首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
India’s polar orbiting satellite Oceansat-2 was launched by Indian Space Research Organisation on 23 September 2009 for applications pertaining to ocean studies and meteorology. The wind scatterometer aboard the Oceansat-2 satellite (OSCAT) covers 90 % of the global ocean within a day. In the present study, the OSCAT-derived wind fields are used to predict the genesis of tropical cyclones over the North Indian Ocean using a new technique based on data mining. The technique is based on the premise that there is some degree of similarity in low-level wind circulation among developing systems, which can be utilized to distinguish them from non-developing systems. This similarity of wind patterns has been measured quantitatively by computing the “matching index” between the given wind pattern and the wind signatures of developing systems available from the past observations. The algorithm is used to predict the tropical cyclogenesis of cyclones formed during the period 2009–11 in the North Indian Ocean. All the tropical disturbances that developed into tropical storms during the above period (2009–11), viz. PHYAN, WARD, LAILA, BANDU, PHET, GIRI, JAL, KEILA, FOUR, FIVE and THANE were predicted using the proposed method. The mean prediction lead time of the technique was 63 h. Probability of detection of the technique was 100 %, while the false alarm ratio was 2 %.  相似文献   

2.
3.
Summary The present study examines the long term trend in sea surface temperatures (SSTs) of the Arabian Sea, Bay of Bengal and Equatorial South India Ocean in the context of global warming for the period 1901–2002 and for a subset period 1971–2002. An attempt has also been made to identify the relationship between SST variations over three different ocean areas, and All-India and homogeneous region summer monsoon rainfall variability, including the role of El-Ni?o/Southern Oscillation (ENSO). Annual sea surface temperatures of the Arabian Sea, Bay of Bengal and Equatorial South India Ocean show a significant warming trend of 0.7 °C, 0.6 °C and 0.5 °C per hundred years, respectively, and a relatively accelerated warming of 0.16 °C, 0.14 °C and 0.14 °C per decade during the 1971–2002 period. There is a positive and statistically significant relationship between SSTs over the Arabian Sea from the preceding November to the current February, and Indian monsoon rainfall during the period 1901–2002. The correlation coefficient increases from October and peaks in December, decreasing from February to September. This significant relationship is also found in the recent period 1971–2002, whereas, during 1901–70, the relationship is not significant. On the seasonal scale, Arabian Sea winter SSTs are positively and significantly correlated with Indian monsoon rainfall, while spring SSTs have no significant positive relationship. Nino3 spring SSTs have a negative significant relationship with Indian monsoon rainfall and it is postulated that there is a combined effect of Nino3 and Arabian Sea SSTs on Indian monsoon. If the Nino3 SST effect is removed, the spring SSTs over the Arabian Sea also have a significant relationship with monsoon rainfall. Similarly, the Bay of Bengal and Equatorial South Indian Ocean spring SSTs are significantly and positively correlated with Indian monsoon rainfall after removing the Nino3 effect, and correlation values are more pronounced than for the Arabian Sea. Authors’ address: Dr. D. R. Kothawale, A. A. Munot, H. P. Borgaonkar, Climatology and Hydrometeorology divisions, Indian Institute of Tropical Meteorology, Pune 411008, India.  相似文献   

4.
Theoretical and Applied Climatology - The Indian subcontinent, due to its enormous variety of geographical features, is associated with inhomogeneity. Hence, in the present study, we have...  相似文献   

5.
The SST-precipitation relationship in the intraseasonal variability (ISV) over the Asian monsoon region is examined using recent high quality satellite data and simulations from a state of the art coupled model, the climate forecast system version 2 (CFSv2). CFSv2 demonstrates high skill in reproducing the spatial distribution of the observed climatological mean summer monsoon precipitation along with its interannual variability, a task which has been a conundrum for many recent climate coupled models. The model also exhibits reasonable skill in simulating coherent northward propagating monsoon intraseasonal anomalies including SST and precipitation, which are generally consistent with observed ISV characteristics. Results from the observations and the model establish the existence of spatial variability in the atmospheric convective response to SST anomalies, over the Asian monsoon domain on intraseasonal timescales. The response is fast over the Arabian Sea, where precipitation lags SST by ~5 days; whereas it is slow over the Bay of Bengal and South China Sea, with a lag of ~12 days. The intraseasonal SST anomalies result in a similar atmospheric response across the basins, which consists of a destabilization of the bottom of the atmospheric column, as observed from the equivalent potential temperature anomalies near the surface. However, the presence of a relatively strong surface convergence over the Arabian Sea, due to the presence of a strong zonal gradient in SST, which accelerates the upward motion of the moist air, results in a relatively faster response in terms of the local precipitation anomalies over the Arabian Sea than over the Bay of Bengal and South China Sea. With respect to the observations, the ocean–atmosphere coupling is well simulated in the model, though with an overestimation of the intraseasonal SST anomalies, leading to an exaggerated SST-precipitation relationship. A detailed examination points to a systematic bias in the thickness of the mixed layer of the ocean model, which needs to be rectified. A too shallow (deep) mixed layer enhances (suppress) the amplitude of the intraseasonal SST anomalies, thereby amplifying (lessening) the ISV and the active-break phases of the monsoon in the model.  相似文献   

