首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the Littleton Formation, garnet porphyroblasts preserve three generations of growth that occurred before formation of the Bolton Syncline. Inclusion trails of foliations overgrown by these porphyroblasts are always truncated by the matrix foliation suggesting that garnet growth predated the matrix foliation. In contrast, many staurolite porphyroblasts grew synchronously with formation of the Bolton Syncline. However, local rim overgrowths of the matrix foliation suggest that some staurolite porphyroblasts continued to grow after development of the fold during younger crenulation producing deformations. The axes of curvature or intersection of foliations defined by inclusion trails inside the garnet porphyroblasts lie oblique to the axial plane of the Bolton Syncline but do not change orientation across it. This suggests the garnets were not rotated during the subsequent deformation associated with fold development or during even younger crenulation events. Three samples also contain a different set of axes defined by curvature of inclusion trails in the cores of garnet porphyroblasts suggesting a protracted history of garnet growth. Foliation intersection axes in staurolite porphyroblasts are consistently orientated close to the trend of the axial plane of the Bolton Syncline on both limbs of the fold. In contrast, axes defined by curvature or intersection of foliations in the rims of staurolite porphyroblasts in two samples exhibit a different trend. This phase of staurolite growth is associated with a crenulation producing deformation that postdated formation of the Bolton Syncline. Measurement of foliation intersection axes defined by inclusion trails in both garnet and staurolite porphyroblasts has enabled the timing of growth relative to one another and to the development of the Bolton Syncline to be distinguished in rocks where other approaches have not been successful. Consistent orientation of foliation intersection axes across a range of younger structures suggests that the porphyroblasts did not rotate relative to geographical coordinates during subsequent ductile deformation. Foliation intersection axes in porphyroblasts are thus useful for correlating phases of porphyroblastic growth in this region.  相似文献   

2.
The behaviour of spherical versus highly ellipsoidal rigid objects in folded rocks relative to one another or the Earth’s surface is of particular significance for metamorphic and structural geologists. Two common porphyroblastic minerals, garnet and staurolite, approximate spherical and highly ellipsoidal shapes respectively. The motion of both phases is analysed using the axes of inflexion or intersection of one or more foliations preserved as inclusion trails within them (we call these axes FIAs, for foliation inflexion/intersection axes). For staurolite, this motion can also be compared with the distribution of the long axes of the crystals. Schists from the regionally shallowly plunging Bolton syncline commonly contain garnet and staurolite porphyroblasts, whose FIAs have been measured in the same sample. Garnet porphyroblasts pre-date this fold as they have inclusion trails truncated by all matrix foliations that trend parallel to the strike of the axial plane. However, they have remarkably consistent FIA trends from limb to limb. The FIAs trend 175° and lie 25°NNW from the 020° strike of the axial trace of the Bolton syncline. The plunge of these FIAs was determined for six samples and all lie within 30° of the horizontal. Eleven of these samples also contain staurolite porphyroblasts, which grew before, during and after formation of the Bolton syncline as they contain inclusion trails continuous with matrix foliations that strike parallel to the axial trace of this fold. The staurolite FIAs have an average trend of 035°, 15°NE from the 020° strike of the axial plane of this fold. The total amount of inclusion trail curvature in staurolite porphyroblasts, about the axis of relative rotation between staurolite and the matrix (i.e. the FIA), is greater than the angular spread of garnet FIAs. Although staurolite porphyroblasts have ellipsoidal shapes, their long axes exhibit no tendency to be preferentially aligned with respect to the main matrix foliation or to the trend of their FIA. This indicates that the axis of relative rotation, between porphyroblast and matrix (the FIA), was not parallel to the long axis of the crystals. It also suggests that the porphyroblasts were not preferentially rotated towards a single stretch direction during progressive deformation. Five overprinting crenulation cleavages are preserved in the matrix of rocks from the Bolton syncline and many of these result from deformation events that post-date development of this fold. Staurolite porphyroblast growth occurred during the development of all of these deformations, most of which produced foliations. Staurolite has overgrown, and preserved as helicitic inclusions, crenulated and crenulation cleavages; i.e. some inclusion trail curvature pre-dates porphyroblast growth. The deformations accompanying staurolite growth involved reversals in shear sense and changing kinematic reference frames. These relationships cannot all be explained by current models of rotation of either, or both, the garnet and staurolite porphyroblasts. In contrast, we suggest that the relationships are consistent with models of deformation paths that involve non-rotation of porphyroblasts relative to some external reference frame. Further, we suggest there is no difference in the behaviour of spherical or ellipsoidal rigid objects during ductile deformation, and that neither garnet nor staurolite have rotated in schists from the Bolton syncline during the multiple deformation events that include and post-date the development of this fold.  相似文献   

