首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 196 毫秒
1.
煤层底板破坏深度统计分析   总被引:3,自引:0,他引:3  
受奥陶纪石炭岩(下称奥灰)水威胁的煤层的开采,是当前一个重要的研究课题,其发展方向之一是“带压开采”。近年来,一些科研单位与生产现场合作,先后进行了十多次“带压开采”试验。通常采用综合观测的方法,来观测煤层底板岩层导水性、声波速度、位移和压力等在煤层开采前后的变化,对底板岩层的破坏程度进行综合性的判断,为论证奥灰承压水上煤层开采的可行性与安全性提供依据。  相似文献   

2.
大采深工作面煤层底板采动破坏深度测试   总被引:1,自引:0,他引:1  
针对邢东矿大采深的情况,利用现场底板注水试验对2121工作面底板采动破坏深度进行了测试研究,依据单位注水量的动态变化以及注水孔与采线之间的距离关系,确定了底板破坏深度。试验结果表明:该工作面底板破坏深度为32.5~35m,比300m采深以内的工作面实测深度(9.15~12.0m)增加2倍以上,说明随着开采深度的增加,煤层底板采动破坏深度呈明显增大的趋势,因此,在水压和破坏深度二者同时增加的条件下,2121工作面深部煤层开采的突水危险性远远大于浅部煤层。测试结果为邢东矿大采深工作面的防治水方案的制订提供了科学依据。  相似文献   

3.
智能开采对于地质条件的不适应问题非常突出,特别是对煤层起伏和厚度的绝对精度提出了更高的要求。三维地震勘探横向分辨率高,能够对煤层起伏进行控制,但在地震解释时,煤层底板高程受时深转换计算影响,存在一定的误差。针对这一问题,以工作面三维地震数据和采掘过程中探煤厚数据为基础,通过不断更新速度场提高煤层底板时深转换绝对精度;同时利用迭代插值算法,不断更新工作面煤层厚度;通过对计算得到的数据进行误差统计和分析。在TJH304回采工作面进行试验,利用工作面巷道和切眼探煤厚数据并结合三维地震资料动态解释后,工作面推采前方煤层底板高程值和厚度值绝对误差变小;特别是距离当前采煤面30 m以内的4个验证点煤层底板高程值误差范围为0.37~0.58 m,煤层厚度值误差为0.32~0.44 m。结果表明,三维地震动态解释技术可最大化将三维地震和井下生产数据有效结合,不断提高煤层空间精度,为智能开采提供预想煤层模型。   相似文献   

4.
郑士田 《煤田地质与勘探》2018,46(4):142-146,153
煤层底板灰岩水害区域超前探查治理技术是近几年刚刚兴起的一种灰岩水害防治新技术,具有探查治理时间超前、探查治理空间范围大、水害隐患整体消除效果好等特点。分析了两淮煤田煤层底板灰岩水害基本特征,研究了煤层底板不同类型灰岩水害区域超前探查治理的技术方法和工程工艺。提出针对淮北煤田煤层底板存在高压复合强富水薄层灰岩含水层水害威胁的矿井,应采用定向水平井钻探和\  相似文献   

5.
矿井工作面底板探水电法穿透方式较多,且特点各异.通过室内实验模拟井下常用的单极—偶极法、平行双极—偶极法以及双巷并行电法技术,分析三种探测方法的优缺点,为工作面底板水害实测提供参考.结果表明:三种方法采集数据各有特点,对于异常体均有反应.单极—偶极法采集数据量有限,其探测结果的收敛性稍差;平行双极—偶极法数据采集量较大,但数据采集效率相对较低,施工时间长,适合进行小范围探测;双巷并行电法技术的数据采集量大,数据采集效率高,目标体收敛性好,其面内底板赋水区的空间范围判断准确,适合于进行精细探查.  相似文献   

6.
通过建立回采过程中底板岩层变形破坏过程的地球物理数值模型,采用正演计算方法分析底板破坏带的电阻率变化特征,并在五矿8403工作面布置网络并行电法探测系统,进行现场观测。模拟数据和现场探测结果表明,煤层底板视电阻率值与工作面开采过程密切相关,在回采工作面后方电阻率剖面图出现明显高阻异常,其高阻异常位置与底板破坏位置相对应;在回采工作面前方出现相对低阻异常,其低阻分布位置与矿压引起的高应力区相当;随着工作面的推进,高、低阻异常同步变化。根据这种底板岩石的电阻率变化,结合矿井水文地质特征,可进行煤层底板破坏规律的动态勘探,有利于底板破坏突水的预测预报工作。  相似文献   

