首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Paleomagnetic data from 46 sites (674 specimens) of the Westcoast Crystalline Gneiss Complex on the west coast of Vancouver Island using AF and thermal demagnetization methods yields a high blocking temperature WCB component (> 560°C) with a pole at 335°W, 66°N (δp = 4°, δm = 6°) and a lower coercivity WCA component ( 25 mT, < 500°C) with a pole at 52°W, 79°N (δp = 7°, δm = 8°). Further thermal demagnetization data from 24 sites in the Jurassic Island Intrusions also defines two high blocking temperature components. The IIA component pole is at 59°W, 79°N (δp = 7°, δm = 8°) and IIB pole at 130°W, 73°N (δp = 12°, δm = 13°). Combined with previous data from the Karmutsen Basalts and mid-Tertiary units on Vancouver Island and from the adjacent Coast Plutonic Complex, the geotectonic motions are examined for the Vancouver Island segment of the Wrangellian Subterrane of composite Terrane II of the Cordillera. The simplest hypothesis invokes relatively uniform translation for Terrane II from Upper Triassic to Eocene time producing 39° ± 6° of northward motion relative to the North American craton, combined with 40° of clockwise rotation during the Lower Tertiary.  相似文献   

2.
Notes on the variation of magnetization within basalt lava flows and dikes   总被引:2,自引:0,他引:2  
Summary The magnetic properties of basaltic rocks are dominated by the contained primary Fe–Ti oxides. At solidus temperature (1000°C) the composition of these primary oxides is restricted to titanomagnetite (Fe3-xTixO4) and hemoilmenites (Fe2-yTiyO3). The examination of 269 chemical analyses of the primary Fe–Ti oxides in basalts (in sensu lato) gives an average ofx=0.61 (T c=168°C) for the titanomagnetites andy=0.89 (T c=–121°C) for the hemoilmenites. If distinction is made between tholeiites, alkali basalts and andesites, a clear difference for thex-values is observed: the average for tholeiitesx=0.64 (T c=144°C), for alkali basaltsx=0.52 (T c=253°C), for andesitesx=0.38 (T c=341°C).Environment of crystallization and cooling rate are major interrelated factors influencing subsequent changes in the mineralogy of the primary Fe–Ti oxides and resulting magnetic properties. This has been tested by studying the variation of magnetization and some of its parameters in three different basalt rock units: a dike, 180 cm, and two lava flows, 3 m and 33 m thick, respectively. Grain size and oxidation state of the titanomagnetites control the variation of magnetization in these basalt units.  相似文献   

3.
The oxide mineralogy and magnetic properties were examined in a suite of fifteen olivine-normative diabase dike samples from western South Carolina in an attempt to elucidate their magnetic petrology. Titanomagnetite (1–2 vol.%) is the dominant Fe-Ti oxide mineral. Ilmenite and secondary magnetite are generally present in very minor amounts. Chromite constitutes up to 0.5 vol.%; its abundance and composition correlate with bulk rock Cr. Various types of fine-scale microstructure are evident in titanomagnetite crystals. The most important are patterned anisotropism and the development of trellis-type ilmenite lamellae. Microprobe analyses indicate: (1) titanomagnetite compositions, x, are mostly between 0.4 and 0.55, and (2) low analytical totals are characteristic of most titanomagnetites. Curie temperatures of the diabases are 500–540°C, which are several hundred degrees higher than predicted from the observed titanomagnetite x's (150–300°C). We attribute these higher Curie temperatures to oxidation of the titanomagnetites, which has produced “titanomaghemites” having visible microstructure and yielding low analyses (because they are cation deficient). Natural remanence magnetization and REM (ratio of natural remanence to saturation remanence) vary between 4 and 100 × 10−4 A m2 kg−1 and 0.0019 and 0.032, respectively. These properties inversely correlate with Cr content and demonstrably contrast Cr-rich and Cr-poor samples. Initial susceptibility, saturation magnetization and coercivity values show a two- to three-fold range. Variations in initial susceptibility and coercivities appear to be largely related to the type and extent of oxidation-induced microstructure in the titanomagnetites.  相似文献   

