首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Geochemical and petrographic data suggest early submarine cementation of hardgrounds from the Lincolnshire Limestone Formation, Middle Jurassic, England. The three hardgrounds, from Cowthick, Castle Bytham and Leadenham quarries, developed in tidal-inlet, on-barrier and lagoonal sub-environments of a carbonate barrier-island complex. At Cowthick early composite (acicular-bladed) radial-fibrous cements, which pre-date aragonite dissolution, completely fill intergranular pore-space at the hardground surface; away from it isopachous fringing cements decrease in thickness. Microprobe analyses demonstrate zoning within the fringes with magnesium concentrations (> 2 wt % MgCO3) higher than those in allochems or later, ferroan cement (?0.5 wt % MgCO3, 1.7 wt % FeCO3). At Castle Bytham early granular isopachous cements, which post-date aragonite dissolution, occur within 5 cm of the surface. At Leadenham early lithification is superficial and represented by ferruginous crusts and micritic internal sediment. Late blocky cement fills residual pore-space in all three examples. Carbon and oxygen isotopic composition of whole-rock samples taken at intervals away from each hardground surface demonstrate the increasing proportion of late 18O depleted cements (δ18O – 8 to – 10). Early cements must have a marine isotopic composition; different δ18O values from each hardground reflect the intensity of early lithification and exclusion of late cements at the hardened surface. There is no isotopic evidence for subaerial cement precipitation during possible emergence at Castle Bytham. Oyster samples (with δ18O, – 2.9 and δ13C, 2.4) give estimated palaeotemperatures of 22–25°C. Early cements from Cowthick are enriched in 18O and 13C (δ18O = 0 δ13C ? 3‰) compared to the oyster values. In conjunction with trace element data this is interpreted as evidence for high-magnesium calcite precursor cements which underwent replacement in a system with a low water: rock ratio. The intensity of early lithification is related to depositional environment: maximum circulation of sea-water producing the most lithified hardground (Cowthick). This is directly analogous to the formation of Recent hardgrounds.  相似文献   

2.
《Cretaceous Research》1987,8(2):103-140
Early diagenetic lithification of calcarenites on the sea floor led to the development of a variety of hardgrounds, intraformational conglomerates, breccias and boulder beds in southwest England during late Albian and Cenomanian time. Cemented nodules commonly developed below the sea floor, and these were avoided by burrowing infauna. In some instances the nodules were exhumed and reworked on the sea floor to form distinctive intraformational conglomerates; exposed nodules frequently became bored and encrusted by organisms and mineralised by glauconite and phosphate. In other cases, sea floor cementation produced true hardgrounds whose upper surfaces were affected by the same processes, but the hardened layers were only a few tens of centimetres thick and were underlain by soft sediment. Fracturing and brecciation of some hardground layers occurred through differential compaction and through undermining and collapse as the result of burrowing and erosion beneath the hardened layer. Reworking of clasts produced in this manner yielded intraformational breccias. Petrographic analysis reveals multiple generations of carbonate cement, commonly beginning with syntaxial overgrowths on echinoderm fragments and “dog tooth” spar on polycrystalline carbonate grains. A progression exists in the Albian-Cenomanian succession of southwest England from relatively simple hardgrounds and intraformational conglomerates low in the sequence up into complex hardgrounds that may record many stages of sediment accretion, cementation, mineralisation and erosion. This progression appears to record increasing water depths and increased sea floor diagenesis.  相似文献   

3.
Diagenetic history of a North Sea chalk   总被引:1,自引:0,他引:1  
A study of the petrofabrics of Danian and uppermost Maastrichtian chalk from the North Sea was undertaken to investigate its particulate components and diagenetic history. Danian and Maastrichtian chalks are intensely mottled and burrowed globi-gerinid lime mudstones. The Danian chalk matrix is composed of coccolith and thoracosphaerid debris, whereas the Maastrichtian chalk matrix contains mainly coccoliths. The lower part of the Danian is often argillaceous. Three modes of lithification are evident—a spot-welding of adjacent grains (important in Danian chalk), selective overgrowths (prolific in Maastrichtian chalk), and a sparry calcite pore filling associated with Maastrichtian stylolitization. Not only does the scant cementation of chalk stem from an inadequate source of metastable calcium carbonate in the form of aragonite, but also indirectly in that extensive pressure-solution is impeded by certain pore fluid compositions. Pressure-solution can occur only at point contacts where a threshold linear pressure is exceeded and so allows an increase in calcite solubility. It is proposed that through the formation of spot-welds an initial rigid intergranular framework is constructed in chalk relatively early during diagenesis. Subsequent increases in overburden eventually permit extensive stylolitization and the late diagenetic reprecipitation of a sparry calcite pore filling adjacent to stylolites. The time and genesis of selective overgrowths is less clear.  相似文献   

