首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New aspects of rhomb structures   总被引:1,自引:0,他引:1  
The acute angles of 48 rhombic, trapezoidal and triangular grabens, horsts and upthrusts throughout the world were determined. The results indicate an angular spread of 7—73°. In most structures the two acute angles differ considerably. Most rhomb structures are grabens which show affinities to seismic faults, and only a few are horsts and upthrusts. In this connection modes of static crustal fracture propagation are compared to dynamic propagation. Rhomb structures occur along strike-slip faults and in rifts. These results question the universality of the pull-apart model as a mechanism for rhomb structure development. The two mechanisms that can lead to the formation of rhomb structures are (1) interaction of en échelon or non-coplanar fractures by shear and extensional modes and (2) fracture bifurcation in an extensional mode. The two mechanisms may result in faults of different shapes characterized by curved and straight boundaries, respectively. The grabens and horsts in extensional regions are the consequence of early fracture and later vertical displacements.  相似文献   

2.
The Late Permian–early Middle Triassic strata of the northern West Qinling area, northeastern Tibetan Plateau, are composed of sediment gravity flow deposits. Detailed sedimentary facies analysis indicates these strata were deposited in three successive deep-marine environments. The Late Permian–early Early Triassic strata of the Maomaolong Formation and the lowest part of the Longwuhe Formation define a NW–SE trending proximal slope environment. Facies of the Early Triassic strata composing the middle and upper Longwuhe Formation are consistent with deposition in a base-of-slope apron environment, whereas facies of the Middle Triassic Anisian age Gulangdi Formation are more closely associated with a base-of-slope fan depositional environment. The lithofacies and the spatial–temporal changes in paleocurrent data from these strata suggest the opening of a continental margin back-arc basin system during Late Permian to early Middle Triassic time in the northern West Qinling. U–Pb zircon ages for geochemically varied igneous rocks with diabasic through granitic compositions intruded into these deep-marine strata range from 250 to 234 Ma. These observations are consistent with extensional back-arc basin development and rifting between the Permian–Triassic Eastern Kunlun arc and North China block during the continent–continent collision and underthrusting of the South China block northward beneath the Qinling terrane of the North China block. Deep-marine sedimentation ended in the northern West Qinling by the Middle Triassic Ladinian age, but started in the southern West Qinling and Songpan-Ganzi to the south. We attribute these observations to southward directed rollback of Paleo-Tethys oceanic lithosphere, continued attenuation of the West Qinling on the upper plate, local post-rift isostatic compensation in the northern West Qinling area, and continued opening of a back-arc basin in the southern West Qinling and Songpan-Ganzi. Rollback and back-arc basin development during Late Permian to early Middle Triassic time in the West Qinling area explains: the truncated map pattern of the Eastern Kunlun arc, the age difference of deep-marine sediment gravity flow deposits between the Late Permian–early Middle Triassic northern West Qinling and the late Middle Triassic–Late Triassic southern West Qinling and Songpan-Ganzi, and the discontinuous trace of ophiolitic rocks associated with the Anyemaqen-Kunlun suture.  相似文献   

3.
The Western Mediterranean extensional basins and the Alpine orogen   总被引:1,自引:0,他引:1  
The western Mediterranean late Oligocene–Miocene basins (Alboran, Valencia and Provençal basins) are a coherent system of interrelated troughs. In all basins normal faults and thermal subsidence migrated toward the east progressively moving to the Miocene-to-Pleistocene Algerian and Tyrrhenian basins. All those troughs appear elements of the back-arc opening related to the eastward roll-back of the W-directed Apennines–Maghrebides subduction zone, similarly to western Pacific back-arc settings.
These late Oligocene–early Miocene basins nucleated both within the Betic cordillera (e.g. Alboran sea) and in its foreland (Valencia and Provençal troughs). The N40–70° direction of grabens is oblique to the coexisting N60–80°-trending orogen and shows its structural independence from the orogenic roots. Thus, as the extension cross-cuts the orogen and developed also well outside the thrust belt front, the westernmost basins of the Mediterranean had to develop independently from the Alps-Betics orogen. Therefore, the Alboran extension, considered a classic example of a basin generated by the collapse of an orogen, cannot be ascribed to the detachment or annihilation of the lithospheric root. In contrast with the eastward migrating extensional basins, the Betic-Balearic thrust front was migrating westward producing interference or inversion structures.  相似文献   