4.
Summary The magnetic properties of some dykes from Mysore State, India, have been studied in detail. The rocks were found to have aQ n ratio varying from 1.5 to 11.6, a remanent coercive force varying from 100 to 250 Oersteds, Curie temperature varying from 250 to 480°C and were found to have lamellae of ilmenite oriented in (111) plane of magnetite. The stable natural remanent magnetization of the rock seems to be of TRM origin with titanomagnetite and low grade titanomaghemite being the main carrier of remanent magnetization.N.G.R.I. Contribution No. 70-215.  相似文献   

5.
A series of experiments and petrographic analyses have been run to determine the pre-eruption phase equilibria and ascent dynamics of dacitic lavas composing Black Butte, a dome complex on the flank of Mount Shasta, California. Major and trace element analyses indicate that the Black Butte magma shared a common parent with contemporaneously erupted magmas at the Shasta summit. The Black Butte lava phenocryst phase assemblage (20 v.%) consists of amphibole, plagioclase (core An77.5), and Fe–Ti oxides in a fine-grained (< 0.5 mm) groundmass of plagioclase, pyroxene, Fe–Ti oxides, amphibole, and cristobalite. The phenocryst assemblage and crystal compositions are reproduced experimentally between 890 °C and 910 °C, ≥ 300 MPa, XH2O = 1, and oxygen fugacity = NNO + 1. This study has quantified the extent of three crystallization processes occurring in the Black Butte dacite that can be used to discern ascent processes. Magma ascent rate was quantified using the widths of amphibole breakdown rims in natural samples, using an experimental calibration of rim development in a similar magma at relevant conditions. The majority of rims are 34 ± 10 μm thick, suggesting a time-integrated magma ascent rate of 0.004–0.006 m/s among all four dome lobes. This is comparable to values for effusive samples from the 1980 Mount St. Helens eruption and slightly faster than those estimated at Montserrat. A gap between the compositions of plagioclase phenocryst cores and microlites suggests that while phenocryst growth was continuous throughout ascent, microlite formation did not occur until significantly into ascent. The duration of crystallization is estimated using the magma reservoir depth and ascent rate, as determined from phase equilibria and amphibole rim widths, respectively. Textural analysis of the natural plagioclase crystals yields maximum growth rates of plagioclase phenocryst rims and groundmass microlites of 8.7 × 10− 8 and 2.5 × 10− 8 mm/s, respectively. These rates are comparable to values determined from time-sequenced samples of dacite erupted effusively from Mount St. Helens during 1980 and indicate that syneruptive crystallization processes were important during the Black Butte eruptive cycle.  相似文献   

6.
Iron ore and host rocks have been sampled (90 oriented samples from 19 sites) from the Las Truchas mine, western Mexico. A broad range of magnetic parameters have been studied to characterize the samples: saturation magnetization, Curie temperature, density, susceptibility, remanence intensity, Koenigsberger ratio, and hysteresis parameters. Magnetic properties are controlled by variations in titanomagnetite content, deuteric oxidation, and hydrothermal alteration. Las Truchas deposit formed by contact metasomatism in a Mesozoic volcano-sedimentary sequence intruded by a batholith, and titanomagnetites underwent intermediate degrees of deuteric oxidation. Post-mineralization hydrothermal alteration, evidenced by pyrite, epidote, sericite, and kaolin, seems to be the major event that affected the minerals and magnetic properties. Magnetite grain sizes in iron ores range from 5 to >200 μm, which suggest dominance of multidomain (MD) states. Curie temperatures are 580±5°C, characteristic of magnetite. Hysteresis parameters indicate that most samples have MD magnetite, some samples pseudo-single domain (PSD), and just a few single domain (SD) particles. AF demagnetization and IRM acquisition indicate that NRM and laboratory remanences are carried by MD magnetite in iron ores and PSD–SD magnetite in host rocks. The Koenigsberger ratio falls in a narrow range between 0.1 and 10, indicating the significance of MD and PSD magnetites.  相似文献   

