首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
对海洋中起伏运动(heaving)信号的时空分布研究能够帮助我们更好地了解气候系统中的年际和年代际变率。文章通过再分析资料和模式对太平洋区域的heaving主要模态进行了研究。研究结果表明: 太平洋区域主要存在两种heaving模态: 第一模态主要表现为赤道东西两侧的温跃层异常信号反位相; 第二模态表现为赤道区域和副热带区域的温跃层异常信号呈现反位相变化的规律。本文对这两个主要heaving模态所涉及的物理过程进行详细讨论, 结果表明: 东西反位相模态主要是受赤道波动调节的结果; 而经向结构模态则主要是由赤道地区的波动和副热带区域的风应力旋度异常作用共同导致。此外, 我们还讨论了heaving模态可以通过海洋波动以及Ekman输送等过程对海盆尺度的热输送(振幅约为5×1014W)以及海洋热含量(振幅约为1.5×1020J)的再分配起到了关键的调制作用, 进一步表明heaving模态对全球气候变化有着重要的作用。  相似文献   

2.
Based on the satellite altimetry dataset of sea level anomalies, the climatic hydrological database World Ocean Atlas-2009, ocean reanalysis ECMWF ORA-S3, and wind velocity components from NCEP/NCAR reanalysis, the interannual variability of Antarctic Circumpolar Current (ACC) transport in the ocean upper layer is investigated for the period 1959–2008, and estimations of correlative connections between ACC transport and wind velocity components are performed. It has been revealed that the maximum (by absolute value) linear trends of ACC transport over the last 50 years are observed in the date-line region, in the Western and Eastern Atlantic and the western part of the Indian Ocean. The greatest increase in wind velocity for this period for the zonal component is observed in Drake Passage, at Greenwich meridian, in the Indian Ocean near 90° E, and in the date-line region; for the meridional component, it is in the Western and Eastern Pacific, in Drake Passage, and to the south of Africa. It has been shown that the basic energy-carrying frequencies of interannual variability of ACC transport and wind velocity components, as well as their correlative connections, correspond to the periods of basic large-scale modes of atmospheric circulation: multidecadal and interdecadal oscillations, Antarctic Circumpolar Wave, Southern Annual Mode, and Southern Oscillation. A significant influence of the wind field on the interannual variability of ACC transport is observed in the Western Pacific (140° E–160° W) and Eastern Pacific; Drake Passage and Western Atlantic (90°–30° W); in the Eastern Atlantic and Western Indian Ocean (10°–70° E). It has been shown in the Pacific Ocean that the ACC transport responds to changes of the meridional wind more promptly than to changes of the zonal wind.  相似文献   