4.
Recent free-air gravity data covering the Makassar Straits is integrated with Bouguer gravity data from onshore East Kalimantan to provide new insights into the basement structure of the region. Onshore Kalimantan, gravity highs on the northern margin of the Kutai Basin trend NNE–SSW and N–S and correspond with the axes of inverted Eocene half-grabens. NW–SE trending lows correspond to deep seated basement weaknesses reactivated as normal faults during the Tertiary. An intra-basin gravity high trending NNE–SSW, the Kutai Lakes Gravity High, is modelled as folded high density Paleogene sediments flanked by syn-inversion synclines infilled with low density sediments. Offshore Kalimantan, the Makassar Straits include two basins offset by an en-echelon fault zone, suggestive of an extensional origin. The regional signature of the free-air anomaly data mirrors the bathymetry, but this effect can be reduced by the use of filters in order to examine the basin architecture. The free-air gravity minimum in the Makassar Strait is only −20 mGal, much smaller than that appropriate for a foreland basin, and more indicative of an extensional basin. The steepness of the gradients on the flanks of the basins indicates fault control of their margins. A regional 2D profile across the North Makassar Basin suggests the presence of attenuated crust (<14 km) in the basin axis at the present day, whereas flexural backstripping implies the presence of oceanic crust of middle Eocene age. The presence of oceanic crust in the North Makassar Straits Basin has implications for regional plate tectonic models.  相似文献   

5.
卡拉库姆盆地位于中亚地区图兰地台南部,北西走向,是中亚地区最重要的含油气盆地之一。对于盆地晚二叠世-三叠纪的构造属性一直都存在着很多争论,我们根据钻井、地球物理及露头资料,认为卡拉库姆盆地是以增生杂岩为基底形成的一个沉积盆地,晚二叠世-三叠纪具有弧后裂谷的性质。卡拉库姆盆地前侏罗纪的构造演化分为4个阶段:1)石炭纪之前古特提斯洋壳开始俯冲增生; 2)石炭纪-早二叠世形成丝路弧; 3)晚二叠世-三叠纪马什哈德-北帕米尔弧形成,卡拉库姆盆地处于弧后拉张的位置; 4)晚三叠世末伊朗等地块与欧亚大陆碰撞,卡拉库姆盆地进入短暂的周缘前陆盆地阶段。其晚二叠世-三叠纪的沉积中心在北阿姆河坳陷,木尔加布坳陷和科佩特山前坳陷,沉积环境主要为陆相,三叠纪发生海侵,部分地区接受海相沉积。岩石类型主要为陆源碎屑岩、火山岩及少量灰岩。  相似文献   

6.
《International Geology Review》2012,54(14):1803-1821
ABSTRACT

In the Central Anatolia, the style of neotectonic regime governing the region has been a controversial issue. A tectonic study was carried out in order to contribute to this issue and better understand the neotectonic stress distribution and style of deformation in the west-southwest of the Konya region. From Middle Miocene to Recent time, Konya region was part of the Central Anatolia extensional province. The present-day topography in the west-southwestern part of Konya is characterized by alternating elongate grabens and horsts trending E-W and NW-SE. The grabens were developed upon low-grade metamorphic rocks of Palaeozoic and Mesozoic ages and ophiolite slabs of possibly Late Cretaceous age. The evolutionary history of grabens is episodic as evidenced by two graben infills; older and younger graben infills separated by an angular unconformity. The older infill consists of fluviolacustrine sequence intercalated with calc-alkaline lavas and pyroclastic rocks. This infill is folded; thrust faulted and Middle Miocene-Early Pliocene in age. The younger and undeformed basin fill comprises mainly of Plio-Quaternary conglomerates, sandstone-mudstone alternations of alluvial fan and recent basin floor deposits. Three major tectonic phases were differentiated based on the detailed mapping, morphological features and kinematic analysis. Approximately N-S trending extension began in the Middle Miocene-Early Pliocene in the region with the formation of E-W and NW-SE-trending grabens. Following NE-SW-directed compression which deformed the older basin fill deposits by folding and thrusting, a second period of ENE-WSW-trending extension began in the late Pliocene and continued to the present. The west-southwestern margin of the Konya depression is bounded by the Konya Fault Zone. It is an oblique-slip normal fault with a minor dextral strike-slip component and exhibits well-preserved fault slickensides and slickenlines. Recent seismicity and fault-related morphological features reveal that the Konya Fault Zone is an active neotectonic structure.  相似文献   