7.
Rock magnetic investigations of Permo-Carboniferous carbonate sediments from two areas on Spitsbergen are described, conducted to identify the carriers of the NRM in these rocks. Since microscopic and magnetic separation techniques could not profitably be applied, the nature of magnetic minerals was investigated by thermal demagnetization of the NRM and decay of saturation isothermal remanence (Irs) during heating to 600°C, as well as by the distribution of the median destructive fields of the NRM and observation of magnetic susceptibility after subsequent heatings. The results show that the NRM of these limestones resides mainly in magnetite, but creation of magnetic pyrrhotite and of fresh magnetite is observed during heating to 600°C. Presence of sulphides indicates that magnetite is an oxidation product of pyrite or of non-magnetic pyrrhotite. Examination of rock magnetic properties of limestones leads to the conclusion that most of the magnetite in the rocks of the Bellsund area is of detrital origin, whereas the rocks at Festningen contain magnetite derived from pyrite probably during an early stage of the diagenetic process.  相似文献   

8.
Magnetic carriers in remagnetized Cretaceous granitic rocks of northeast Japan were studied using paleomagnetism, rock magnetism, optical microscopy and scanning electron microscopy (SEM) by comparison with unremagnetized granitic rocks. The natural remanent magnetization (NRM) of the remagnetized rocks is strong (0.3–1.7 A/m) and shows a northwesterly direction with moderate inclination (NW remanence), whereas the unremagnetized rocks preserve weak NRM (<0.5 A/m) with westerly and shallow direction (W remanence). Although thermal demagnetization shows that both NRMs are carried by magnetite, the remagnetized rocks reveal a higher coercivity with respect to alternating field demagnetization (20 mT相似文献   

9.
The equilibrium distribution of CO2H2O fluids in synthetic rock samples (principally dunite and quartzite) has been characterized by measurements of the dihedral wetting angle, θ, resulting from 5-day annealing periods at 950–1150°C and 1 GPa. For fluids in equilibrium with polycrystalline quartz, θ varies systematically from 57° for pure H2O to 90° at XCO2 0.9. Similarly, for San Carlos olivine, θ varies from 65° for pure H2O to 90° at XCO2 0.9. The addition of solutes (NaCl, KCl, CaF2, Na2CO3) to H2O causes a major decrease in θ in the quartz/fluid system (to values as low as 40°), but has no effect on fluid wetting in dunite. Reconnaissance experiments on other mono- and polymineralic aggregates indicate universally high wetting angles (θ 60°) in upper mantle assemblages and for CO2 in felsic compositions. For diopside + H2O, θ 80°, with large variation due to crystalline anisotropy. In no case does θ approach 0°, the condition necessary for fluid to be present along all grain boundaries.Because a value of θ greater than 60° precludes the existence of an interconnected fluid phase in a rock, our results have important implications not only for fluid transport but also for the physical properties of the bulk fluid/rock system. Any static fluid present in the upper mantle must exist as isolated pores located primarily at grain corners, and transport can occur only by hydrofracture. In the continental crust, aqueous fluids (especially saline ones) are likely to form an interconnected network along grain edges, thus contributing to high electrical conductivity and allowing the possibility of fluid transport by porous flow or surface energy-driven infiltration.  相似文献   

10.
Summary Experiments of heating-cooling cycles in zero magnetic field were performed in order to study self-reversal of NRM in basaltic rocks from Lower Silesia. Complete self-reversal occurred in one sample containing titanomagnetite withT c of 170°C and a small amount of a phase with higher Curie point. During consecutive heat treatments the phenomenon became less conspicuous. In three samples of higher oxidation level, containing several magnetic phases, only partial self-reversal of NRM occurred. For the most oxidized sample no changes of direction of NRM were observed. We suggest that the investigated phenomenon of self-reversal of NRM is due to a negative magnetic interaction between primary titanomagnetite and products of its oxidation. It seems that complete self-reversal can take place in a restricted state of oxidation.  相似文献   

11.
Summary The natural remanent magnetization (NRM) of basalts from Argentina and Iceland and dolerite from the Great Whin Sill exhibit reversed magnetization. In order to test whether this was due to a self-reversing property of the rocks, samples from these three suites have been examined byx-ray and thermomagnetic techniques. No correlation between the properties of rocks and the sense of the NRM was found. The thermal stability of the magnetic extracts from these rocks was related to their lattice parameters and Curie points.  相似文献   