4.
Although it is a pelagic sediment, fine-grained calcareous ooze may be mobilized prior to general lithification and redeposited as allochthonous units. Numerous occurrences of allochthonous chalk have been reported in recent years, having been recognized by large-scale bedding features seen in outcrop. Smaller-scale internal features, such as contorted laminae, and larger features, such as smeared burrows and imbricated flint nodules, attest to a significant amount of soft-sediment deformation and synsedimentary slumping in European chalk sections of Late Cretaceous age. Truly autochthonous chalks contain complex, tiered ichnofabrics and in some cases exhibit a diagenetic nodular fabric that is undisturbed by transport. In some situations, such as stagnant water conditions, autochthonous chalks may exhibit primary lamination, although this is very uncommon in European chalk sequences. Different types of redepositional processes produce an array of varied allochthonous fabrics. Glide and slump units, for example, contain internal deformational features produced during sliding. Ooze flow causes plastic deformation of chalk units, internally as well as externally. Resuspension and fluid flow of chalk sediment produces a deposit having a totally new fabric, such as a conglomerate composed of detrital chalk clasts. In this paper, typical macroscopic, sedimentary fabric types are illustrated, and the means of identifying them are discussed in terms of bioturbation features, in situ diagenetic nodules versus detrital clasts, physical deformation structures and development of flints.  相似文献   

5.
Modern cemented intervals (beachrock, firmgrounds to hardgrounds and concretionary layers) form in the lagoon and intertidal sabkha of Abu Dhabi. Seafloor lithification actively occurs in open, current-swept channels in low-lying areas between ooid shoals, in the intertidal zone of the middle lagoon, some centimetres beneath the inner lagoonal seafloor (i.e. within the sediment column) and at the sediment surface the intertidal sabkha. The concept of ‘concretionary sub-hardgrounds’, i.e. laminar cementation of sediments formed within the sediment column beneath the shallow redox boundary, is introduced and discussed. Based on calibrated radiocarbon ages, seafloor lithification commenced during the Middle to Late Holocene (ca 9000 cal yr bp ), and proceeds to the present-day. Lithification occurs in the context of the actualistic relative sea-level rise shifting the coastline landward across the extremely low-angle carbonate ramp. The cemented intervals are interpreted as parasequence boundaries in the sense of ‘marine flooding surfaces’, but in most cases the sedimentary cover overlying the transgressive surface has not yet been deposited. Aragonite, (micritic) calcite and, less commonly, gypsum cements lithify the firmground/hardground intervals. Cements are described and placed into context with their depositional and marine diagenetic environments and characterized by means of scanning electron microscope petrography, cathodoluminescence microscopy and Raman spectroscopy. The morphology of aragonitic cements changes from needle-shaped forms in lithified decapod burrows of the outer lagoon ooidal shoals to complex columnar, lath and platy crystals in the inner lagoon. Precipitation experiments provide first tentative evidence for the parameters that induce changes in aragonite cement morphology. Data shown here shed light on ancient, formerly aragonite-cemented seafloors, now altered to diagenetic calcites, but also document the complexity of highly dynamic near coastal depositional environments.  相似文献   

6.
H. ZANKL 《Sedimentology》1969,12(3-4):241-256
SUMMARY
Absence of compaction, intraformational breccias, resedimention, internal sediments and synsedimentary hardgrounds indicate early lithification of finegrained carbonate rocks. One of the factors controlling early lithification is the purity of lime mud. Less than 2% of insoluble residue (especially clay minerals) favours cementation and recrystallisation before further sediment accumulation causes compaction. Thus, early lithification is terminated in or near the environment of sedimentation. "Electrodiagenesis" is considered to be a possible mechanism for cementation.  相似文献   