7.
秦岭是我国南北地质分野及衔接地带,历来为中外地质学家所关注。近几十年来所进行的大量地质工作表明,这里是一个重要的金属及非金属成矿带,其中钼、金、银等矿床在全国具有重要地位。在此区开展构造地质研究,进一步澄清成矿和控矿地质条件,对进一步寻找各类有用矿产具有较大的现实意义。七十年代中期开始,国内的一些地质学家先后运用板块构造理论对秦岭地区的区域构造进行研究。但是由于一些重大基础地质问题如地层层序、变质作用和时代归属;各类岩  相似文献   

8.
雅布赖盆地构造演化与油气聚集   总被引:1,自引:0,他引:1       下载免费PDF全文
雅布赖含油气盆地位于中国西部河西走廊地区北部, 处于华北克拉通阿尔善地块中南部过渡带, 属北祁连构造带, 中生代为走滑拉分盆地, 新生代为挤压冲断坳陷盆地.燕山早期, 形成东西向雅布赖拉张断陷, 主控断裂为北大山正断层, 沉积中心位于盆地南部; 燕山中期, 碰撞造山作用致使盆地北部急剧抬升, 北部中-下侏罗统地层遭受强烈剥蚀; 燕山晚期, 阿拉善地块及其北部地区处于伸展构造环境, 雅布赖山前产生东西向正断层, 急剧活动, 快速沉降, 形成了北东向展布的新的拉张断陷盆地.喜马拉雅期, 在挤压走滑作用下, 雅布赖盆地南部形成北西向南倾逆冲的推覆构造, 致使北大山正断层发生错断瓦解, 最终形成"东隆西坳, 南断北超"的挤压坳陷构造格局.雅布赖盆地主体沉积凹陷具有较强分割性, 沉降凹陷分布于南部, 最大沉积岩厚度为5 400 m; 凹陷内侏罗系最为发育, 中侏罗统新河组、青土井组暗色泥岩、煤岩为烃源岩, 砂岩为储集层, 新河组泥岩互层作盖层, 构成盆地内最主要的含油气组合.由于雅布赖盆地特定的早期深埋, 晚期抬升破坏构造格局, 造就侏罗系砂岩储层早期强烈压实致密, 侏罗系煤系烃源岩成熟较晚, 构造发育期与烃源岩排烃期不匹配, 生成油气主要表现为近源成藏与层内滞留, 形成源内自生自储, 致密油应是主要勘探对象.  相似文献   

9.
Rheology and seismotectonic regime in the northern central Mediterranean   总被引:4,自引:0,他引:4  
The connection between thermal field and mechanical properties is analysed in the northern central Mediterranean region, extending from the Ligurian-Provençal basin to the Adriatic foredeep. As the thermal regime is still far from equilibrium in most of the tectonic units, transient thermal models are used. The temperature-depth distribution is estimated in four areas affected by the volcanic activity, which from the Neogene to the Present shifted from Corsica to the Apenninic arc. In the Adriatic foredeep, the thermal effects of the recent thrust-faulting phase in the buried sectors of the northern Apennines are taken into account.

The general context consists of convergence involving westward subduction of the Adriatic plate. This process caused anti-clockwise rotation of Corsica and Sardinia, which led to formation of the Ligurian marginal basin, and also resulted in crustal doubling and overthrusting in the northern Apennines and rifting in the northern Tyrrhenian.

Seismic activity is focused in the internal and external zones of the Apenninic arc, where low surface heat flux is observed, and in the western margin of the Ligurian-Provençal basin. This is a consequence not only of lateral variations in the thermal field but also of the different tectonic settings. Regional extensional patterns in the shallow crust, with minimum principal stress axes trending N60°E and E-W, are observed in the northern and in the southern sectors of the Apenninic arc, respectively. A compressional regime at depths greater than 30 km is observed below the northern sector of the arc, while to the south a change in the structure of the lithosphere is marked by a decrease in deeper seismic activity. Thrust faults and strike-slip faults with a thrust component support a compressional regime along the western margin of the Ligurian basin with maximum principal stress axis oriented N120°E.