12.
Magnetostratigraphic study of the Toarcian type sections of Thouars and Airvault (Deux-Sèvres, France) has yielded two reliable magnetic polarity sequences. Most samples were treated by mixed cleaning: thermal demagnetization (250°, 300° or 350°C) and subsequent alternating field demagnetization. Polarity intervals are easily identified and correlate well between the two sections using the biostratigraphic data provided by the detailed standard ammonite zonation of the Toarcian stage. The polarity sequence extends from ammonite horizon V (Pseudoserpentinum horizon,Serpentinus zone) to horizon XXV (Subcompta horizon,Aalensis zone); it shows 5 reversed and 5 normal polarity magnetozones.  相似文献   

13.
The grain size dependence of the ratio of saturation remanent magnetization to saturation magnetization (J R :J S ), weak field susceptibility (X 0), thermoremanent magnetization (TRM) and its stability against AF demagnetization are interpreted in terms of nucleation theory. It is concluded that each of these parameters exhibits grain size dependence due to two effects. The first is the increasing difficulty with which domain walls are neucleated as grain size decreases. The second is an intrinsic grain size dependence of the parameters in multidomain particles.  相似文献   

14.
Shirouma-Oike volcano, a Quaternary composite volcano in central Japan, consists mostly of calc-alkaline andesitic lavas and pyroclastic rocks. Products of the earlier stage of the volcano (older group) are augite-hypersthene andesite. Hornblende crystallized during the later stage of this older group, whereas biotite and quartz crystallized in the younger group.Assemblages of phenocrysts in disequilibrium, such as magnesian olivine(Fo30)/quartz, iron-rich hypersthene(En55)/iron-poor augite(Wo43.5, En42.5, Fs14.0), and two different types of zoning on the rim of clinopyroxene are found in a number of rocks. Detailed microprobe analyses of coexisting minerals reveal that phenocrysts belong to two distinctly different groups; one group includes magnesian olivine + augite which crystallized from a relatively high-temperature (above 1000°C) basaltic magma; the second group, which crystallized from relatively low temperature (about 800°C) dacitic to andesitic magma, includes hypersthene + hornblende + biotite + quartz + plagioclase + titanomagnetite ± ilmenite (in the younger group) and hypersthene + augite + plagioclase + titanomagnetite ± hornblende (in the older group). The temperature difference between the two magmas is clarified by Mg/Fe partition between clinopyroxene and olivine, and Fe-Ti oxides geothermometer. The compositional zoning of minerals, such as normal zoning of olivine and magnesian clinopyroxene, and reverse zoning of orthopyroxene, indicate that the basaltic and dacitic-andesitic magmas were probably mixed in a magma reservoir immediately before eruption. It is suggested that the basaltic magma was supplied intermittently from a deeper part to the shallower magma reservoir, in in which dacitic-andesitic magma had been fractionating.  相似文献   

15.
Silica chimneys were discovered in 1985 at 86°W in the rift valley of the Galapagos Spreading Center at 2600 m depth (“Cauliflower Garden”). The inactive chimneys lack any sulfides and consist almost entirely of amorphous silica (up to 96 wt.% SiO2, opal-A); Fe and Mn oxides are minor constituents. Oxygen isotope data show that formation of the silica chimneys took place at temperatures between 32°C (+29.9‰ δ18O) and 42°C (+27.8‰ δ18O).Th/Udating reveals a maximum age of 1440 ± 300y. Amorphous silica solubility relations indicate that the silica chimneys were formed by conductive cooling of pure hydrothermal fluids or by conductive cooling of a fluid/seawater mixture. Assuming equilibrium with quartz at 500 bars, initial fluid temperatures of more than 175°C (i.e., a concentration of > 182 ppm SiO2) were required to achieve sufficient supersaturation for the deposition of amorphous silica at 40°C and 260 bars. If the silica chimneys originate from the same or a similar fluid as higher-temperature ( < 300°C) sulfide-silica precipitates found nearby (i.e., 2.5 km away), then subsurface deposition of sulfides may have occurred.  相似文献   