7.
Hardground discontinuities within carbonate platforms form important stratigraphic surfaces which can be used at basin scale to correlate sequence boundaries. Although these surfaces are commonly used in sequence strati‐graphy, the timing and duration of hardground lithification and the crystallization of early cements remain unexplored. Here, early calcite cements were dated by U‐Pb geochronology for five Jurassic hardgrounds, interpreted as third‐order sequence boundaries, situated within a well‐constrained petrographic, sedimentological and stratigraphic framework. The consistency or the slight deviation between the age of the cements and the stratigraphic age of deposition of the formations illustrate that cementation occurred early in the diagenetic history. The ages obtained on dogtooth cements, replacing aragonite in gastropod shells and pendant cements in intergranular spaces, match those of the standard Jurassic biostratigraphic ammonite Zones, making calcite U‐Pb geochronology a promising method for dating third‐order sequence boundaries of depositional sequences and refining the Jurassic time scale in the future.  相似文献   

8.
The Upper Turonian Chalk Rock occurs within a nodular unit within the otherwise generally soft, white chalk that dominates the English Upper Cretaceous. The nodular unit is condensed, and contains a number of hardgrounds that are designated here as the Chalk Rock Formation. The Chalk Rock contains some seven or eight hardgrounds, most of which are lithologically distinctive and can be traced over distances of up to 250 km. Nine beds within the Chalk Rock are named, comprising six hardgrounds and three marl seams. The lowermost widespread hardground appears to be more or less equivalent to the “Spurious Chalk Rock” of the south coast of England. In two areas the thickness of the Chalk Rock is greatly diminished. The most marked area, in west Wiltshire, is located close to the Palaeozoic Mendip Hills and indicates that the Mendip structure has influenced Turonian sedimentation. The other region of thinning is a platform-like area in the eastern Chiltern Hills WNW of London.  相似文献   

9.
Metre-scale lithologic cycles, visible in core and on logs from Maastrichtian chalks of the Dan Field, were examined to determine their mechanisms of deposition and relation to hydrocarbon production. The lower parts of cycles consist of porous, cream-coloured, largely non-stylolitic, commonly laminated chalk with limited bioturbation (mainly escape burrows). Cycles are capped by thinner intervals of white to grey, hard, stylolitic chalk with concentrations of bioclastic material, intense burrowing and few preserved primary sedimentary structures. The cycle caps contain nearly twice as much Mg as compared to the more porous parts of cycles and also have slightly larger δ18O values (?4·1‰ for the caps; ?4·4‰ for porous zones). There is a significant reduction of average cycle thickness, as well as total thickness of the Maastrichtian chalk section, from SW to NE across the Dan Field. The cycle thinning largely results from a reduced thickness of porous chalks from the lower parts of cycles and thus is reflected in lower average porosity and permeability on the NE side of the field. These data indicate that episodic winnowing removed fine-grained constituents from highstanding northeastern areas. Porous cycle bases were deposited at relatively high rates that precluded complete bioturbation; preserved laminae, coupled with escape burrows, reflect episodic sediment influx in areas that flank the seafloor highs. Cycle tops apparently accumulated more slowly (throughout the region, but especially on seafloor highs), perhaps because of reduced productivity of planktic organisms. Slower sedimentation allowed more complete bioturbation and destruction of sedimentary structures, and also led to incipient high-magnesium calcite seafloor cementation (sufficient to yield firmer sediment and enhanced burrow preservation, but not to form true hardgrounds). Thus, the elevated magnesium contents and reduced porosity of the cycle caps reflect very early diagenetic processes that were only partially modified by burial diagenesis. Rates of chalk deposition, as inferred from physical and geochemical evidence, appear to be a significant control on reservoir characteristics in North Sea chalks. The highest average porosities and permeabilities are found in areas with the highest sediment accumulation rates where seafloor diagenesis is minimized. Topographic depressions at the time of sedimentation can thus be expected to have the best production characteristics, and synsedimentary topographic highs should have the thinnest sections and the poorest petrophysical properties.  相似文献   