Two lithospheric cross-sections across the study region are constructed, based on structural, thermal, gravity, rheological and seismic data. There is clear evidence of the presence of the subducting slab of the Adriatic plate, corresponding to a thickening of the uppermost brittle layer. The crustal seismicity cut-off corresponds to temperatures of 320–390°C. A brittle layer of considerable thickness is present in the uppermost mantle beneath Variscan Corsica and the Adriatic foredeep, with estimated seismic cut-off temperature of about 550 ± 50°C.  相似文献   


10.
The Proto-Tethys Ocean between the North and South Kunlun began to form during the Sinian. Remnants of this ocean are preserved at the Oytag-Kudi suture. The presence of Paleozoic arc batholiths in the northern South Kunlun and their absence in the North Kunlun indicates southward subduction of the Proto-Tethys Ocean beneath the South Kunlun. Opposite subduction polarity can be demonstrated for the Late Paleozoic to mid-Mesozoic when the southerly located Paleo-Tethys Ocean was consumed beneath the South Kunlun and generated a Late Carboniferous to mid-Jurassic magmatic arc in the southern South Kunlun. Arc magmatism affected the southern South Kunlun and the large Kara-Kunlun accretionary prism (a suture sensu lato) which formed as a result of Paleo-Tethys’ consumption. The dextral shear sense of ductile faults which are located at the margins of the arc batholiths, and which parallel the South Kunlun/Kara-Kunlun boundary, suggests oblique plate convergence with a dextral component. Different lines of evidence encourage us to interpret the Proto-Tethys ophiolites of the Oytag-Kudi zone as at least partly derived from an oceanic back-arc basin. In contrast, we assume that Paleo-Tethys was a large ocean basin which was eliminated directly at the southern margin of the South Kunlun where no oceanic back-arc region existed.  相似文献   

11.
Active spreading ridges in the North Fiji Basin range from well-developed stable ridges where largescale mantle upwelling is in progress to proto-ridges where spreading is incipient. South of 17°S, where the central ridge of the North Fiji Basin has a bathymetric profile normally expected of a fast-spreading, steadystate mid-ocean ridge, basalts are evolved N-type MORBs. North of 17°S, where the central ridge is propagating northward into old North Fiji Basin crust and spreading is in the initial stages, two types of basalt have been recovered: N-type MORBs from this northern arm of the central ridge are believed to be samples of older North Fiji Basin crust; basalts with transitional alkalic chemistry (up to 0.5% Ne in the Norm) and characterized by strong relative enrichments in Rb, Ba, K, Nb, La, Ce, Sr, P, Zr, and Ti are believed to be associated with incipient rifting. Among the latter group are compositions that are intermediate between transitional alkalic types and MORBs and these are geochemically similar to the back-arc basin (BABB) magma type defined by Sinton and Fryer (1987) from a study of Mariana back arc basin basalts. Dredges along the South Pandora Ridge, a transform zone characterized by short spreading segments, are dominated by basalts that are enriched in large-ion lithophile and high field strength minor and trace elements and compositions range from types resembling ocean island tholeiites to transitional alkalic varieties. Basalts from Rotuma are regarded as alkalic end-members of the South Pandora Ridge magmatic spectrum. In areas of the North Fiji Basin where relatively fast spreading must be accompanied by largescale asthenospheric upwelling, depleted (N-type) MORBs dominate, whereas in areas of slow mantle upwelling, or where some other tectonic effect (e.g. a transform fault) causes a transient thermal disturbance within the lithosphere or upper asthenosphere, enriched (alkalic) magmas either dominate or make a significant and noticeable contribution to the overall chemical characteristics of basalts being erupted. The MORBs have a depleted asthenospheric source, and the alkalic component is believed to derive from an enriched lithospheric or shallow asthenospheric source. The BABB magma type may simply be part of the spectrum of mixed magmas that can occur in the transitional tectonic settings represented by the early development of most back-arc basins.  相似文献   