6.
For central India and its west coast, rainfall in the early (15 May–20 June) and late (15 September–20 October) monsoon season correlates with Pacific Ocean sea-surface temperature (SST) anomalies in the preceding month (April and August, respectively) sufficiently well, that those SST anomalies can be used to predict such rainfall. The patterns of SST anomalies that correlate best include the equatorial region near the dateline, and for the early monsoon season (especially since ~1980), a band of opposite correlation stretching from near the equator at 120°E to ~25°N at the dateline. Such correlations for both early and late monsoon rainfall and for both regions approach, if not exceed, 0.5. Although correlations between All India Summer Monsoon Rainfall and typical indices for the El Ni?o-Southern Oscillation (ENSO) commonly are stronger for the period before than since 1980, these correlations with early and late monsoon seasons suggest that ENSO continues to affect the monsoon in these seasons. We exploit these patterns to assess predictability, and we find that SSTs averages in specified regions of the Pacific Ocean in April (August) offer predictors that can forecast rainfall amounts in the early (late) monsoon season period with a ~25% improvement in skill relative to climatology. The same predictors offer somewhat less skill (~20% better than climatology) for predicting the number of days in these periods with rainfall greater than 2.5?mm. These results demonstrate that although the correlation of ENSO indices with All India Rainfall has decreased during the past few decades, the connections with ENSO in the early and late parts have not declined; that for the early monsoon season, in fact, has grown stronger in recent decades.  相似文献   

7.
8.
Performance of seven fully coupled models in simulating Indian summer monsoon climatology as well as the inter-annual variability was assessed using multi member 1 month lead hindcasts made by several European climate groups as part of the program called Development of a European multi-model ensemble system for seasonal-to-inter-annual prediction (DEMETER). Dependency of the model simulated Indian summer monsoon rainfall and global sea surface temperatures on model formulation and initial conditions have been studied in detail using the nine ensemble member simulations of the seven different coupled ocean–atmosphere models participated in the DEMETER program. It was found that the skills of the monsoon predictions in these hindcasts are generally positive though they are very modest. Model simulations of India summer monsoon rainfall for the earlier period (1959–1979) are closer to the ‘perfect model’ (attainable) score but, large differences are observed between ‘actual’ skill and ‘perfect model’ skill in the recent period (1980–2001). Spread among the ensemble members are found to be large in simulations of India summer monsoon rainfall (ISMR) and Indian ocean dipole mode (IODM), indicating strong dependency of model simulated Indian summer monsoon on initial conditions. Multi-model ensemble performs better than the individual models in simulating ENSO indices, but does not perform better than the individual models in simulating ISMR and IODM. Decreased skill of multi-model ensemble over the region indicates amplification of errors due to existence of similar errors in the individual models. It appears that large biases in predicted SSTs over Indian Ocean region and the not so perfect ENSO-monsoon (IODM-monsoon) tele-connections are some of the possible reasons for such lower than expected skills in the recent period. The low skill of multi-model ensemble, large spread among the ensemble members of individual models and the not so perfect monsoon tele-connection with global SSTs points towards the importance of improving individual models for better simulation of the Indian monsoon.  相似文献   

