首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 170 毫秒
1.
Ultramafic cumulates, mainly crustal true wehrlites, were discovered and described in the mantle–crust transition zone (MTZ) and the extremely lower layered gabbro sequence of the Ras Salatit ophiolite, Central Eastern Desert, Egypt. They form either boudinaged lensoidal tabular bodies or interdigitated layers often concordant with the planolinear fabrics of the Ras Salatit ophiolite rocks. The contact between wehrlites and the host MTZ dunite or layered gabbro is razor sharp, lobate and/or sinuous, without chilled margins or any visible deformations. The Ras Salatit wehrlites are orthopyroxene-free and composed mainly of olivine and clinopyroxene. They are texturally equilibrated and show a characteristic poikilitic texture. Crystallization order of the Ras Salatit wehrlites is olivine/spinel followed by clinopyroxene with the absence of plagioclase. Olivine and clinopyroxene of the Ras Salatit wehrlites are compositionally uniform and conspicuously high in Mg#, mostly around 0.93 and 0.92, respectively. Moreover, the clinopyroxene shows low Ti and Al contents coupled with marked depletion in LILE. The calculated melt in equilibrium with clinopyroxene from the Ras Salatit wehrlites is largely similar to lavas from the Izu-Bonin forearc. Given the above characteristics, the Ras Salatit wehrlites were produced by crystal accumulation from a hydrous depleted basaltic/tholeiitic melt corresponding to temperatures between 1,000 and 1,100°C at the oceanic crustal pressure (~2 kbar). The involved hydrous tholeiitic melt has been probably formed by fluid-assisted partial melting of a refractory mantle source (similar to the underlying harzburgites) in a somewhat shallow sub-arc environment.  相似文献   

2.
The near-liquidus crystallization of a high-K basalt (PST-9golden pumice, 49·4 wt % SiO2, 1·85 wt % K2O,7·96 wt % MgO) from the present-day activity of Stromboli(Aeolian Islands, Italy) has been experimentally investigatedbetween 1050 and 1175°C, at pressures from 50 to 400 MPa,for melt H2O concentrations between 1·2 and 5·5wt % and NNO ranging from –0·07 to +2·32.A drop-quench device was systematically used. AuPd alloys wereused as containers in most cases, resulting in an average Feloss of 13% for the 34 charges studied. Major crystallizingphases include clinopyroxene, olivine and plagioclase. Fe–Tioxide was encountered in a few charges. Clinopyroxene is theliquidus phase at 400 MPa down to at least 200 MPa, followedby olivine and plagioclase. The compositions of all major phasesand glass vary systematically with the proportion of crystals.Ca in clinopyroxene sensitively depends on the H2O concentrationof the coexisting melt, and clinopyroxene Mg-number shows aweak negative correlation with NNO. The experimental data allowthe liquidus surface of PST-9 to be defined. When used in combinationwith melt inclusion data, a consistent set of pre-eruptive pressures(100–270 MPa), temperatures (1140–1160°C) andmelt H2O concentrations is obtained. Near-liquidus phase equilibriaand clinopyroxene Ca contents require melt H2O concentrations<2·7–3·6 and 3 ± 1 wt %, respectively,overlapping with the maximum frequency of glass inclusion data(2·5–2·7 wt % H2O). For olivine to crystallizeclose to the liquidus, pressures close to 200 MPa are needed.Redox conditions around NNO = +0·5 are inferred fromclinopyroxene compositions. The determined pre-eruptive parametersrefer to the storage region of golden pumice melts, which islocated at a depth of around 7·5 km, within the metamorphicarc crust. Golden pumice melts ascending from their storagezone along an adiabat will not experience crystallization ontheir way to the surface. KEY WORDS: basalt; pumice; experiment; phase equilibria; Stromboli  相似文献   