12.
Integration of petrographic and geochemical data on each island in the Banks Group, northern Vanuatu (New Hebrides) has revealed a decrease in K2O (and related incompatible elements) across the islands, away from the New Hebrides trench. The correlation with depth to the Benioff zone is therefore the reverse of that typically found in island arcs. REE evidence and source modelling indicates that this variation represents a progressive depletion in LREE/HREE in the upper mantle, laterally away from the trench and a progressive increase in partial melting of the source, in the same direction. These variations in chemistry are attributed to an earlier west-dipping Miocene subduction system, and the variation in degree of partial melting to the location of the islands with respect to the active back-arc basin. An enrichment of the upper mantle in the Miocene is ascribed to the ascent of hydrous fluids enriched in incompatible elements, from the west-dipping Benioff zone, and subsequent reaction with the overlying upper mantle. The model thus envisages approximately contemporaneous development of the Central Chain volcanoes and the backarc basin in the late Pliocene, with partial melting of hydrous, laterally zoned upper mantle resulting from the convective thermal regime associated with the rifting apart of the back-arc basin. The role of the present subduction regime in magma generation is considered to be very limited.  相似文献   

13.
The eastern Pontide magmatic arc extends ~600 km in an E-W direction along the Black Sea coast and was disrupted by a series of fault systems trending NE-SW, NW-SE, E-W, and N-S. These fault systems are responsible for the formation of diachronous extensional basins, rift or pull-apart, in the northern, southern, and axial zones of the eastern Pontides during the Mesozoic. Successive extensional or transtensional tectonic regimes caused the abortive Liassic rift basins and the Albian and Campanian pull-apart basins with deep-spreading troughs in the southern and axial zones. Liassic, Albian, and Campanian neptunian dikes, which indicate extensional tectonic regimes, crop out within the Paleozoic granites near Kale, Gumushane, and the Malm–Lower Cretaceous platform carbonates in Amasya and Gumushane. These neptunian dikes correspond to extensional cracks that are filled and overlain by the fossiliferous red pelagic limestones. Multidirectional Liassic neptunian dikes are consistent with the general trend of the paleofaults (NE-SW, NW-SE, and E-W), and active dextral North Anatolian fault (NAF) and sinistral Northeast Anatolian fault (NEAF) systems. The Albian neptunian dikes in Amasya formed in the synthetic oblique left-lateral normal faults of the main fault zone that runs parallel to the active North Anatolian fault zone (NAFZ).

Kinematic interpretation of the Liassic and Albian neptunian dikes suggests N-S extensional stress or northward movement of the Pontides along the conjugate fracture zones parallel to the NAFZ and NEAFZ. This northward movement of the Pontides in Liassic and Albian times requires left-lateral and right-lateral slips along the conjugate NAFZ and Northeast Anatolian fault zones (NEAFZ), respectively, in contrast to the recent active tectonics that have been accommodated by N-S compressional stress. On the other hand, mutual relationships between the neptunian dikes and the associated main fault zone of Campanian age extending in an E-W direction in the Kale area, Gumushane suggest the existence of a main left-lateral transtensional wrench zone. This system might be accommodated by the counterclockwise convergence of the Turkish plate with the Afro-Arabian plate relative to the Eurasian plate, and the southward oblique subduction of Paleotethys beneath the eastern Pontide magmatic arc during the Mesozoic.  相似文献   

14.
宁夏中南部古生代弧型构造   总被引:4,自引:6,他引:4  
宁夏中南部地区在中奥陶世至泥盆纪是作为北祁连造山带北侧的弧后前陆盆地靠大陆一侧而存在的;由于在早古生代晚期该前陆盆地的关闭,该地区下古生界变形,发育明显的逆冲推覆构造,形成一个大型的弧形构造,该弧形构造主要由弧形逆冲断层以及相关褶皱所组成,该构造弧顶指向北东,西翼宽、东翼窄,是加里东运动的组成部分,动力方向来自于南南西,即北祁连造山带。而卫宁北山地区的东西向构造仅仅是该弧形构造的一翼。新生代弧形构造是在古弧形构造的基础上形成的,并一定程度上改造了古构造。  相似文献   