3.
Rotating garnets     
The origin of snowball and sigmoidal inclusion patterns in porphyroblasts is discussed. Snowball garnets are peculiar to shear zones whereas sigmoidal patterns occur in porphyroblasts both in shear zones and on the limbs of folds. There are currently two models for the development of snowball garnets and these have been discussed extensively in the literature. We show that although the typical two-dimensional snowball pattern can be produced by either model, the three-dimensional inclusion patterns are model-specific thus providing a distinguishing criterion. We have applied this criterion to all the available data and find that the classical model, which is dependent on the rotation of garnet relative to a single foliation, is applicable in all cases. Syn-kinematic porphyroblasts on the limbs of horizontal normal folds generally show little rotation relative to geographical coordinates. What rotation they do show generally has the same sense as that of the host limb, but is less in magnitude. This has been used as evidence that the porphyroblasts have remained irrotational while the rocks deformed around them; the implication being that they were unaffected by vorticity associated with folding. This has been explained by claiming that the porphyroblasts are restricted in distribution to small domains of coaxial deformation path. We show that for reasonable deformation models of horizontal normal folds, porphyroblasts affected by vorticity will rotate little with respect to geographical coordinates and our results predict the commonly observed natural patterns. We conclude therefore that lack of rotation relative to geographical coordinates cannot be used to demonstrate that porphyroblasts have grown only in coaxially deforming domains; much less restrictive and more reasonable interpretations are possible. Consequently, the lack of rotation relative to geographical coordinates is more significant for fold modelling than it is for the garnet controversy.  相似文献   

4.
New data strongly suggest that the classical spiral garnet porphyroblasts of south-east Vermont, USA, generally did not rotate, relative to geographical coordinates, throughout several stages of non-coaxial ductile deformation. The continuity of inclusion trails (Si) in these porphyroblasts is commonly disrupted by planar to weakly arcuate discontinuities, consisting of truncations and differentiation zones where quartz–graphite Si bend sharply into more graphitic Si. Discontinuous, tight microfold hinges with relatively straight axial planes are also present. These microstructures form part of a complete morphological gradation between near-orthogonally arranged, discontinuous inclusion segments and smoothly curving, continuous Si spirals. Some 2700 pitch measurements of well-developed inclusion discontinuities and discontinuous microfold axial planes were taken from several hundred vertically orientated thin sections of various strike, from specimens collected at 28 different locations around the Chester and Athens domes. The results indicate that the discontinuities have predominantly subvertical and subhorizontal orientations, irrespective of variations in the external foliation attitude, macrostructural geometry and apparent porphyroblast-matrix rotation angles. Combined with evidence for textural zoning, this supports the recent hypothesis that porphyroblasts grow incrementally during successive cycles of subvertical and subhorizontal crenulation cleavage development. Less common inclined discontinuities are interpreted as resulting from deflection of anastomosing matrix foliations around obliquely orientated crystal faces prior to inclusion. Most of the idioblastic garnet porphyroblasts have a preferred crystallographic orientation. Dimensionally elongate idioblasts also have a preferred shape orientation, with long axes orientated normal to the mica folia, within which epitaxial nucleation occurred. Truncations and differentiation zones result from the formation of differentiated crenulation cleavage seams against porphyroblast margins, in association with progressive and selective strain-induced dissolution of matrix minerals and locally also the porphyroblast margin. Non-rotation of porphyroblasts, relative to geographical coordinates, suggests that deformation at the microscale is heterogeneous and discontinuous in the presence of undeformed, relatively large and rigid heterogeneities, which cause the progressive shearing (rotational) component of deformation to partition around them. The spiral garnet porphyroblasts therefore preserve the most complete record of the complex, polyphase tectonic and metamorphic history experienced in this area, most of which was destroyed in the matrix by progressive foliation rotation and reactivation, together with recrystallization.  相似文献   