3.
From late 1995 through early 2001, three major interannual climate events occurred in the tropical Pacific; the 1995–97 La Niña (LN), 1997–98 El Niño (EN), and 1998–2001 LN. We analyze atmospheric and upper oceanic anomalies in the northeast Pacific (NEP) during these events, and compare them to anomalies both elsewhere in the north and tropical Pacific, and to typical EN and LN anomaly patterns. The atmospheric and oceanic anomalies varied strongly on intraseasonal and interannual scales. During the 1995–97 LN and 1997–98 EN, the Northeast Pacific was dominated by negative SLP and cyclonic wind anomalies, and by upper ocean temperature and sea surface height (SSH) anomalies. The latter were positive along the North American west coast and in the NEP thermal anomaly pool (between Hawaii, Vancouver Island, and Baja California), and negative in the central north Pacific. This atmospheric/oceanic anomaly pattern is typical of EN. An eastward shift in the atmospheric teleconnection from east Asia created EN-like anomalies in the NEP during the 1995–97 LN, well before the 1997–98 EN had begun. The persistence of negative sea-level pressure (SLP) and cyclonic wind anomalies in the NEP during the 1997–98 EN intensified pre-existing upper oceanic anomalies. Atmospheric anomalies were shifted eastward during late 1996–early 1998, leading to a similar onshore shift of oceanic anomalies. This produced exceptionally strong positive upper ocean temperature and SSH anomalies along the west coast during the 1997–98 EN, and explains the unusual coastal occurrences of several species of large pelagic warm-water fishes. The growth and eastward shift of these pre-existing anomalies does not appear to have been linked to tropical Pacific EN anomalies until late 1997, when a clear atmospheric teleconnection between the two regions developed. Prior to this, remote atmospheric impacts on the NEP were primarily from east Asia. As the 1998–2001 LN developed, NEP anomalies began reversing toward the typical LN pattern. This led to predominantly negative SLP and cyclonic wind anomalies in the NEP, and upper ocean temperature and SSH anomalies that were mainly negative along the west coast and positive in the central north Pacific. The persistence of these anomalies into mid-2001, and a number of concurrent biological changes in the NEP, suggest that a decadal climate shift may have occurred in late 1998.During 1995–2001, NEP oceanic anomalies tracked the overlying atmospheric anomalies, as indicated by the maintenance of a characteristic spatial relationship between these anomalies. In particular, wind stress curl and SSH anomalies in the NEP maintained an inverse relationship that strengthened and shifted eastward toward the west coast during late 1996–early 1998. This consistent relationship indicates that anomalous Ekman transport driven by regional atmospheric forcing was an important contributor to temperature and SSH anomalies in the NEP and CCS during the 1997–98 EN. Other studies have shown that coastal propagations originating from the tropical Pacific also may have contributed to coastal NEP anomalies during this EN. Our results indicate that at least some of this coastal anomaly signal may have been generated by regional atmospheric forcing within the NEP.  相似文献   

4.
Positive SST anomalies usually appear in remote ocean such as the China seas during an ENSO event.By analyzing the monthly data of HadISST from 1950 to 2007,it shows that the interannual component of SST anomalies peak approximately 10 months after SST anomalies peak in the eastern equatorial Pacific.As the ENSO event progresses,the positive SST anomalies spread throughout the China seas and eastward along the Kuroshio extension.Atmospheric reanalysis data demonstrate that changes in the net surface heat flux entering into the China seas are responsible for the SST variability.During El Ni o,the western north Pacific anticyclone is generated,with anomalous southwester lies prevailing along the East Asian coast.This anticyclone reduces the mean surface wind speed which decreases the surface heat flux and then increases the SST.The delays between the developing of this anticyclone and the south Indian Ocean anticyclone with approximately 3–6 months cause the 2–3 months lag of the surface heat flux between the China seas and the Indian Ocean.The northwestern Pacific anticyclone is the key process bridging the warming in the eastern equatorial Pacific and that in the China seas.  相似文献   

5.
印度洋赤道潜流(equatorial undercurrent,EUC)是赤道流系的重要组成部分,对印度洋物质输运和能量交换有着重要意义.基于SODA 3.4.2海洋再分析数据,对印度洋EUC的三维空间结构和年际变化特征进行分析,并揭示其年际变率与印度洋偶极子(Indian Ocean dipole,IOD)的联系.结...  相似文献   