9.
R. Krishnan  M. Sugi 《Climate Dynamics》2003,21(3-4):233-242
Recent studies have furnished evidence for interdecadal variability in the tropical Pacific Ocean. The importance of this phenomenon in causing persistent anomalies over different regions of the globe has drawn considerable attention in view of its relevance in climate assessment. Here, we examine multi-source climate records in order to identify possible signatures of this longer time scale variability on the Indian summer monsoon. The findings indicate a coherent inverse relationship between the inter-decadal fluctuations of Pacific Ocean sea surface temperature (SST) and the Indian monsoon rainfall during the last century. A warm (cold) phase of the Pacific interdecadal variability is characterized by a decrease (increase) in the monsoon rainfall and a corresponding increase (decrease) in the surface air temperature over the Indian subcontinent. This interdecadal relationship can also be confirmed from the teleconnection patterns evident from long-period sea level pressure (SLP) dataset. The SLP anomalies over South and Southeast Asia and the equatorial west Pacific are dynamically consistent in showing an out-of-phase pattern with the SLP anomalies over the tropical central-eastern Pacific. The remote influence of the Pacific interdecadal variability on the monsoon is shown to be associated with prominent signals in the tropical and southern Indian Ocean indicative of coherent inter-basin variability on decadal time scales. If indeed, the atmosphere–ocean coupling associated with the Pacific interdecadal variability is independent from that of the interannual El Niño-Southern Oscillation (ENSO), then the climate response should depend on the evolutionary characteristics of both the time scales. It is seen from our analysis that the Indian monsoon is more vulnerable to drought situations, when El Niño events occur during warm phases of the Pacific interdecadal variability. Conversely, wet monsoons are more likely to prevail, when La Niña events coincide during cold phases of the Pacific interdecadal variability.  相似文献   

10.
The northern fringe of the Asian summer monsoon region (NASM) in China refers to the most northwestern extent of the Asian summer monsoon. Understanding the characteristics and underlying mechanisms of drought variability at long and short time-scales in the NASM region is of great importance, because present and future water shortages are of great concern. Here, we used newly developed and existing tree-ring, historical documentary and instrumental data available for the region to identify spatial and temporal patterns, and possible mechanisms of drought variability, over the past two millennia. We found that drought variations were roughly consistent in the western (the Qilian Mountains and Hexi Corridor) and eastern (the Great Bend of the Yellow River, referred to as GBYR) parts of the NASM on decadal to centennial timescales. We also identified the spatial extent of typical multi-decadal GBYR drought events based on historical dryness/wetness data and the Monsoon Asia Drought Atlas. It was found that the two periods of drought, in AD 1625–1644 and 1975–1999, exhibited similar patterns: specifically, a wet west and a dry east in the NASM. Spatial characteristics of wetness and dryness were also broadly similar over these two periods, such that when drought occurred in the Karakoram Mountains, western Tianshan Mountains, the Pamirs, Mongolia, most of East Asia, the eastern Himalayas and Southeast Asia, a wet climate dominated in most parts of the Indian subcontinent. We suggest that the warm temperature anomalies in the tropical Pacific might have been mainly responsible for the recent 1975–1999 drought. Possible causes of the drought of 1625–1644 were the combined effects of the weakened Asian summer monsoon and an associated southward shift of the Pacific Intertropical Convergence Zone. These changes occurred due to a combination of Tibetan Plateau cooling together with more general Northern Hemisphere cooling, rather than being solely due to changes in the sea surface temperature of the tropical Pacific. Our results provide a benchmark for comparing and validating paleo-simulations from general circulation model of the variability of the Asian summer monsoon at decadal to centennial timescales.  相似文献   

11.
Indian summer monsoon (ISM) variability is forced from external factors (like the El Niño Southern Oscillation, ENSO) but it contains also an internal component that tends to reduce its potential for predictability. Large-scale and local monsoon indices based on precipitation and atmospheric circulation parameters are used as a measure of ISM variability. In a 9-members ensemble of AMIP-type experiments (with same boundary SST forcing and different initial conditions) their potential predictability is comparable using both local and large-scale monsoon indices. In the sample analyzed, about half of more predictable monsoon years coincide with El Niño and/or positive Indian Ocean Dipole (IOD) events. Summer monsoon characteristics during ENSO and IOD years are analyzed through composites computed over a three years period (i.e. one year before and one year after the event peak) to investigate the mutual relationship between the events lagged in time. The connection between ISM and IOD is mostly confined in the summer and autumn, while that with ENSO is stronger and extends more in time. In the coupled model results the IOD influence on the monsoon is large, even because in the model IOD events are intense and easily reproduced due to a strong air-sea feedback in the eastern side of the basin. Monsoon seasons preceding or following an El Niño or a La Niña event are not exactly symmetric, even in terms of their biennial character. In most of the cases, both in reanalysis and model, El Niño and positive IOD events tend to co-occur with larger anomalies either in the Indo-Pacific ocean sector or over India, while La Niña and negative IOD do not. From the observed record, the ENSO-IOD correlation is positive strong and significant since mid-60s and it may correspond with either strong or weak ENSO-monsoon relationship and with strong or weak IOD-monsoon relationship. A main difference between those periods is the relationship between Indian monsoon rainfall and SST in other ocean basins rather than the Indo-Pacific sector alone.  相似文献   