5.
Inclusion trails in garnet and albite porphyroblasts in the Fleur de Lys Supergroup preserve successive generations of microstructures, some of which correlate with equivalent microstructures in the matrix. Microstructure–porphyroblast relationships provide timing constraints on a succession of seven crenulation cleavages (S1–S7) and five stages of porphyroblast growth. Significant destruction and alteration of early fabrics has occurred during the microstructural development of the rock mass. Garnet porphyroblasts grew episodically through four growth stages (G1–G4) and preserve a succession of five fabrics (S1–S5) as inclusion trails. Garnet growth during each of the four growth phases did not occur on all pre-existing porphyroblasts, resulting in contrasting growth histories between individual garnet porphyroblasts from the same outcrop. Albite porphyroblasts grew during a single stage of growth and have overgrown microstructures continuous with the matrix. The garnet and albite porphyroblast inclusion trails record a succession of crenulation cleavages without any rotation of the porphyroblasts relative to other porphyroblasts in the population.
Complex microstructural histories are best resolved by preparing multiple oriented thin sections from a large number of samples of different rock types within the area of study. The succession of matrix foliations must be understood, as it provides the most useful time-frame against which to measure the relative timing of phases of porphyroblast growth. Comparable microstructures must be identified in different porphyroblasts and in the rock matrix.  相似文献   

6.
For two decades, considerable efforts have been made to explain the formation of snowball garnets by either the rotational or non‐rotational models. On the basis of morphological, chemical and crystallographic evidence, this paper presents new data on snowball garnets showing that the formation of these microstructures can be explained by the combination of the two previously proposed mechanisms operating consecutively during garnet growth. The crystallization sequence of garnet revealed by Mn contouring and the distribution of crystallographic orientations within the spiral indicate that the final stages of garnet growth are controlled by post‐kinematic crystallization. However, some microstructural arguments plead for a rotational contribution during the first stages of growth. In this view, the overall spiral geometry is thought to overestimate the true amount of rotation experienced by the garnets. Results also reveal the existence of complex snowball garnets consisting of several grains formed from distinct nucleation sites.  相似文献   

7.
Porphyroblasts of garnet and plagioclase in the Otago schists have not rotated relative to geographic coordinates during non-coaxial deformation that post-dates their growth. Inclusion trails in most of the porphyroblasts are oriented near-vertical and near-horizontal, and the strike of near-vertical inclusion trails is consistent over 3000 km2. Microstructural relationships indicate that the porphyroblasts grew in zones of progressive shortening strain, and that the sense of shear affecting the geometry of porphyroblast inclusion trails on the long limbs of folds is the same as the bulk sense of displacement of fold closures. This is contrary to the sense of shear inferred when porphyroblasts are interpreted as having rotated during folding.
Several crenulation cleavage/fold models have previously been developed to accommodate the apparent sense of rotation of porphyroblasts that grew during folding. In the light of accumulating evidence that porphyroblasts do not generally rotate, the applicability of these models to deformed rocks is questionable.
Whether or not porphyroblasts rotate depends on how deformation is partitioned. Lack of rotation requires that progressive shearing strain (rotational deformation) be partitioned around rigid heterogeneities, such as porphyroblasts, which occupy zones of progressive shortening or no strain (non-rotational deformation). Therefore, processes operating at the porphyroblast/matrix boundary are important considerations. Five qualitative models are presented that accommodate stress and strain energy at the boundary without rotating the porphyroblast: (a) a thin layer of fluid at the porphyroblast boundary; (2) grain-boundary sliding; (3) a locked porphyroblast/matrix boundary; (4) dissolution at the porphyroblast/matrix boundary, and (5) an ellipsoidal porphyroblast/shadow unit.  相似文献   

8.
变斑晶包体形迹研究的几个问题   总被引:1,自引:0,他引:1  
变斑晶是联系变质与变形的重要媒介。变斑晶内的包体按几何形态可分为9大类。在发生递进变形的变质岩中,斑晶成核生长于变形分解作用的递进缩短带内。除少数螺旋状石榴石外,产于共轴或非共轴递进不均匀缩短变形过程中的斑晶不发生旋转。在韧性剪切带中,由于存在变形分解作用,在岩石发生递进变形过程中,产于共轴或非共轴递进缩短带内的变斑晶也不发生旋转。利用未旋转斑晶中包体形迹可以确定早期面理的取向,寻找构造演化时间标志,确定变形变质关系及其演化史。如在大背坞地区,根据黄铁矿变斑晶的旋转演化,可以恢复韧性剪切带的成生演化历史。近十几年来由于计算机模拟的引人,使变斑晶微构造研究从定性步入定量阶段。  相似文献   