15.
The Western Black Sea basin opened during Cretaceous times by back-arc rifting in association with a north dipping subduction at the rear of the Cretaceous–Early Tertiary Pontide volcanic arc. The sedimentary wedge developed on the shelf of the Romanian Black Sea sector reflects a complex interplay between large scale rifting, uplift of the orogenic flanks, large-scale post-rift subsidence and sea level changes. We examine the detailed structural configuration of this sector for a regional correlation with the adjacent offshore in Ukraine and Bulgaria. The evolution of the western Black Sea basin started in the Albian–Cenomanian times, when two extensional phases with significantly different directions (N–S and subsequently E–W) lead to the formation of a complex interplay between isolated blocks organised in horsts and grabens generally deepening eastwards. Superposition of normal faults footwall blocks from the two extensional episodes generated a deeply subsided area with enhanced accommodation space, i.e., the Histria Depression, and, consequently, recorded a larger thickness of Paleogene sediments in the post-rift stage. (Re)activation of faults and associated folding reflects repeated inversion during the Late Cretaceous–Oligocene times, associated with subsequent periods of non-deposition and/or erosion during moments of basin fill exposure. These periods of inversion recorded in the Black Sea are controlled by coeval orogenic deformations taking place in the Balkans, Pontides and the Crimean thrust belt. Sea level fluctuations during the Neogene and late Alpine tectonics in the neighbouring orogens caused massive sedimentation followed by sediment starvation and/or significant erosion. Large thicknesses of sediments accumulated during the Pontian, presumably associated with an extensional episode deepening the distal parts of the basin and with differential compaction structures. The interpretation of a high-quality seismic dataset combined with published data allowed the correlation of major structural units and lineaments defined onshore towards the Carpathians with the ones deeply buried below the western Black Sea basin sediments. Unit correlations are furthermore used to derive an integrated tectonic image of the western Black Sea area.  相似文献   

16.
Air gun seismic and 3.5 kHz profiling data from the Gulf of Patras, western Greece, show that it is occupied by a small asymmetric graben with several geometric similarities to the larger-scale graben in the Gulf of Corinth to the east. Major listric faulting characterizes the southern flank of the graben whilst the northern flank represents an associated rollover structure affected by antithetic and synthetic faulting. The present phase of subsidence is of Holocene age, but buried growth faults suggest earlier subsidence in the Gulf. The average rate of subsidence through the Holocene is estimated to be 10 mm/year.The Gulf of Patras graben, together with the Gulf of Corinth graben and the Megara basin, represent a continuous system of WNW-ESE trending grabens in a broad zone of intense seismicity within the Aegean domain. Individual grabens are offset and are interconnected by NE-SW trending fault systems.  相似文献   

17.
In the Delgo basement area of northern Sudan, low to medium grade metamorphosed volcanic, sedimentary and plutonic rocks are surrounded by high grade gneisses. A NNE-SSW trending suture zone can be defined by the lithological, chemical and structural characteristics of several distinct units. The early Proterozoic gneiss terrain is overlain by metasedimentary units, the metamorphism of which has been dated by the Sm-Nd whole rock-mineral technique (702 ± 27 Ma in the west, 592 ± 16 Ma in the east). In the central part, the Abu Sari volcanic rocks show geochemical signatures of formation at an arc, with a protracted tholeiitic, calc-alkaline and shoshonitic evolution. The overlying El Hamri ophiolite contains chemical features of a back-arc tectonic environments. The ophiolite was dated by the Sm-Nd whole rock method on metagabbros at 752 ± 48 Ma. The further extension of this oceanic basin into the Jebel Rahib in the south-west was dated at 707 ± 54 Ma (Sm-Nd whole rock and minerals).Widespread suite of syn-tectonic granitoid intrusives displays subduction-related characteristics. They where emplaced between 650 to 760 Ma (Pb-zircon evaporation method). Their Nd and Sr isotopic compositions indicate a changing pattern of island arc to active continental margin character along an east-west transect and suggest a west to north-west dipping subduction zone. All units were juxtaposed at the minimum age of 600 Ma and rearranged during an extensional event, which was dated by the Rb-Sr thin slab technique (546 ± 19 Ma) on a migmatite. The Delgo suture provides evidence of a complex terrane pattern in north-east Africa and crustal growth during the Pan-African event by the addition of oceanic material to pre-existing continental crust.  相似文献   