10.
Phosphorite concretions are recorded for the first time within the lower part of the Umm Rijam Chert Limestone Formation (Eocene) in the Ma'an area, southern Jordan. The phosphorite concretions are typically hosted and encountered as individual layer in moderately lithified sediments of marl, chalk and chalky marl. The phosphorite concretions are present in thin layer (10–30 cm thick). They are localized on a hardground surface that formed as a result of cementation of soft ground by bioclastic materials. Light grey and brownish to black colors are encountered with isometric, ellipsoid, elongated, subangular to subrounded phosphorite concretions (up to 6 cm in length). Most of the phosphorite concretions preserve bioturbation structures; they also include fecal pellets of various sizes. The main biogenic components are fragments of macrofossils (bivalves) and microfossils (planktonic foraminifera) in different proportions. Petrographic examinations reveal that the phosphorite concretions are composed of cryptocrystalline apatite that characteristically appears in cross-polarized light almost as isotropic phosphate and minor anisotropic phosphate. Apatite and calcite are the main mineral constituents of the phosphorite concretions identified by XRD. The apatite is identified as francolite (carbonate-flour-apatite). Chemical analyses of the phosphorite concretions using X-ray florescence indicate that the P2O5 content ranges from 18.8 to 31.19%, whereas SEM–EDS analyses indicate that the phosphorus proportion is around 14% by volume. It could be argued that the phosphorite concretions were transported after being reworked, or were derived from carbonate and chalk pebbles that were later phosphatized and subjected to erosion, forming residual lag deposit along the hardground surface.  相似文献   

11.
Chalks originate as Cretaceous to Recent pelagic or hemipelagic calcareous ooze, which indurate via burial diagenesis to chalk and limestone. Because they accumulate in pelagic settings with high environmental continuity, chalks may form thick formations and even groups. For this reason, and because chalks have a simple mineralogy (low magnesium calcite, silica and clays), they are ideal for the study of diagenetic processes including the depth-related decrease of porosity. It is the aim of this study to illustrate how the evaluation of in situ elastic strain can help in understanding these processes including the interplay between stress-controlled diagenetic processes and processes furthered by thermal energy. Petrophysical core and well data can be used for analyses of how porosity reduction via pore collapse and pressure dissolution is related to in situ elastic strain. The data in question are: depth, density of overburden, pore pressure, ultrasonic P-wave velocity and dry density/porosity. The analysis reveals that the transition from ooze to chalk is associated with high elastic strain and consequent pressure dissolution at calcite–particle contacts causing contact cementation. The transition from chalk to limestone is also associated with high elastic strain, especially at clay–calcite interphases causing development of stylolites via pressure dissolution, and consequent pore-filling cementation. Following each transformation the elastic strain drops rapidly. The observation of this diagenesis-related pattern in elastic strain of the sedimentary rock is novel and should not only be helpful in understanding the porosity development in sedimentary basins, but also add basic scientific insight.  相似文献   

12.
Matrix micrites are a commonly used carbonate archive for the reconstruction of past environmental parameters, but one that is submitted to known limitations. Main reasons for the often ambiguous value of many micrite-based isotope data sets are the unknown origin of the micrite components and their poorly resolved diagenetic history. Here we present carbon and oxygen-isotope data retrieved from Oxfordian to Tithonian Ammonitico Rosso nodular micrites sampled from three sections in the Betic Cordillera (Southern Spain). All three sections were correlated and sampled using a rigorous biostratigraphic framework. A noteworthy feature is that analyzed matrix micrites are more conservative in terms of their isotopic composition than other carbonate materials commonly considered to resist diagenetic alteration under favourable circumstances. Remarkably, this refers not only to δ13C ratios, which reflect the typical Late Jurassic global trend, but also to δ18O ratios that range around 0.3‰. The 18O-enriched oxygen-isotope ratios are considered to represent diagenetic stabilization of carbonate ooze under the influence of marine porewaters within the sediment–water interphase (i.e., the immature sedimentary section, usually submitted to biogenic activity). This interpretation agrees with the very early lithification of micrite nodules with cements precipitated from marine porewaters, enriched by the dissolution of aragonite skeletals (i.e., ammonite shells). According to the model proposed, low sedimentation rates as well as rapid early marine differential cementation, under the influence of currents and seawater pumping, affected the sediment–water interphase of epioceanic swells where deposition resulted in early lithified Ammonitico Rosso facies. The data obtained show that special care must be taken to prevent oversimplified interpretations of carbonate archives, particularly in the context of epioceanic settings.  相似文献   