9.
雅鲁藏布江缝合带米林地区的石英片岩糜棱岩化强烈,线理及面理构造发育。S-C组构、"σ"残斑以及不对称褶皱等指示了上盘相对下盘向NW下滑的剪切运动趋势。电子背散射衍射(EBSD)测试结果表明:雪球状石榴子石变斑晶边部面理(S2)中石英包裹体晶格优选方位模式图指示的运动指向与石英岩基质面理(或外部面理;S3)中石英包裹体晶格优选方位模式图指示的运动指向一致,都是上盘向NW正滑。然而,雪球状石榴子石的核部(S1)石英包裹体优选方位(LPO)模式图指示相反运动指向。能量色散显微分析(EDS)测试结果表明石榴子石的成分环带显示连续生长环带特征。连接石榴子石核部面理(S1)可以恢复得到石英岩早期不对称褶皱形状的面理轨迹。这些说明文章样品中雪球状石榴子石变斑晶是生长在不对称褶皱之上的。此过程主要是剪切方向发生了旋转,而不是石榴子石自身旋转。这种雪球状石榴子石变斑晶的存在说明南迦巴瓦地区雅鲁藏布江缝合带西侧岩石最初经历向SE的逆冲作用,后期经历由SE向NW的拆离滑脱事件。  相似文献   

10.
Three periods of mineral growth and three generations of spiral‐shaped inclusion trails have been distinguished within folded rocks of the Qinling‐Dabie Orogen, China, using the development of three successive and differently trending sets of foliation intersection axes preserved in porphyroblasts (FIAs). This progression is revealed by the consistent relative sequence of changes in FIA trends from the core to rim of garnet porphyroblasts in samples with multiple FIAs. The first and second formed sets of FIAs trend oblique to the axial planes of macroscopic folds that dominate the outcrop pattern in this region. The porphyroblasts containing these FIAs grew prior to the development of the macroscopic folds, yet the FIAs do not change orientation across the fold hinges. The youngest formed FIAs (set 3) lie subparallel to the axial planes of these folds and the porphyroblasts containing these FIAs formed in part as the folds developed. The deformation associated with all three generations of spiral‐shaped inclusion trails in garnet porphyroblasts involved the formation of subhorizontal and subvertical foliations against porphyroblast rims accompanied by periods of garnet growth; pervasive structures have not necessarily formed in the matrix away from the porphyroblasts. The macroscopic folds are heterogeneously strained from limb to limb, doubly plunging and have moderately dipping axial planes. The consistent orientation of Set 1 FIAs indicates that the development of spiral‐shaped inclusion trails in porphyroblasts with FIAs belonging to Set 2 did not involve rotation of the previously formed porphyroblasts. The consistent orientation of Sets 1 and 2 FIAs indicate that the development of spiral‐shaped inclusion trails in porphyroblasts with FIAs belonging to Set 3 did not involve rotation of the previously formed porphyroblasts during folding. This requires a fold mechanism of progressive bulk inhomogeneous shortening and demonstrates that spiral‐shaped inclusion trails can form outside of shear zones.  相似文献   

11.
Detailed 3‐D analysis of inclusion trails in garnet porphyroblasts and matrix foliations preserved around a hand‐sample scale, tight, upright fold has revealed a complex deformation history. The fold, dominated by interlayered quartz–mica schist and quartz‐rich veins, preserves a crenulation cleavage that has a synthetic bulk shear sense to that of the macroscopic fold and transects the axis in mica‐rich layers. Garnet porphyroblasts with asymmetric inclusion trails occur on both limbs of the fold and display two stages of growth shown by textural discontinuities. Garnet porphyroblast cores and rims pre‐date the macroscopic fold and preserve successive foliation inflection/intersection axes (FIAs), which have the same trend but opposing plunges on each limb of the fold, and trend NNE–SSW and NE–SW, respectively. The FIAs are oblique to the main fold, which plunges gently to the WSW. Inclusion trail surfaces in the cores of idioblastic porphyroblasts within mica‐rich layers define an apparent fold with an axis oblique to the macroscopic fold axis by 32°, whereas equivalent surfaces in tabular garnet adjacent to quartz‐rich layers define a tighter apparent fold with an axis oblique to the main fold axis by 17°. This potentially could be explained by garnet porphyroblasts that grew over a pre‐existing gentle fold and did not rotate during fold formation, but is more easily explained by rotation of the porphyroblasts during folding. Tabular porphyroblasts adjacent to quartz‐rich layers rotated more relative to the fold axis than those within mica‐rich layers due to less effective deformation partitioning around the porphyroblasts and through quartz‐rich layers. This work highlights the importance of 3‐D geometry and relative timing relationships in studies of inclusion trails in porphyroblasts and microstructures in the matrix.  相似文献   