16.
Summary Measurements of bulk magnetic properties, including the natural remanent magnetization (NRM), susceptibility and the Königsberger ratio, on over 250 samples of Tertiary basalts from Disko and Nûgssuaq, West Greenland are reported.The NRM intensities in basalts (geometric mean value 3.3 A/m in SI units) were on average three to four times as large as the induced magnetization intensities. The susceptibilities (geometric mean value 2.1×10–2 SI units) were much more uniform than the NRM intensities. In the majority of samples, the NRM was predominantly of reverse (R) polarity, but samples from a few sites showed a remanence of normal (N) polarity.The NRM of both polarity classes (N, R) was very stable against alternating field (AF) demagnetization with median destructive fields of the order of 20,000–30,000 A/m (250–350 Oe), comparable to those for many stable continental and oceanic basalts. The viscous remanence intensity, as studied by storage tests on some specimens, was found to be an insignificant fraction of the original NRM, except in few cases.The low field hysteresis loops (Rayleigh loops) were studied for some specimens. A qualitative association was noted between wide hysteresis loop and relatively low AF stability, but no correlation was apparent between the loop type and the Königsberger ratio (Q n) of a specimen.Contribution no. 6 Institute of Geophysics, University of Copenhagen.  相似文献   

17.
Paleointensity measurements have been carried out on 3.5 Ga samples from the Komati Formation type locality using both the Thellier and Van Zijl methods. These samples contain a single steeply-directed negative TRM component acquired during metamorphism of the Komati lavas. Thellier experiments yielded values ranging from 12 to 37 μT but an average paleofield intensity for the four best determinations is 20 ± 3 μT. A slightly lower average paleointensity of 15 ± 3 μT was obtained using Van Zijl experiments. Preheating was used to chemically stabilize seven samples used in Van Zijl determinations and these produced nearly ideal plots with an average paleointensity of 13 ± 2 μT. A single basaltic komatiite sample gave a nearly ideal Van Zijl plot indicating about 21 μT, nearly the same paleointensity as the peridotitic komatiite samples even though its NRM intensity was several orders of magnitude lower. Since the Komati characteristic remanence was acquired during a slow cooling, the data must be reduced by a factor of 1.55 to account for the difference between laboratory and natural cooling rates. Calculation of an equivalent equatorial paleointensity using the paleolatitude implied by the steep Komati characteristic remanence then gives value of 5 μT for the intensity of the geomagnetic field at 3.5 Ga, lower than the present value of about 30 μT.  相似文献   

18.
Submersible investigations along the East Rift segments, the Pito Deep and the Terevaka transform fault of the Easter microplate eastern boundary, and on a thrust-fault area of the Nazca Plate collected a variety of basalts and dolerites. The volcanics consist essentially of depleted (N-MORB), transitional (T-MORB) and enriched (E-MORB) basalts with low (0.01−0.1, < 0.7), intermediate (0.12–0.25, 0.7–1.2) and high (> 0.25, > 1.2–2) K/Ti and(La/Sm)N ratios, respectively. The Fe-Ti-rich ferrobasalt encountered among the N-MORBs are found on the Pito Deep Central volcano, on the Terevaka intra-transform ridge, on the ancient (< 2.5 Ma) Easter microplate (called EMP, comprising the East Rift Inner pseudofaults and Pito Deep west walls) and on thrust-fault crusts. The most enriched (T- and E-MORB) volcanics occur along the East Rift at 25 °50′–27 °S (called 26 °S East Rift) and on the Pito seamount located near the tip of the East Rift at 23 °00′–23 °40′S (called 23 °S East Rift). The diversity in incompatible element ratios of the basalts in relation to their structural setting suggests that the volcanics are derived from a similar heterogenous mantle which underwent variable degrees of partial melting and magma mixing. In addition the Pito seamount volcanics have undergone less crystal fractionation (< 20%) than the lavas from the other Easter microplate structures (up to 35–45%). The tectonic segmentation of the East Rift observed between 23 and 27 °S corresponds to petrological discontinuities related to Mg# variations and mantle melting conditions. The highest Mg# (> 61) are found on topographic highs (2000–2300 m) and lower values (Mg# < 56) at the extremities of the East Rift segments (2500–5600 m depths). The deepest area (5600 m) along the East Rift is located at 23 °S and coincides with a Central volcano constructed on the floor of the Pito Deep. Three major compositional variabilities of the volcanics are observed along the East Rift segments studied: (1) the 26 °S East Rift segment where the volcanics have intermediate Na8 (2.5–2.8%) and Fe8 (8.5–11%) contents; (2) the 23 °S East Rift segment (comprising Pito seamount and Pito Deep Central volcano) which shows the highest (2.9–3.4%) values of Na8 and a low (8–9%) Fe8 content; and (3) the 25 °S (at 24 °50′–26 °10′S) and the 24 °S (at 24 °10′–25 °S) East Rift segments where most of the volcanics have low to intermediate Na8 (2.6–2.0%) and a high range of Fe8 (9–13%) contents. When modeling mantle melting conditions, we observed a relative increase in the extent of partial melting and decreasing melting pressure. These localized trends are in agreement with a 3-D type diapiric upwelling in the sense postulated by Niu and Batiza (1993). Diapiric mantle upwelling and melting localized underneath the 26, 25 and 23 °S (Pito seamount and Central volcano) East Rift segments are responsable for the differences observed in the volcanics. The extent of partial melting varies from 14 to 19% in the lithosphere between 18 and 40 km deep as inferred from the calculated initial (Po=16kbar) and final melting (Pf=7kbar) pressures along the various East Rift segments. The lowest range of partial melting (14–16%) is confined to the volcanics from 23 °S East Rift segment including the Pito seamount and the Central volcano. The Thrust-fault area, and the Terevaka intra-transform show comparable mantle melting regimes to the 25 and 26 °S East Rift segments. The older lithosphere of the EMP interior is believed to have been the site of high partial melting (17–20%) confined to the deeper melting area (29–50 km). This increase in melting with increasing pressure is similar to the conditions encountered underneath the South East Pacific Rise (13–20 °S).  相似文献   