6.
有界赤道大洋波包解及其年际年代际变率   总被引:1,自引:0,他引:1  
Linearized shallow water perturbation equations with approximation in an equatorial β plane are used to obtain the analytical solution of wave packet anomalies in the upper bounded equatorial ocean. The main results are as follows. The wave packet is a superposition of eastward travelling Kelvin waves and westward travelling Rossby waves with the slowest speed, and satisfies the boundary conditions of eastern and western coasts, respectively.The decay coefficient of this solution to the north and south sides of the equator is inversely proportional only to the phase velocity of Kelvin waves in the upper water. The oscillation frequency of the wave packet, which is also the natural frequency of the ocean, is proportional to its mode number and the phase velocity of Kelvin waves and is inversely proportional to the length of the equatorial ocean in the east-west direction. The flow anomalies of the wave packet of Mode 1 most of the time appear as zonal flows with the same direction. They reach the maximum at the center of the equatorial ocean and decay rapidly away from the equator, manifested as equatorially trapped waves. The flow anomalies of the wave packet of Mode 2 appear as the zonal flows with the same direction most of the time in half of the ocean, and are always 0 at the center of the entire ocean which indicates stagnation, while decaying away from the equator with the same speed as that of Mode 1. The spatial structure and oscillation period of the wave packet solution of Mode 1 and Mode 2 are consistent with the changing periods of the surface spatial field and time coefficient of the first and second modes of complex empirical orthogonal function(EOF)analysis of flow anomalies in the actual equatorial ocean. This indicates that the solution does exist in the real ocean, and that El Ni?o-Southern Oscillation(ENSO) and Indian Ocean dipole(IOD) are both related to Mode 2.After considering the Indonesian throughflow, we can obtain the length of bounded equatorial ocean by taking the sum of that of the tropical Indian Ocean and the tropical Pacific Ocean, thus this wave packet can also explain the decadal variability(about 20 a) of the equatorial Pacific and Indian Oceans.  相似文献   

7.
8.
印度洋上层海气相互作用对印度洋和太平洋气候系统有重要影响。目前针对印度洋气候态环流特征已有较为全面的研究,但针对印度洋环流的年际变化及其季节性差异的特征分析和具体作用机制,仍缺乏深入的研究。本文利用1979—2007年Simple Ocean Data Assimilation(SODA)再分析资料研究了赤道印度洋表层辐合辐散的年际变异及其季节依赖性。结果表明,以赤道为中心,印度洋上层异常海流,在经向上形成显著的辐合(辐散)现象,究其原因主要是赤道纬向风异常形成的Ekman流所导致。进一步分析表明,热带印度洋异常纬向风的成因与太平洋-印度洋的热力强迫过程作用有关,并且不同的热力强迫过程呈现出显著的季节差异性。此热力强迫过程,具体可分为3种类型:第一类是太平洋纬向海表热力差异的遥强迫作用,主要发生在冬末春初,热带太平洋的纬向热力差异通过调节Walker环流,在印度洋激发出一个异常的次级环流,对应的大气低层形成纬向风异常;第二类是东-西印度洋海表热力差异的局地强迫作用导致的局地环流,使赤道印度洋上空形成纬向风异常,此过程在春末夏初较为显著;第三类是太平洋-印度洋热力差协同作用的结果,使赤道印度洋盛行异常的纬向风,此过程在秋季起主导作用。  相似文献   

9.
利用"LASG/IAP气候系统海洋模式"(LASG/IAP Climate system Ocean Model,简称LICOM海洋模式)和全球简单海洋资料同化分析系统产成的SODA(simple ocean model assimilation)资料研究了2010年拉尼娜事件发生的动力机制。结果表明,2010年拉尼娜事件发生于2010年6月,是继2009年厄尔尼诺事件之后发生的一次较为特殊的一次冷事件,该事件将持续到2011年;该事件主要是由2010年西边界反射的东传上升Kelvin波和西太平洋异常东风激发的,而赤道太平洋纬向流异常在该事件的形成过程中也起着非常重要的作用。通过对本次拉尼娜事件动力机制和发生发展过程的研究分析,进一步加深了对拉尼娜事件动力机制的了解,同时对拉尼娜事件的预报及防灾减灾有重要意义。  相似文献   