12.
Abstract Mica porphyroblasts in schists from several regions show nearly planar inclusion trails that are parallel over areas much larger than the wavelengths of later folds. This indicates that the porphyroblasts have not rotated, with respect to geographical co-ordinates, during deformation. Instead, the matrix has rotated, as suggested by Ramsay (1962). Even in zones of marked shortening in the matrix adjacent to large rigid porphyroblasts (e.g. of cordierite or staurolite), small biotite porphyroblasts have not rotated, but have become thinned by solution, as indicated by parallelism of inclusion trails in separate biotite grains and by evidence of truncation of inclusion trails by the matrix foliation. Less common are biotite porphyroblasts that have single asymmetrical microfolds in the matrix adjacent to the porphyroblasts and so appear to have rotated; these porphyroblasts are characterized by kinking.  相似文献   

13.
Porphyroblast inclusion fabrics are consistent in style and geometry across three Proterozoic metamorphic field gradients, comprising two pluton-related gradients in central Arizona and one regional gradient in northern New Mexico. Garnet crystals contain curved ‘sigmoidal’ inclusion trails. In low-grade chlorite schists, these trails can be correlated directly with matrix crenulations of an older schistosity (S1). The garnet crystals preferentially grew in crenulation hinges, but some late crenulations nucleated on existing garnet porphyroblasts. At higher grade, biotite, staurolite and andalusite porphyroblasts occur in a homogeneous S2 foliation primarily defined by matrix biotite and ilmenite. Biotite porphyroblasts have straight to sigmoidal inclusion trails that also represent the weakly folded S1 schistosity. Staurolite and andalusite contain distinctive inclusion-rich and inclusion-poor domains that represent a relict S2 differentiated crenulation cleavage. Together, the inclusion relationships document the progressive development of the S2 fabric through six stages. Garnet and biotite porphyroblasts contain stage 2 or 3 crenulations; staurolite and andalusite generally contain stage 4 crenulations, and the matrix typically contains a homogeneous stage 6 cleavage. The similarity of inclusion relationships across spatially and temporally distinct metamorphic field gradients of widely differing scales suggests a fundamental link between metamorphism and deformation. Three end-member relationships may be involved: (1) tectonic linkages, where similar P-T-time histories and similar bulk compositions combine to produce similar metamorphic and structural signatures; (2) deformation-controlled linkages, where certain microstructures, particularly crenulation hinges, are favourable environments for the nucleation and/or growth of porphyroblasts; and (3) reaction-controlled linkages, where metamorphic reactions, particularly dehydration reactions, are associated with an increase in the rate of fabric development. A general model is proposed in which (1) garnet and biotite porphyroblasts preferentially grow in stage 2 or 3 crenulation hinges, and (2) chlorite-consuming metamorphic reactions lead to pulses in the rate of fabric evolution. The data suggest that fabric development and porphyroblast growth may have been quite rapid, of the order of several hundreds of thousands of years, in these rocks. These microstructures and processes may be characteristic of low-pressure, first-cycle metamorphic belts.  相似文献   

14.
Porphyroblast inclusion trails: the key to orogenesis   总被引:8,自引:0,他引:8  
Detailed microstructural analysis of inclusion trails in hundreds of garnet porphyroblasts from rocks where spiral-shaped inclusion trails are common indicates that spiral-shaped trails did not form by rotation of the growing porphyroblasts relative to geographic coordinates. They formed instead by progressive growth by porphyroblasts over several sets of near-orthogonal foliations that successively overprint one another. The orientations of these near-orthogonal foliations are alternately near-vertical and near-horizontal in all porphyroblasts examined. This provides very strong evidence for lack of porphyroblast rotation.
The deformation path recorded by these porphyroblasts indicates that the process of orogenesis involves a multiply repeated two-stage cycle of: (1) crustal shortening and thickening, with the development of a near-vertical foliation with a steep stretching lineation; followed by (2) gravitational instability and collapse of this uplifted pile with the development of a near-horizontal foliation, gravitational spreading, near-coaxial vertical shortening and consequent thrusting on the orogen margins. Correlation of inclusion trail overprinting relationships and asymmetry in porphyroblasts with foliation overprinting relationships observed in the field allows determination of where the rocks studied lie and have moved within an orogen. This information, combined with information about chemical zoning in porphyroblasts, provides details about the structural/metamorphic ( P-T-t ) paths the rocks have followed.
The ductile deformation environment in which a porphyroblast can rotate relative to geographic coordinates during orogenesis is spatially restricted in continental crust to vertical, ductile tear/transcurrent faults across which there is no component of bulk shortening or transpression.  相似文献   