12.
Influence of northwest (NW) Pacific anticyclone on the Indian summer monsoon (ISM), particularly over the head Bay of Bengal and monsoon trough region, is investigated. Strong NW Pacific anticyclone during summer induces negative precipitation anomalies over the head Bay of Bengal and Gangetic Plain region. Westward extension of moisture divergence and dry moisture transport from NW Pacific associated with anticyclone (ridge) and local Hadley cell-induced subsidence are responsible for these negative precipitation anomalies. The impact is maximum when the anticyclone and Indian Ocean basin warming co-occur. This contributes significantly to year-to-year variability of ISM.  相似文献   

13.
14.
Summary The interannual variability of the monthly mean upper layer thickness for the central Arabian Sea (5°N-15° N and 60° E-70° E) from a numerical model of the Indian Ocean during the period 1954–1976 is investigated in relation to Indian monsoon rainfall variability. The variability in the surface structure of the Somali Current in the western Arabian Sea is also briefly discussed. It is found that these fields show a great deal of interannual variability that is correlated with variability in Indian monsoon rainfall. Model upper layer thickness (H) is taken as a surrogate variable for thermocline depth, which is assumed to be correlated with sea surface temperature. In general, during the period 1967 to 1974, which is a period of lower than normal monsoon rainfall, the upper ocean warm water sphere is thicker (deeper thermocline which implies warmer surface water); in contrast, during the period 1954–1966, which is a period of higher than normal monsoon rainfall, the upper warm water sphere is thinner (shallower thermocline which implies cooler surface water). The filtered time series of uppper layer thickness indieates the presence of a quasi-biennial oscillation (QBO) during the wet monsoon period, but this QBO signal is conspicuously absent during the dry monsoon period.Since model H primarily responds to wind stress curl, the interannual variability of the stress curl is investigated by means of an empirical orthogonal function (EOF) analysis. The first three EOF modes represent more than 72% of the curl variance. The spatial patterns for these modes exhibit many elements of central Arabian Sea climatology. Features observed include the annual variation in the intensity of the summer monsoon ridge in the Arabian Sea and the annual zonal oscillation of the ridge during pre- and post-monsoon seasons. The time coefficients for the first EOF amplitude indicate the presence of a QBO during the wet monsoon period only, as seen in the ocean upper layer thickness.The variability in the model upper layer thickness is a passive response to variability in the wind field, or more specifically to variability in the Findlater Jet. When the winds are stronger, they drive stronger currents in the ocean and have stronger curl fields associated with them, driving stronger Ekman pumping. They transport more moisture from the southern hemisphere toward the Indian subcontinent, and they also drive a greater evaporative heat flux beneath the Findlater Jet in the Arabian Sea. It has been suggested that variability in the heat content of the Arabian Sea drives variability in Indian monsoon rainfall. The results of this study suggest that the opposite is true, that the northern Arabian Sea responds passively to variability in the monsoon system.With 10 Figures  相似文献   

15.
The performance of the new multi-model seasonal prediction system developed in the frame work of the ENSEMBLES EU project for the seasonal forecasts of India summer monsoon variability is compared with the results from the previous EU project, DEMETER. We have considered the results of six participating ocean-atmosphere coupled models with 9 ensemble members each for the common period of 1960–2005 with May initial conditions. The ENSEMBLES multi-model ensemble (MME) results show systematic biases in the representation of mean monsoon seasonal rainfall over the Indian region, which are similar to that of DEMETER. The ENSEMBLES coupled models are characterized by an excessive oceanic forcing on the atmosphere over the equatorial Indian Ocean. The skill of the seasonal forecasts of Indian summer monsoon rainfall by the ENSEMBLES MME has however improved significantly compared to the DEMETER MME. Its performance in the drought years like 1972, 1974, 1982 and the excess year of 1961 was in particular better than the DEMETER MME. The ENSEMBLES MME could not capture the recent weakening of the ENSO-Indian monsoon relationship resulting in a decrease in the prediction skill compared to the “perfect model” skill during the recent years. The ENSEMBLES MME however correctly captures the north Atlantic-Indian monsoon teleconnections, which are independent of ENSO.  相似文献   