10.
Observations of multidecadal variability in sea surface temperature (SST), surface air temperature and winds over the Southern Hemisphere are presented and an ocean general circulation model applied towards investigating links between the SST variability and that of the overlying atmosphere. The results suggest that the dynamical effect of the wind stress anomalies is significant mainly in the neighbourhood of the western boundary currents and their outflows across the mid‐latitudes of each Southern Hemisphere basin (more so in the South Indian and South Atlantic than in the South Pacific Ocean) and in the equatorial upwelling zones. Over most of the subtropics to mid‐latitudes of the Southern Hemisphere oceans, changes in net surface heat flux (particularly in latent heat) appear to be more important for the SST variability than dynamical effects. Implications of these results for modelling and understanding low frequency climate variability in the Southern Hemisphere as well as possible links with mechanisms of decadal/interdecadal variability in the Northern Hemisphere are discussed.  相似文献   

11.
The effects of intra-seasonal wind forcing on the mean field of the tropical Pacific Ocean has been studied using an ocean general circulation model (GCM). Idealized intra-seasonal zonal wind forcing with zero mean, which propagates eastward, induces net eastward jets at the equator that shift the warm water pool to the east. The mean temperature of the upper 200 m of the ocean increases off the equator and decreases at the equator. The change is independent of the propagation speed of the intra-seasonal wind forcing. The magnitude of the change depends on the amplitude and the period of the forcing, and the ocean structure, while the spatial pattern is independent of these parameters. A simple shallow water model is used to explain these changes. It is found that the term responsible for the enhanced eastward Equatorial jet is the Reynolds stress term, which arises from a phase shift of the zonal current due to friction. The resultant convergence of eastward momentum on the equator and geostrophic adjustment of the interface to the change of zonal current brings about the thermal redistribution of the upper ocean seen in the GCM.  相似文献   

12.
The thermocline-sea surface temperature (SST) feedback is the most important component of the Bjerknes feedback, which plays an important role in the development of the air-sea coupling modes of the Indian Ocean. The thermocline-SST feedback in the Indian Ocean has experienced significant decadal variations over the last 40 a. The feedback intensified in the late twentieth century and then weakened during the hiatus in global warming at the early twenty-first century. The thermocline-SST feedback is most prominent in the southeastern and southwestern Indian Ocean. Although the decadal variations of feedback are similar in these two regions, there are still differences in the underlying mechanisms. The decadal variations of feedback in the southeastern Indian Ocean are dominated by variations in the depth of the thermocline, which are modulated by equatorial zonal wind anomalies. Whereas the decadal variation of feedback in the southwestern Indian Ocean is mainly controlled by the intensity of upwelling and thermocline depth in winter and spring, respectively. The upwelling and thermocline depth are both affected by wind stress curl anomalies over the southeastern Indian Ocean, which excite anomalous Ekman pumping and influence the southwestern Indian Ocean through westward propagating Rossby waves.  相似文献   

13.
热带印度洋和太平洋海气相互作用事件的协调发展   总被引:6,自引:0,他引:6  
对次表层海温距平的分布和变化的分析表明,在热带印度洋和太平洋都存在海温距平的偶极子模态,即在赤道附近大洋东、西两个部分的海温距平在不少年份呈反符号分布。进一步分析表明,两大洋海温距平的偶极子模态间有密切的联系。在分析它们和850hPa纬向风距平后指出,正是Walker环流异常把两大洋的海温距平变化联系起来。  相似文献   

14.
In this paper, the role of equatorial oceanic waves in affecting the evolution of the 2008 positive Indian Ocean Dipole (IOD) event was evaluated using available observations and output from a quasi-analytical linear wave model. It was found that the 2008 positive IOD was an early matured and abruptly terminated event: developed in April, matured in July, and diminished in September. During the development and the maturation of the 2008 positive IOD event, the wind-forced Rossby waves played a dominant role in generating zonal current anomalies in the western equatorial Indian Ocean, while a complex interplay between the wind-forced upwelling Kelvin waves and the eastern-boundary-generated Rossby waves accounted for most of the variability in the eastern basin. The latter induced eastward zonal current anomalies near the eastern boundary during the peak phase of the event. The 2008 positive IOD event was abruptly terminated in mid-July. We found that there were strong eastward zonal currents in mid-July, though the surface wind anomalies in the eastern basin continued to be westward (upwelling favorable). Our analysis shows that these eastward zonal currents mainly resulted from the easternboundary-generated upwelling Rossby waves, although the contribution from the wind-forced downwelling Kelvin waves was not negligible. These eastward zonal currents terminated the zonal heat advection and provided a favorable condition for surface heat flux to warm the eastern basin.  相似文献   