3.
In this paper we describe the mineralogy and geochemistry of basanites and melt inclusions in minerals from the Tergesh pipe, northern Minusinsk Depression. The rocks are composed of olivine and clinopyroxene phenocrysts and a groundmass of olivine, clinopyroxene, titanomagnetite, plagioclase, apatite, ilmenite, and glass. Melt inclusions were found only in the olivine and clinopyroxene phenocrysts. Primary melt inclusions in olivine contain glass, rh?nite, clinopyroxene, a sulfide globule, and low-density fluid. The phase composition of melt inclusions in clinopyroxene is glass + low-density fluid ± xenogenous magnetite. According to thermometric investigations, the olivine phenocrysts began crystallizing at T = 1280–1320°C and P > 3.5 kbar, whereas groundmass minerals were formed under near-surface conditions at T ≤ 1200°C. The oxygen fugacity gradually changed during basanite crystallization from oxidizing (NNO) to more reducing conditions (QFM). The investigation of glass compositions (heated and unheated inclusions in phenocrysts and groundmass) showed that the evolution of a basanite melt during its crystallization included mainly an increase in SiO2, Al2O3, and alkalis, while a decrease in femic components, and the melt composition moved gradually toward tephriphonolite and trachyandesite. Geochemical evidence suggests that the primary basanite melt was derived from a mantle source affected by differentiation. Original Russian Text ? T.Yu. Timina, V.V. Sharygin, A.V. Golovin, 2006, published in Geokhimiya, 2006, No. 8, pp. 814–833.  相似文献   

4.
Mantle xenoliths (lherzolites, clinopyroxene dunites, wehrlites, and clinopyroxenites) in the Early Cretaceous volcanic rocks of Makhtesh Ramon (alkali olivine basalts, basanites, and nephelinites) represent metasomatized mantle, which served as a source of basaltic melts. The xenoliths bear signs of partial melting and previous metasomatic transformations. The latter include the replacement of orthopyroxene by clinopyroxene in the lherzolites and, respectively, the wide development of wehrlites and olivine clinopyoroxenites. Metasomatic alteration of the peridotites is accompanied by a sharp decrease in Mg, Cr, and Ni, and increase of Ti, Al, Ca contents and 3+Fe/2+Fe ratio, as well as the growth of trace V, Sc, Zr, Nb, and Y contents. The compositional features of the rocks such as the growth of 3+Fe/2+Fe and the wide development of Ti-magnetite in combination with the complete absence of sulfides indicate the high oxygen fugacity during metasomatism and the low sulfur concentration, which is a distinctive signature of fluid mode during formation of the Makhtesh Ramon alkali basaltic magma. Partial melting of peridotites and clinopyroxenites is accompanied by the formation of basanite or alkali basaltic melt. Clino- and orthopyroxenes are subjected to melting. The crystallization products of melt preserved in the mantle rock are localized in the interstices and consist mainly of fine-grained clinopyroxene, which together with Ti-magnetite, ilmenite, amphibole, rhenite, feldspar, and nepheline, is cemented by glass corresponding to quartz–orthopyroxene, olivine–orthopyroxene, quartz–feldspar, or nepheline–feldspar mixtures of the corresponding normative minerals. The mineral assemblages of xenoliths correspond to high temperatures. The high-Al and high-Ti clinopyroxene, calcium olivine, feldspar, and feldspathoids, amphibole, Ti-magnetite, and ilmenite are formed at 900–1000°. The study of melt and fluid inclusions in minerals from xenoliths indicate liquidus temperatures of 1200–1250°C, solidus temperatures of 1000–1100°C, and pressure of 5.9–9.5 kbar. Based on the amphibole–plagioclase barometer, amphibole and coexisting plagioclase were crystallized in clinopyroxenites at 6.5–7.0 kbar.  相似文献   