13.
MARK QUINE  DAN BOSENCE 《Sedimentology》1991,38(6):1113-1152
Unusual lenticular stratal geometries and facies of the Upper Cretaceous Chalk of coastal Haute Normandie, France, are described and interpreted. Thirteen facies within these chalks are described and illustrated on the basis of field, thin-section and SEM investigations: nannofossil mudstones, nannofossil hardgrounds, echinoderm wackestones and packstones, echinoderm hardgrounds, bryozoan mudstones and wackestones, bryozoan hardgrounds, bryozoan packstones and wackestones, inoceramid wackestones, inoceramid hardgrounds, sponge hardgrounds, marly chalks, conglomeratic chalks and debris flow chalks. These facies occur within lenticular bedded structures with both concave-up and concave-down geometries which have been previously interpreted as megaripples, mud mounds or tectonic structures. Detailed examination of the structures and the associated facies indicates that the concave-up geometries were formed from submarine erosion, and redeposition in NW-SE longitudinal channels. The concave-down geometries developed between adjacent channels. Assessment of the regional and temporal setting indicates that the erosion occurred in the Armorican-Cornubian straits of the Anglo-Paris Basin during sea-level lowstands. Within these straits channelling is preferentially developed on the positive, south-western block to the Lillebonne-Fécamp-Cotentin Fault.  相似文献   

14.
The limestone succession of the Middle Ordovician Volkhov Formation in the St. Petersburg region (Russia) exposes numerous horizons with firm- and hardgrounds below omission surfaces, which contain trace fossils attributable to the ichnogenus Balanoglossites Mägdefrau, 1932. Although known from the literature since 75 years, such trace fossils were previously only informally described as “Korrosionsgruben”, “Karandashi”, or ascribed to different ichnotaxa such as Trypanites, Arenicolites and Pseudopolydorites. Owing to their complexity and often high bioturbation density, the morphology of these trace fossils is difficult to capture. Ichnofabrics containing Balanoglossites triadicus were studied in detail from sawn rock faces, broken rock blocks and sectioned slabs, including those from historical buildings in St. Petersburg. Accordingly, different trace-fossil elements can be revealed in dependence on the original substrate consistency, reflecting various stages of lithification: Mineral-stained and Trypanites-perforated hardground surfaces are bioeroded with long elongated grooves which are assigned to the ichnogenus Sulcichnus. Subtle openings lead into the partly lithified limestone where they branch into complex galleries of B. triadicus. They are characterized by J-, U- and Y-shaped shafts and multiply branched tunnels, which gradually continue into the underlying firmground. Other portions of the ichnofabric only exhibit biodeformational structures or the strongly compacted and branched burrow networks Labyrintichnus, which is due to the original soft sediment consistency. Balanoglossites ichnofabrics demarcate certain omission surfaces within the Dikari Limestone and can be traced for more than 300 km, supporting the regional lithostratigraphical correlation. The trace maker of B. triadicus and related trace fossils is interpreted to be a eunicid polychate with the ability to bioerode and burrow the sediment. The studied material from the Ordovician is similar to the Balanoglossites from the type area, the Triassic of Germany, in many respects. B. triadicus is a very common trace fossil in Ordovician and other Palaeozoic rocks of Baltoscandia and North America but so far has been seldom identified as such but instead is commonly confused with Thalassinoides, from which, however, it differs in several aspects.  相似文献   

15.
Early diagenetic phosphate cements are described from the Albian condensed glauconitic limestone of the Tatra Mountains, Western Carpathians with regard to their macro- and micromorphology, distribution, classification, and genesis. The cements occur within stratigraphically condensed semi-pelagic foramini-feral-glauconitic layers and are associated with mature hardgrounds within the Tatra Albian limestone. Phosphate cement fabrics consist of crypto- to microcrystalline carbonate-fluorapatite, and they occur as: (i) rim envelopes, (ii) infillings of intraparticle porosity, (iii) rim cement, (iv) multiple rim cement, (v) palisade fabric and (vi) cluster cement. Micromorphological variability of the cement fabrics results from varying texture of the cemented sediment, the nature of original porosity, as well as from presence of associated microbial fabrics. The microbial fabrics are interpreted as fossilized coccoid cyanobacteria. Phosphate cementation developed under peculiar early diagenetic conditions within semi-closed microenvironments rich in organic matter in the marine phreatic environment. The cementation contributed to the formation of phosphatic fossils and hardgrounds. The accretion of the cements was due to concentration of biologically uptaken phosphorus near the sediment/water interface, enrichment of pore fluids with respect to phosphate, and its precipitation within restricted microenvironments. Phosphate cementation post-dated seafloor formation of pelletal glauconite but predated partial decomposition of organic matter as well as dissolution or neomorphism of aragonite and high-Mg calcite. Phosphate cementation occurred on a carbonate platform following the submersion of Urgonian reefal build-ups. Episodes of phosphate cementation were repeated during the sedimentation of the Tatra Albian limestone as a response to rapid relative sea-level rises and increased influence of nutrient-rich Tethyan waters.  相似文献   