7.
8.
倾斜煤层底板破坏特征的微震监测   总被引:3,自引:0,他引:3  
带压开采是承压水上采煤的主要方法,底板采动破坏深度的确定是实现带压开采的关键和前提。针对底板采动破坏深度现场测量方法的局限性,特别是倾斜煤层(煤层倾角在25°~45°之间)底板采动破坏深度的现场测量。以桃园煤矿1066工作面为例,利用高精度微震监测技术,对承压水上倾斜煤层底板的采动破坏特征进行了连续的、动态监测。监测结果表明:(1)工作面运输巷(下顺槽)附近的底板比工作面回风巷(上顺槽)附近的底板破坏深度更深,破坏范围更大;(2)倾斜煤层工作面底板破坏形态整体呈现为一个下大上小的非对称形态。根据微震监测结果,确定了1066工作面回风巷和运输巷附近底板的最大破坏深度,划分了倾斜煤层工作面底板突水危险区域。将微震监测的倾斜煤层底板破坏深度与经验公式计算的底板破坏深度进行了对比,指出了经验公式存在的不足  相似文献   

9.
底板注浆加固与含水层改造是承压水体上煤层安全开采底板岩溶水害防治的有效方法之一。为了评价煤层底板注浆加固效果,以皖北恒源煤矿Ⅱ615工作面为研究对象,采用钻孔震波检层法,选择正常区域和异常区域,分别对各区域注浆前后底板岩体进行了波速探测,结果表明:注浆前,正常、异常区域波速存在较大差异,注浆后两者基本一致;注浆后底板砂岩段岩层波速增加明显,约为注浆前的1.20倍,而海相泥岩段注浆前后波速变化不大,这与钻孔揭露岩芯的完整性和底板水无上升现象一致,充分说明注浆对裂隙岩体起到了很好的加固作用。  相似文献   

10.
煤层工作面内陷落柱与煤层之间具有显著的电阻率、波速和密度差异,适宜于采用无线电波透视法和震波透视CT法来探测煤层工作面内陷落柱的边界范围;陷落柱体通常裂隙发育,与围岩相比较,其富水陷落柱为相对低电阻率值范围,而不富水陷落柱则为相对高电阻率值范围,因此,可利用煤层底板三维电法来探查底板陷落柱富水性。谢桥矿13218工作面1^#陷落柱的探测表明,该陷落柱范围具有较高的电磁波吸收系数特征和相对较高的纵波波速特征;工作面底板陷落柱向下范围为相对高电阻率值特征,为不富水陷落柱。该综合物探探测结果与实际验证资料基本吻合,有效地指导了本煤层工作面开采及底板煤层工作面的开采设计与施工。  相似文献   

11.
宁夏灵武矿区所采煤层均属易自燃煤层,矿区煤炭自燃防治形势严峻.常规的注水、灌浆、注阻化剂灭火、氮气防灭火难以有效达到矿井防灭火要求.针对以上难题,以灵武矿区枣泉煤矿为例,分析了工作面开采期间的CO气体产生机理,据此提出了煤自燃火灾预防及治理技术思路.通过胶体隔离带的注胶防灭火技术手段,防灭火效果显著,工作面CO的的体积分数持续下降(<6×10-6),有效得保证了矿井的安全生产.  相似文献   

12.
根据煤层底板含水层具有不均一性的特点,建立了底板含水层非均布水压力学模型和流固耦合模型,并根据\  相似文献   

13.
采用有限元强度折减法,求得煤层开采后底板岩体破坏滑移面,并给出底板塑性区贯通过程,得出其滑移线与理论形态相近,底板塑性滑移形状类似Prandtl型,并与滑移线理论计算结算进行了对比,两者误差在10%以内,说明了采用有限元法求解煤层底板破坏情况是可行的。并用于模拟上保护层开采过程中底板及下伏煤层卸压范围,为保护层工作面回采过程中瓦斯来源提供理论依据。说明有限元强度折减法可用于确定承压水体上煤层开采其底板所需的临界厚度和上保护层开采过程中的有效层间距。  相似文献   