15.
On the basis of simple ocean data assimilation (SODA) reanalysis product, the interannual variability of upper-ocean Indonesian Throughflow (ITF) volume transport since the mid 1970s is examed. The wavelet analysis shows a second prominent interannual oscillation with a period of about 2~4 a. To reveal any relationship between this band-scale oscillation of upper-ocean ITF and the Indian Ocean dipole (IOD), the correlation and wavelet analyses are used. The correlation coefficient between the upper-ocean ITF and the IOD reaches -0.40 with upper-ocean ITF lagging an IOD index by eight months. The wavelet power spectrum of upper-ocean ITF shows similar structure to that of the IOD index. And the evolution of IOD is reproduced by lagged correlation between the upper-ocean ITF and the sea surface temperature anomaly (SSTA) over the Indian Ocean. It suggests that the 2~4 a band-scale oscillation of upper-ocean ITF is related uniquely to the IOD over the tropical Indian Ocean.  相似文献   

16.
南海夏季风暴发过程的低频特征   总被引:7,自引:2,他引:5  
应用1979~1996年共18a的NOAA卫星OLR资料及NCEP/NCAR再分析850hPa风场资料,分析了夏季南海地区及南海季风暴发过程的某些低频特征。认为北半球夏季南海地区的低频活动较活跃,并且具有明显的年际变化,这种年际变化同南海季风的暴发时间有联系。南海地区的低频振荡在南海季风暴发后增强。通过对18a 及K*的时段叠加合成图的分析,发现南海夏季风的暴发同赤道印度洋低频振荡的东传及西太平洋低频扰动西传有密切联系,南海夏季风暴发期间南海地区将印度洋与西太平洋之间的低频活动联系在一起。  相似文献   

17.
赤道印度洋中部断面东西水交换的季节变化及其区域差异   总被引:4,自引:2,他引:2  
采用海洋再分析资料和实测资料研究了热带印度洋中部东西水交换特征。结果表明存在两个相互独立的过程,即北印度洋过程(4°~6°N)和赤道过程(2°S-2°N)。北印度洋过程受季风影响显著,11月至翌年3月冬季风期间表现出很强的低盐水向西输送,5-9月夏季风期间则为高盐水向东输送;由于冬季风期间的输送较强,年平均表现为低盐水向西输送。赤道过程分为表层过程和次表层过程。表层赤道过程受局地风场驱动,有明显的半年周期;4-5月和10-11月的东向流将赤道西印度洋的高盐水向东输送,其余月份相反;向东的输送较强,年平均表现为净高盐水向东输送。在次表层赤道过程没有明显的季节变化,海流全年一致向东,将海盆西部的高盐水向东输送。  相似文献   