16.
The Abrakurrie Limestone is an areally extensive, bryozoan-rich unit within the Eucla Platform, a Tertiary carbonate shelf which caps the central part of the southern Australian continental margin. The onshore portion, the topic of this study, has been exposed since middle Miocene time and lies beneath the Nullarbor Plain. The rocks are fine-sand- to granule-sized calcarenites, composed of bryozoans, bivalves, benthic foraminifera and echinoids with lesser numbers of brachiopods, solitary corals and serpulids. They conspicuously lack significant numbers of planktonic foraminifera and coralline algae. Most bryozoan remains are from delicate branching cyclostomes although delicate branching, robust branching, foliose, fenestrate, multilaminar encrusting and free-living cheilostomes are variably abundant in specific units. The poorly lithified sequence is punctuated by well-cemented layers with erosional tops, which are interpreted as hardgrounds. The limestone is interpreted as a cool-water, deep shelf deposit which accumulated in water depths generally greater than 50 m on the inner part of the Eucla Platform. A model which involves deposition and cementation on a carbonate shelf swept by open ocean swells is proposed to explain the style of sedimentation. The shelf is envisaged as partitioned by the depth of the zone of wave abrasion. Sediments were produced throughout, but accumulated only below this depth. When the seafloor was above this depth it was an environment of cementation and erosion. The vertical sequence correlates in a general way with the global sea-level model for the mid-Cenozoic. While accumulation rates for southern Australian carbonates are similar to rates of cool-water carbonate deposition elsewhere (c. 2.5 cm kyr-1), the rate of Abrakurrie accumulation is much less, suggesting that significant time periods are represented by the hardgrounds.  相似文献   

17.
Middle and Upper Eocene biogenic sediments in the Willunga Embayment along the eastern margin of the St Vincent Basin are a series of warm‐temperate limestones, marls and spiculites. The Middle Eocene Tortachilla Limestone is a thin, coarse grained, quartzose, biofragmental, bryozoan–mollusc calcarenite of stacked metre‐scale depositional cycles with hardground caps. Lithification, aragonite dissolution and the filling of moulds by sediment and cement characterize early marine‐meteoric diagenesis. Further meteoric diagenesis at the end of Tortachilla deposition resulted in dissolution, Fe‐oxide precipitation and calcite cementation. The Upper Eocene Blanche Point Formation is composed of coccolith and spiculite marl and spiculite, all locally rich in glauconite, turritellid gastropods and sponges. Decimetre‐scale units, locally capped by firmgrounds, have fossiliferous lower parts and relatively barren upper parts. Carbonate diagenesis is minor, with much aragonite still present, but early silicification is extensive, except in the spiculite, which is still opal‐A. All depositional environments are interpreted as relatively shallow water: high energy during the Middle Eocene and low energy during the Upper Eocene, reflecting the variable importance of a basin‐entrance archipelago of carbonate highs. Marls and spiculites are interpreted to have formed under an overall estuarine circulation system in a humid climate. Basinal waters, although well mixed, were turbid and rich in land‐derived nutrients, yet subphotic near the sea floor. These low‐energy, inner‐shelf biosiliceous sediments occur in coeval environments across other parts of Australia and elsewhere in the rock record, suggesting that they are a recurring element of the cool‐water, carbonate shelf depositional system. Thus, spiculites and spiculitic carbonates in the rock record need be neither deep basinal nor polar in origin. The paradox of a shallow‐water carbonate–spiculite association may be more common in geological history than generally realized and may reflect a characteristic mid‐latitude, humid climate, temperate water, palaeoenvironmental association.  相似文献   