5.
Crystallization experiments were performed at 200 MPa in thetemperature range 1150–950°C at oxygen fugacitiescorresponding to the quartz–fayalite–magnetite (QFM)and MnO–Mn3O4 buffers to assess the role of water andfO2 on phase relations and differentiation trends in mid-oceanridge basalt (MORB) systems. Starting from a primitive (MgO9·8 wt %) and an evolved MORB (MgO 6·49 wt %),crystallization paths with four different water contents (0·35–4·7wt % H2O) have been investigated. In primitive MORB, olivineis the liquidus phase followed by plagioclase + clinopyroxene.Amphibole is present only at water-saturated conditions below1000°C, but not all fluid-saturated runs contain amphibole.Magnetite and orthopyroxene are not stable at low fO2 (QFM buffer).Residual liquids obtained at low fO2 show a tholeiitic differentiationtrend. The crystallization of magnetite at high fO2 (MnO–Mn3O4buffer) results in a decrease of melt FeO*/MgO ratio, causinga calc-alkaline differentiation trend. Because the magnetitecrystallization temperature is nearly independent of the H2Ocontent, in contrast to silicate minerals, the calc-alkalinedifferentiation trend is more pronounced at high water contents.Residual melts at 950°C in a primitive MORB system havecompositions approaching those of oceanic plagiogranites interms of SiO2 and K2O, but have Ca/Na ratios and FeO* contentsthat are too high compared with the natural rocks, implyingthat fractionation processes are necessary to reach typicalcompositions of natural oceanic plagiogranites. KEY WORDS: differentiation; MORB; oxygen fugacity; water activity; oceanic plagiogranite  相似文献   

6.
Extrusive and intrusive igneous rocks represent different parts of a magmatic system and ultimately provide complementary information about the processes operating beneath volcanoes. To shed light on such processes, we have examined and quantified the textures and mineral compositions of plutonic and cumulate xenoliths and lavas from Bequia, Lesser Antilles arc. Both suites contain assemblages of iddingsitized olivine, plagioclase, clinopyroxene and spinel with rare orthopyroxene and ilmenite. Mineral zoning is widespread, but more protracted in lavas than xenoliths. Plagioclase cores and olivine have high anorthite (An?≤?98) and low forsterite (Fo?≤?84) compositions respectively, implying crystallisation from a hydrous mafic melt that was already fractionated. Xenolith textures range from adcumulate to orthocumulate with variable mineral crystallisation sequences. Textural criteria are used to organize the xenoliths into six groups. Amphibole, notably absent from lavas, is a common feature of xenoliths, together with minor biotite and apatite. Bulk compositions of xenoliths deviate from the liquid line of descent of lavas supporting a cumulate origin with varying degrees of reactive infiltration by evolved hydrous melts, preserved as melt inclusions in xenolith crystals. Volatile saturation pressures in melt inclusions indicate cumulate crystallization over a 162–571 MPa pressure range under conditions of high dissolved water contents (up to 7.8 wt% H2O), consistent with a variety of other thermobarometric estimates. Phase assemblages of xenoliths are consistent with published experimental data on volatile-saturated low-magnesium and high-alumina basalts and basaltic andesite from the Lesser Antilles at pressures of 200–1000 MPa, temperatures of 950–1050 °C and dissolved H2O contents of 4–7 wt%. Once extracted from mid-crustal mushes, residual melts ascend to higher levels and undergo H2O-saturated crystallization in shallow, pre-eruptive reservoirs to form phenocrysts and glomerocrysts. The absence of amphibole from lavas reflects instability at low pressures, whereas its abundance in xenoliths testifies to its importance in mid-crustal differentiation processes. A complex, vertically extensive (6 to at least 21 km depth) magmatic system is inferred beneath Bequia. Xenoliths represent fragments of the mush incorporated into ascending magmas. The widespread occurrence of evolved melts in the mush, but the absence of erupted evolved magmas, in contrast to islands in the northern Lesser Antilles, may reflect the relative immaturity of the Bequia magmatic system.  相似文献   

7.
Mid-ocean ridge basalts (MORBs) from East Pacific Rise (EPR) 13°N are analysed for major and trace elements, both of which show a continuous evolving trend. Positive MgO–Al2O3 and negative MgO–Sc relationships manifest the cotectic crystallization of plagioclase and olivine, which exist with the presence of plagioclase and olivine phenocrysts and the absence of clinopyroxene phenocrysts. However, the fractionation of clinopyroxene is proven by the positive correlation of MgO and CaO. Thus, MORB samples are believed to show a “clinopyroxene paradox”. The highest magnesium-bearing MORB sample E13-3B (MgO=9.52%) is modelled for isobaric crystallization with COMAGMAT at different pressures. Observed CaO/Al2O3 ratios can be derived from E13-3B only by fractional crystallization at pressure >4 ±1 kbar, which necessitates clinopyroxene crystallization and is not consistent with cotectic crystallization of olivine plus plagioclase in the magma chamber (at pressure ~1 kbar). The initial compositions of the melt inclusions, which could represent potential parental magmas, are reconstructed by correcting for post-entrapment crystallization (PEC). The simulated crystallization of initial melt inclusions also produce observed CaO/Al2O3 ratios only at >4±1 kbar, in which clinopyroxene takes part in crystallization. It is suggested that MORB magmas have experienced clinopyroxene fractionation in the lower crust, in and below the Moho transition zone. The MORB magmas have experienced transition from clinopyroxene+plagioclase+olivine crystallization at >4±1 kbar to mainly olivine+plagioclase crystallization at <1 kbar, which contributes to the explanation of the “clinopyroxene paradox”.  相似文献   