14.
针对孤岛工作面煤层开采底板损伤问题,以河北葛泉煤矿11913孤岛工作面为研究对象,采用微震方法分析其底板破坏深度;并通过数值模拟对首采、跳采及孤岛3种工作面回采过程中围岩采动应力与底板破坏的规律进行了对比分析。微震测试结果显示11913工作面回采过程中微震事件主要发生在下巷,识别出工作面最大破坏深度20~25 m;基于COMSOL的11912首采、11914跳采及11913孤岛3个工作面数值模拟结果显示,11912首采与11914跳采条件下煤柱地应力集中状态变化不大,最大破坏深度小于11.56 m,仅发育至工作面底板的注浆改造层内部;而11913孤岛回采条件下,受到重复采动影响,工作面两侧煤柱应力集中状态骤增,最大破坏深度剧增至23 m,已发育至煤层底板的本溪组灰岩含水层。研究结果对于华北型煤田下组煤层开采底板破坏规律分析与不同类型工作面回采条件下底板水害防治有一定的参考价值。  相似文献   

15.
16.
煤层底板变形破坏除受地质因素控制外,还受开采因素影响。通过试验和理论分析,系统研究了煤炭开采对回采工作面底板应力、应变和破坏及渗透性的影响。研究结果表明,不同岩性岩石的渗透性在全应力-应变过程中为应变的函数,在微裂隙闭合和弹性变形阶段,岩石的原生孔隙和裂隙容易被压密,岩石的渗透率随应力的增加由大变小明显,当应力增大至极限强度时岩石试件破坏形成贯穿裂隙,岩石的渗透率迅速增大至最大,不同岩性岩石存在一定差异性;随着回采工作面推进,煤层底板岩层在横向上划分为原岩应力区、超前压力压缩区、采动矿压直接破坏区和底板岩体应力恢复区4个区。煤层底板岩体的渗透性随着煤炭开采底板岩体变形破坏而呈规律性变化。  相似文献   

17.
快速掘进急需构建掘进前方高精度二维地质模型。以沁水煤田某矿区XY-S工作面为例,基于三维地震解释成果,利用巷道掘进过程中煤层底板高程实测信息,动态刷新三维地震平均速度场,更新掘进前方煤层底板高程,最后对掘进前方预测的精度进行统计分析。结果表明:通过不断利用掘进实测煤层底板高程,刷新平均速度场,更新掘进前方煤层底板地质剖面,掘进前方煤层底板剖面与实际揭露剖面之间误差逐渐越小,实测点前方25 m和50 m范围的煤层底板高程最小绝对误差可达0.2 m和0.45 m。若实测点数据密度大、分布均匀,预测精度将会进一步得到提高,可为快速掘进提供高精度煤层底板导航数据。  相似文献   

18.
传统采动破坏深度计算中认为底板结构完整,未考虑实际岩体损伤。以淮南潘北矿11113工作面A组煤开采为背景,利用FLAC3D对完整与损伤底板采动应力变化特征进行了分析,推导并计算了底板岩层损伤变量与底板破坏深度。此外,为验证该方法的有效性,对比分析了计算结果与测量结果。结果表明:采动应力的最大值出现在煤壁前后方,底板完整时为14.8 MPa,底板损伤时为17.5 MPa;底板岩层损伤变量D为0.574,基于损伤变量计算得出的底板最大破坏深度为16.15 m,对比并行电法探测结果16.00 m,该方法的计算准确率高。研究结果为快速准确确定底板采动破坏深度提供了一个新思路。  相似文献   

19.
准确预测底板采动破坏深度是承压水上采煤底板水害防治中的一个关键问题,对于防治水方案的制定至关重要。根据山西保德煤矿的地质特征与工作面布置特点,采用高精度井-孔联合微震监测技术,对81307工作面底板破坏深度开展实时监测。利用锤击方法,标定了定位参数,验证了定位精度,确保微震监测系统的定位精度能够满足防治水要求,监测期间工作面回采600 m。监测结果表明:底板破坏深度为30 m,其中在81308二号回风巷下方破坏较深,81307一号回风巷下方破坏只有15 m,工作面超前破坏距离为25 m,监测结果与相邻81306工作面利用压水试验测量的底板破坏深度基本一致。研究表明,井-孔联合微震监测技术可以获得工作面底板破坏深度及其空间分布特征,更好地为煤矿防治水服务。  相似文献   

20.
随着煤炭开采深度的增加,深部复杂条件下开采的水害问题日益严重.复杂条件下煤层回采过程顶底板破坏动态监测对于工作面突水预测、采煤方法改进等具有重要意义.本文基于并行电法监测技术,结合双模式电极数据采集方式,同时在采煤工作面进行煤层顶、底板全空间地电场特征监测研究,获得了煤层围岩顶底板采动前后电阻率及自然电位同步响应特征....  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号