18.
Large scale sedimentary structures present in the Upper Turonian to Santonian chalks of Haute Normandie (northern France) represent the remains of a carbonate bank complex which formerly extended over an area of at least 1500 km2. Cliff exposures along the Channel coast from St Valéry-en-Caux to Cauville and along the Seine from Sandouville to Lillebonne show sections of banks up to 50 m high and 1500 m across, their internal structures picked out by hardgrounds, nodular chalks and horizons of burrow flint. Associated with banks are slump sheets up to 20 m thick, slump scars, sedimentary breccias, injection phenomena and faults contemporaneous with sedimentation. Later diagenetic features include extensive dolomitization and silicification. These structures compare closely with the Waulsortian banks of the Palaeozoic, and bryozoan bioherms known from the Upper Cretaceous and Palaeocene of Denmark. Frame-building, sediment trapping and stabilizing organisms are absent, and bank development and stabilization was probably due to a plant covering, either algal or of marine angiosperms. Banks generated much of their own sediment, whilst a pelagic constituent (calcareous nannofossils and Foraminiferida) is also present. The distribution of the bank complex is related to a basement controlled swell area, whilst the life of the complex was limited to a relatively shallow water, regressive episode in the predominantly transgressive Upper Cretaceous history of the region. Les falaises littorales du Pays de Caux comprises entre Antifer et St Valèry-enCaux, et les affleurements de la basse vallée de la Seine permettent d'observer des formations du Turonien supérieur-Sénonien inférieur qui présentent des stratifications irrégulières soulignées par de nombreux hardgrounds, des horizons de craie noduleuse et des cordons de silex. Ces structures sont identifiées à des accumulations de calcilutite et calcarénite sous forme de bancs sous-marins dont la hauteur peut atteindre 50 m et qui couvrent une surface supérieure à 1500 km2; ils apparaissent au-dessus de hardgrounds subhorizontaux qui indiquent un haut-fond régional stable. Des glissements sous-marins sont associés à ces bancs et engendrent des niveaux avec des déformations souples atteignant 20 m d'épaisseur. Des brèches apparaissent localement et contiennent des blocs basculés de hardgrounds fragmentés lors du glissement; on y observe aussi de petites failles intrasédimentaires et des phénomènes d'injection. Aucun organisme constructeur ou capable de piéger et retenir le sédiment n'a été observé. La stabilisation de ces bancs serait due à une couverture végétale (algues ou angiospermes marines) dont on sait qu'elle peut disparâitre sans laisser de trace lors de la fossilisation. La croissance de ces bancs serait réalisée par un apport de sédiment comprenant une part de nourrissage autochtone comme cela existe pour les bancs récents en eau peu profonde, associée au dépôt d'une fraction pélagique.  相似文献   

19.
Interrelations between glauconite and calcite cement are added to different indicators of preservation of early diagenetic phenomena in Lower Ordovician limestones of Sweden. The interrelations briefly discussed are, 1. glauconite postdating calcite cement in an early fracture filling, 2. glauconite postdating and coeval with calcite cement in the central cavity of sponge spicules, 3. glauconite intergrown with calcite single crystals, 4. calcite cement grown pari passu with shrinkage of glauconite grains, 5. relics of (resedimented?) calcite cement enclosed in glauconitic hardground crusts, 6. calcite cement enclosed in slumped massive glauconitite.  相似文献   

20.
Burial diagenesis of chalk is a combination of mechanical compaction and chemical recrystallization as well as cementation. We have predicted the characteristic trends in specific surface resulting from these processes. The specific surface is normally measured by nitrogen adsorption but is here measured by image analysis of scanning electron micrographs. This method concentrates on the micritic matrix alone. Deep-sea sediments are ideally suited to the study of burial diagenesis because they accumulate in a relatively conservative tectonic setting. We used material from the Ontong Java Plateau in the Pacific, where a > 1 km thick package of chalk facies sediments accumulated from the Cretaceous to the present. In the upper 200–300 m the sediment is unconsolidated carbonate ooze, throughout this depth interval compaction is the principal porosity reducing agent, but recrystallization has an equal or larger influence on the textural development. In the chalk interval below, compaction is not the only porosity reducing agent but it has a larger influence on texture than concurrent recrystallization. Below 850 m grain-bridging cementation becomes important resulting in a lithified limestone below 1100 m. This interpretation is based on specific surface data alone, and modifies current diagenetic models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号