18.
西藏吉定蛇绿岩地球化学特征及其构造指示意义   总被引:1,自引:2,他引:1  
陈根文  刘睿  夏斌  邓腾 《岩石学报》2015,31(9):2495-2507
吉定蛇绿岩位于雅鲁藏布江蛇绿岩带的中段,是该带保存较好的蛇绿岩之一,通过对该岩体的研究及与附近蛇绿岩剖面的对比有助于恢复早白垩世雅鲁藏布江蛇绿岩带的演化过程。吉定蛇绿岩包括玄武岩、辉绿岩、堆晶岩及地幔橄榄岩四个岩石单元。壳层岩石岩浆结晶顺序为:橄榄石→单斜辉石→斜长石,代表湿岩浆系统分异。吉定蛇绿岩壳层熔岩(玄武岩和辉绿岩)Ti O2含量为0.87%~1.45%,平均1.1%,与印度洋N-MORB玻璃(1.19%)相似。REE配分模式具有明显的LREE亏损特征,稀土配分模式与典型的大洋中脊玄武岩相似。但其微量元素蛛网图上表现为富集LILE,而亏损HFSE,并具有较高LILE/HFSE比值特征,与俯冲带上的(SSZ)蛇绿岩相似。蛇绿岩熔岩在岩石地球化学上表现出既亲MORB,又具部分IAB的特征。结合区域上大竹卡、得几等蛇绿岩岩石及地球化学资料对比分析,提出吉定蛇绿岩形成于在洋内俯冲带上发育起来的弧后盆地,并提出日喀则地区早白垩世洋壳演化的解释模式:雅鲁藏布江中段蛇绿岩至少包含三种组分特征的蛇绿岩体,其代表性剖面分别是吉定,得村和大竹卡,分别形成于近俯冲带的弧后盆地、弧前盆地和弧后盆地,这些洋壳共同组成早白垩世时期的与特提斯洋俯冲带斜交的一条分段发育的洋中脊。  相似文献   

19.
The West Philippine basin (WPB) is a currently inactive marginal basin belonging to Philippine Sea plate, which has a complex formation history and various crust structures. Based on gravity, magnetic and seismic data, the tectonics in West Philippine basin is characterized by amagnma spreading stage and strike slip fractures. NNE trending Okinawa-Luzon fracture zone is a large fracture zone with apparent geomorphology and shows a right-handed movement. The results of joint gravity-magnetic-seismic inversion suggest that the Okinawa-Luzon fracture zone has intensive deformation and is a transform fault. Western existence of the NW trending fractures under Ryukyu Islands Arc is the main cause of the differences between south and north Okinawa Trough. The Urdaneta plateau is not a remained arc, but remnant of mantle plume although its lava chemistry is similar to oceanic island basalt (OIB).  相似文献   

20.
The Timiskaming Graben is a 400 km long, 50 km wide north‐west trending morphotectonic depression within the Canadian Shield of eastern North America and experiences frequent intraplate earthquakes. The graben extends along the border of Ontario and Quebec, connecting southward with the Nipissing and Ottawa‐Bonnechere grabens and the St. Lawrence Rift System which includes a similar structure underlying the Hudson Valley of the eastern USA. Together they form a complex failed rift system related to regional extension of North American crust during the breakup of Rodinia and, later, Pangea. The Timiskaming Graben lies within a belt of heightened seismic activity (Western Quebec Seismic Zone) with frequent moderate magnitude (greater than magnitude 5) earthquakes including a magnitude 6.2 in 1935. These events threaten aging urban infrastructure built on soft glacial sediments; post‐glacial landslides along the Ottawa Valley suggest earthquakes as large as magnitude 7. The inner part of the Timiskaming Graben is filled by Lake Timiskaming, a large 110 km long post‐glacial successor to glacial Lake Barlow that was ponded by the Laurentide Ice Sheet 9500 years ago. The effects of frequent ground shaking on lake floor sediments was assessed by collecting more than 1000 line kilometres of high‐resolution ‘chirp’ seismic profiles. Late glacial Lake Barlow glaciolacustrine and overlying post‐glacial sediments are extensively deformed by extensional faults that define prominent horsts and grabens; multibeam bathymetry data suggest that faults influence the morphology of the modern lake floor, despite high sedimentation rates, and indicate recent neotectonic deformation. The Lake Timiskaming area provides evidence of post‐glacial intracratonic faulting related to recurring earthquake activity along a weak spot within the North American plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号