16.
The spatio-temporal variability of boreal summer monsoon onset over the Philippines is studied through the analysis of daily rainfall data across a network of 76 gauges for the period 1977 to 2004 and the pentad Merged Analysis of Precipitation from the US Climate Prediction Center from 1979 to 2006. The onset date is defined using a local agronomic definition, namely the first wet day of a 5-day period receiving at least 40 mm without any 15-day dry spell receiving <5 mm in the 30 days following the start of that period. The onset is found to occur rather abruptly across the western Philippines around mid-May on average and is associated with the set-up of a “classical” monsoonal circulation with low-level easterlies subsequently veering to southerly, and then southwesterly. The onset manifests itself merely as a seasonal increase of rainfall over the eastern Philippines, where rainfall occurs throughout most of the year. Interannual variability of the onset date is shown to consist of a spatially coherent large-scale component, rather similar over the western and eastern Philippines, with a moderate to high amount of local-scale (i.e. station scale) noise. In consequence, the large-scale signal can be easily retrieved from any sample of at least 5–6 stations across the network although the local-scale coherence and fingerprint of the large-scale signal of the onset date are found to be stronger over the central Philippines, roughly from Southern Luzon to Northern Mindanao. The seasonal predictability of local onset is analyzed through a cross-validated canonical correlation analysis using tropical Pacific and Indian Ocean sea surface temperature in March and the 850 hPa May wind field from dynamical forecast models as predictors. The regional-scale onset, defined as the average of standardized local-scale anomalies in onset date, shows good predictive skill (r ≈ 0.8). Moreover, most of the stations show weak to moderate skill (median skill = 0.28–0.43 depending on the scheme) with spatial averaging across stations typically increasing skill to >0.6.  相似文献   

17.
18.
In this paper, the changes in convective activity over heat-low region over northwest India during contrasting phases of effective strength index (ESI) tendency have been examined. During contrasting phases of ESI tendency, evolution of surface pressure and temperature field over India from winter to spring is exactly opposite, and hence, the heat-low over northwest India depicts temporal and spatial variations in magnitude and location. During positive ESI tendency, the evolution of surface cooling and high surface pressure from winter to spring suggests reduced convective activity over heat-low region, while during the negative phase of ESI tendency, anomalously warm surface temperatures and low surface pressure evolve from winter to spring suggesting enhanced convective activity over the heat low region. The temporal variability in the relationship between surface temperature/pressure over heat-low region and Indian summer monsoon rainfall (ISMR) is also examined in this paper. During positive ESI tendency, heat-low temperature anomaly in February is significantly associated with ISMR, whereas during negative ESI tendency, both temperature/pressure over heat-low region in May are significantly associated with ISMR. These parameters may help in long range forecasting of ISMR.  相似文献   

19.
20.
The onset process of the tropical eastern Indian Ocean (TEIO) summer monsoon (TEIOSM) and its relationship with the cross-equatorial flows are investigated via climatological analysis. Climatologically, results indicate that the earliest onset process of the Asian summer monsoon occurs over the TEIO at pentad 22 (April 15–20). Unlike the abrupt onset of the South China Sea (SCS) summer monsoon, the TEIOSM onset process displays a stepwise advance. Moreover, a close relationship between the TEIOSM development and the northward push of the cross-equatorial flows over 80–90E is revealed. A difference vorticity center, together with the counterpart over the southern Indian Ocean, constitutes a pair of difference cyclonic vortices, which strengthens the southwesterly wind over the TEIO and the northerly wind to the west of the Indian Peninsula from the end of March to late May. Therefore, the occurrence of the southwesterly wind over the TEIO is earlier than its counterpart over the tropical western Indian Ocean, and the cross-equatorial flows emerge firstly over the TEIO rather than over the Somali area. The former increases in intensity during its northward propagation, which provides a precondition for the TEIOSM onset and its northward advance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号