stations in Canada. The R s estimation models were FAO recommended Angstrom-Prescott (A-P) coefficients, locally calibrated A-P coefficients, Hargreaves and Samani (H-S) (1982), Annandale et al., (2002), Allen (1995), Self-Calibrating (S-C, Allen, 1997), Samani (2000), Mahmood and Hubbard (M-H) (2002), and Bristow and Campbell (B-C) (1984). The estimated R s values were then compared to measured R s to check the appropriateness of these models at the study locations. Based on root mean square error (RMSE), mean bias error (MBE) and modelling efficiency (ME) ranking, calibrated A-P coefficients performed better than all other methods. The calibrated H-S method (using new K RS 0.15) estimated R s more accurately than FAO-56 recommended A-P in Elora, and Winnipeg. The RMSE of the calibrated H-S method ranged between 1-6% and the RMSE of the calibrated and FAO recommended Angstrom-Prescott (A-P) methods ranged between 1-9%. The models with the least accuracy at the eight locations are the Mahmood & Hubbard (2002) and Self-Calibrating models. The percent deviation in ET o calculated with estimated R s was reduced by about 50% as compared to deviation in measured versus estimated R s .  相似文献   

18.
基于WRF(Weather Research Forecast)模式和GSI(Gridpoint Statistical Interpolation)同化系统,研究了同化4部多普勒雷达探测资料对"7.21"北京特大暴雨过程中降水预报的改善作用。GSI系统直接同化径向风,而采用云分析的方式间接同化反射率。2012年7月20日21时—21日00时(世界时)雷达探测资料同化试验采用30 min循环同化径向风和反射率资料。结果表明,循环同化雷达探测资料改善了短时(0—6 h)和短期(0—24 h)降水预报,ETS评分提高了约0.2。同化反射率资料增加了初始场的水凝物,改善了温度场分布,直接影响了降水的形成,同时还使650—250 hPa位势高度的均方根误差平均降低了8 gpm。直接同化径向风资料对中尺度风场产生了一定影响。ETS评分结果表明:同化反射率资料的效果要优于同化径向风。  相似文献   

19.
Five deterministic methods of spatial interpolation of monthly rainfall were compared over the state of Rio de Janeiro, southeast Brazil. The methods were the inverse distance weight (IDW), nearest neighbor (NRN), triangulation with linear interpolation (TLI), natural neighbor (NN), and spline tension (SPT). A set of 110 weather stations was used to test the methods. The selection of stations had two criteria: time series longer than 20 years and period of data from 1960 to 2009. The methods were evaluated using cross-validation, linear regression between values observed and interpolated, root mean square error (RMSE), coefficient of determination (r 2), coefficient of variation (CV, %), and the Willmott index of agreement (d). The results from different methods are influenced by the meteorological systems and their seasonality, as well as by the interaction with the topography. The methods presented higher precision (r 2) and accuracy (d, RMSE) during the summer and transition to autumn, in comparison with the winter or spring months. The SPT had the highest precision and accuracy in relation to other methods, in addition to having a good representation of the spatial patterns expected for rainfall over the complex terrain of the state and its high spatial variability.  相似文献   

20.
Soil temperature (T s) and its thermal regime are the most important factors in plant growth, biological activities, and water movement in soil. Due to scarcity of the T s data, estimation of soil temperature is an important issue in different fields of sciences. The main objective of the present study is to investigate the accuracy of multivariate adaptive regression splines (MARS) and support vector machine (SVM) methods for estimating the T s. For this aim, the monthly mean data of the T s (at depths of 5, 10, 50, and 100 cm) and meteorological parameters of 30 synoptic stations in Iran were utilized. To develop the MARS and SVM models, various combinations of minimum, maximum, and mean air temperatures (T min, T max, T); actual and maximum possible sunshine duration; sunshine duration ratio (n, N, n/N); actual, net, and extraterrestrial solar radiation data (R s, R n, R a); precipitation (P); relative humidity (RH); wind speed at 2 m height (u 2); and water vapor pressure (Vp) were used as input variables. Three error statistics including root-mean-square-error (RMSE), mean absolute error (MAE), and determination coefficient (R 2) were used to check the performance of MARS and SVM models. The results indicated that the MARS was superior to the SVM at different depths. In the test and validation phases, the most accurate estimations for the MARS were obtained at the depth of 10 cm for T max, T min, T inputs (RMSE = 0.71 °C, MAE = 0.54 °C, and R 2 = 0.995) and for RH, V p, P, and u 2 inputs (RMSE = 0.80 °C, MAE = 0.61 °C, and R 2 = 0.996), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号