15.
Abstract Most porphyroblasts never rotate during ductile deformation, provided they do not internally deform during subsequent events, with the exception of relatively uncommon but spectacular examples of spiralling garnets. Instead, the surrounding foliation rotates and reactivates due to partitioning of the deformation around the porphyroblast. Consequently, porphyroblasts commonly preserve the orientation of early foliations and stretching lineations within strain shadows or inclusion trails, even where these structures have been rotated or obliterated in the matrix due to subsequent deformation. These relationships can be readily used to help develop an understanding of the processes of foliation development and they demonstrate the prominent role of reactivation of old foliations during subsequent deformation. They can also be used to determine the deformation history, as porphyroblasts only rotate when the deformation cannot partition and involves progressive shearing with no combined bulk shortening component.  相似文献   

16.
Porphyroblast inclusion trails have the potential to provide critical information about tectonometamorphic events. Recently, however, traditional interpretations of inclusion trails have been called into question by the suggestions that porphyroblasts do not rotate during non-coaxial deformation and that apparent spiral inclusion trails can be generated in coaxial deformation. We present a new computer model that simulates inclusion trail development. Model results suggest: (1) that the extent of porphyroblast rotation is controlled by conditions at the porphyroblast-matrix boundary; (2) that curved inclusion trails may develop in unrotated porphyroblasts; (3) that classic "snowball" inclusion trails are most simply explained by rotational growth histories; and (4) that some of the observations used to support the view that porphyroblasts do not rotate (e.g. weakly sigmoidal inclusion trails, apparent truncations of inclusion trails) can be accounted for by variations in the growth rate of rotating porphyroblasts.  相似文献   

17.
18.
变质岩中变斑晶成核生长及旋转问题的述评   总被引:3,自引:0,他引:3  
发生递进变形的变质岩中,斑晶成核生长于变形分解作用的递进缩短带内,斑晶的大小受两侧递进剪切变形带的限制。除少数螺旋状石榴石外,产于共轴或非共轴递进不均匀缩短变形过程中的斑晶不发生旋转,斑晶内部包体形迹(Si)反映外部面理(Se)的再活化。利用未旋转斑晶中的包体形迹可以确定早期面理的取向,寻找构造演化的时间标志,确定褶皱轴迹等,本文给出了斑晶中包体形迹弯曲的成因模式图。  相似文献   

19.
The sequence of growth of garnet, staurolite and aluminosilicate in Fe-rich metapelitic rocks from the Canigou massif, Pyrenees, is established using evidence of inclusion, reaction and pseudomorphing textures between the different minerals, compositional zoning patterns in garnet and staurolite (that can be related to the KFMASH reaction grid), and the geometric relations between inclusion trails in the porphyroblasts and the matrix microstructures. The evidence indicates that garnet and staurolite commenced growth before aluminosilicate in all cases, even where all three are in textural equilibrium. Interpretation of the reaction textures between the porphyroblasts and of the compositional zoning in garnet and staurolite in terms of the KFMASH reaction grid indicates the importance of continuous reactions in the development of these phases. Some garnet and staurolite porphyroblasts underwent renewed growth during breakdown, producing rims enriched in Mn and Zn respectively. The presence of aluminosilicate in these assemblages (i.e. the absence of a clear andalusite-absent zone in the field) is attributed to a strong pressure-dependence for the aluminosilicate-producing reactions. Porphyroblast-matrix microstructural relations indicate that Hercynian metamorphism in the massif was synchronous with the development of the regional subhorizontal foliation (S3).  相似文献   

20.
根据变质构造和镜下显微组构的研究,提出了与Zwart,H.J.(1962,1963)的变斑晶包体S形构造成因观点不同的解释。结合包体和基质矿物成分、组构特征建立了递增变质作用中变斑状特征变质矿物形成的相对时间标志。以此确定了阿尔泰变质地带递增变质作用过程中一系列特征变质矿物及其相应的变质带的形成顺序。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号