18.
海洋再分析资料中IOD-ENSO遥相关的海洋通道机制分析   总被引:1,自引:1,他引:0  
徐腾飞  周慧 《海洋学报》2016,38(12):23-35
本文利用滞后相关分析,研究了海洋再分析资料(SODA、ORAS4和GODAS)中的IOD-ENSO滞后遥相关关系,并与观测资料进行对比。结果显示,3套再分析资料中热带东南印度洋秋季海表温度/海表高度异常和赤道太平洋冷舌次年秋季海表温度/海表高度异常之间显著相关,与观测结果一致。在次表层,观测和再分析资料均显示,热带东南印度洋秋季海表温度异常与赤道太平洋次表层海温异常之间的显著相关关系在冬季至次年秋季沿赤道太平洋垂向剖面向东移动,并于次年夏季和秋季在冷舌区上升至海表。热带东南印度洋和赤道太平洋冷舌滞后1年的相关关系是由海洋通道机制引起的,即IOD事件引起印尼贯穿流流量异常,导致赤道太平洋温跃层异常,激发赤道Kelvin波向东传播,从而影响赤道中-东太平洋冷舌海表温度异常。观测及SODA与ORAS4资料中,热带东南印度洋和赤道太平洋冷舌滞后1年的相关关系在去除ENSO信号后仍然显著,表明海洋通道机制是独立于ENSO事件的;而在GODAS资料中,这些显著相关关系在去除ENSO信号后消失。印尼贯穿流流量异常和Niño3.4及DMI(Dipole Mode Index)指数之间超前-滞后12个月的相关关系显示,在SODA和ORAS4资料中,印尼贯穿流流量同时受到ENSO和IOD的影响,与观测结果一致;而在GODAS中,印尼贯穿流流量异常仅与Niño3.4指数显著相关,极少受到IOD事件的影响,这部分解释了GODAS资料中去除ENSO信号后,IOD-ENSO滞后遥相关关系消失的原因。  相似文献   

19.
In the past nearly two decades, the Argo Program has created an unprecedented global observing array with continuous in situ salinity observations, providing opportunities to extend our knowledge on the variability and effects of ocean salinity. In this study, we utilize the Argo data during 2004–2017, together with the satellite observations and a newly released version of ECCO ocean reanalysis, to explore the decadal salinity variability in the Southeast Indian Ocean(SEIO) and its impacts on the regional sea level changes. Both the observations and ECCO reanalysis show that during the Argo era, sea level in the SEIO and the tropical western Pacific experienced a rapid rise in 2005–2013 and a subsequent decline in 2013–2017. Such a decadal phase reversal in sea level could be explained, to a large extent, by the steric sea level variability in the upper 300 m. Argo data further show that, in the SEIO, both the temperature and salinity changes have significant positive contributions to the decadal sea level variations. This is different from much of the Indo-Pacific region, where the halosteric component often has minor or negative contributions to the regional sea level pattern on decadal timescale. The salinity budget analyses based on the ECCO reanalysis indicate that the decadal salinity change in the upper 300 m of SEIO is mainly caused by the horizontal ocean advection. More detailed decomposition reveals that in the SEIO, there exists a strong meridional salinity front between the tropical low-salinity and subtropical high salinity waters. The meridional component of decadal circulation changes will induce strong cross-front salinity exchange and thus the significant regional salinity variations.  相似文献   

20.
基于近40 a NCEP/NCAR再分析月平均高度场、风场、涡度场、垂直速度场以及NOAA重构的海面温度(sea surface temperature,SST)资料和美国联合台风预警中心(Joint Typhoon Warning Center,JTWC)热带气旋最佳路径资料,利用合成分析方法,研究了前期春季及同期夏季印度洋海面温度同夏季西北太平洋台风活动的关系。结果表明:1)前期春季印度洋海温异常(sea surface temperature anomaly,SSTA)尤其是关键区位于赤道偏北印度洋和西南印度洋地区对西北太平洋台风活动具有显著的影响,春季印度洋海温异常偏暖年,后期夏季,110°~180°E的经向垂直环流表现为异常下沉气流,对应风场的低层低频风辐散、高层辐合的形势,这种环流形势使得低层水汽无法向上输送,对流层中层水汽异常偏少,纬向风垂直切变偏大,从而夏季西北太平洋台风频数偏少、强度偏弱,而异常偏冷年份则正好相反。2)春季印度洋异常暖年,西北太平洋副热带高压加强、西伸;而春季印度洋异常冷年,后期夏季西北太平洋副热带高压减弱、东退,这可能是引起夏季西北太平洋台风变化的另一原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号