19.
Forty-five samples have been collected at nine sites on the 42.5 Ma Quxu pluton (90°50′E, 29°20′N) in the Gangdese batholith. Westerly declination (D = −48°and−83°) is observed in primary magnetizations from two sites about 25 km from the Indus-Zangbo suture zone after thermal demagnetization. This direction is consistent with the westerly paleomagnetic directions of the crustal blocks in other areas along the Indus-Zangbo suture zone. The Quxu pluton of the Gangdese Belt was rotated in a “domino style” deformation process as a part of a long (840 km) and narrow (less than 100 km) deformed zone between the India-Eurasia continents associated with the collision of India since 42.5 Ma. The pluton, between 11 km and 14 km from the suture acquired the secondary magnetization (D = −28°and−39°) during a cataclastic metamorphic process at sometime during the ‘domino style’ deformation. The primary magnetization was completely destroyed in the pluton within 11 km of the suture during slow cooling at the uplift stage and was replaced by thermoviscous remanent magnetization parallel to the present axial dipole field.  相似文献   

20.
Paleofield intensity determinations involving a comparison of the stable natural remanence (NRM) component with a laboratory thermoremanence (TRM) were carried out on nine chondrites selected in Brecher and Fuhrman (1979a, this issue, hereafter called Paper I), as well as on two manifestly unsuitable controls. To judge their reliability: (1) heat-alteration was monitored by comparing saturation coercivity spectra before and after heating; and (2) the NRM and TRM intensity and stability were compared to those of residual magnetization following zero-field cooling (TRM0) from above the Curie point of kamacite (Ni---Fe). The latter criterion separates the role of an external magnetic field (of 0.43 Oe) at cooling from intrinsic contributions to magnetic grain alignments, due to accretionary, metamorphic or shock-oriented petrofabrics.

In some chondrites (e.g., Brownfield, H3B; Holyoke, H4C; Farley, H5A), a surprisingly large (10% NRM) and stable TRM0 proved so similar to NRM and TRM, that sizeable spurious “paleofields” — comparable to paleointensities obtained — were derived by the standard method for zero-field cooling. In other chondrites, with negligible TRM0 (1% of NRM) and irregular AF demagnetization curves, more reliable paleofield strengths in the range 0.01–0.09 Oe were obtained (e.g., Cavour, H6C). These seem representative of magnetic fields at the end of metamorphism intervals (107 years after accretion) and/or at post-shock cooling. Thus, field strengths obtained from ordinary chondrites are typically weaker (by factors of 10–100) than those reliably determined from carbonaceous chondrites and ureilites, suggesting temporal decay of nebular magnetic fields, from the end of accretion until the end of metamorphism and early catastrophic-collisional stages.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号