8.
A garnet-bearing tonalitic porphyry from the Achiq Kol area, northeast Tibetan Plateau has been dated by SHRIMP U-Pb zircon techniques and gives a Late Triassic age of 213 ± 3 Ma. The porphyry contains phenocrysts of Ca-rich, Mn-poor garnet (CaO > 5 wt%; MnO < 3 wt%), Al-rich hornblende (Al2O3 ~ 15.9 wt%), plagioclase and quartz, and pressure estimates for hornblende enclosing the garnet phenocrysts yield values of 8–10 kbar, indicating a minimum pressure for the garnet. The rock has SiO2 of 60–63 wt%, low MgO (<2.0 wt%), K2O (<1.3 wt%), but high Al2O3 (>17 wt%) contents, and is metaluminous to slightly peraluminous (ACNK = 0.89–1.05). The rock samples are enriched in LILE and LREE but depleted in Nb and Ti, showing typical features of subduction-related magmas. The relatively high Sr/Y (~38) ratios and low HREE (Yb < 0.8 ppm) contents suggest that garnet is a residual phase, while suppressed crystallization of plagioclase and lack of negative Eu anomalies indicate a high water fugacity in the magma. Nd–Sr isotope compositions of the rock (εNdT = −1.38 to −2.33; 87Sr/86Sri = 0.7065–0.7067) suggest that both mantle- and crust-derived materials were involved in the petrogenesis, which is consistent with the reverse compositional zoning of plagioclase, interpreted to indicate magma mixing. Both garnet phenocrysts and their ilmenite inclusions contain low MgO contents which, in combination with the oxygen isotope composition of garnet separates (+6.23‰), suggests that these minerals formed in a lower crust-derived felsic melt probably in the MASH zone. Although the rock samples are similar to adakitic rocks in many aspects, their moderate Sr contents (<260 ppm) and La/Yb ratios (mostly 16–21) are significantly lower than those of adakitic rocks. Because of high partition coefficients for Sr and LREE, fractionation of apatite at an early stage in the evolution of the magma may have effectively decreased both Sr and LREE in the residual melt. It is suggested that extensive crystallization of apatite as an early phase may prevent some arc magmas from evolving into adakitic rocks even under high water fugacity.  相似文献   

9.
The influence of oxygen fugacity and water on phase equilibria and the link between redox conditions and water activity were investigated experimentally using a primitive tholeiitic basalt composition relevant to the ocean crust. The crystallization experiments were performed in internally heated pressure vessels at 200 MPa in the temperature range 940–1,220°C. The oxygen fugacity was measured using the H2-membrane technique. To study the effect of oxygen fugacity, three sets of experiments with different hydrogen fugacities were performed, showing systematic effects on the phase relations and compositions. In each experimental series, the water content of the system was varied from nominally dry to water-saturated conditions, causing a range of oxygen fugacities varying by ~3 log units per series. The range in oxygen fugacity investigated spans ~7 log units. Systematic effects of oxygen fugacity on the stability and composition of the mafic silicate phases, Cr–spinel and Fe–Ti oxides, under varying water contents were recorded. The Mg# of the melt, and therefore also the Mg# of olivine and clinopyroxene, changed systematically as a function of oxygen fugacity. An example of the link between oxygen fugacity and water activity under hydrogen-buffered conditions is the change in the crystallization sequence (olivine and Cr–spinel) due to a change in the oxygen fugacity caused by an increase in the water activity. The stability of magnetite is restricted to highly oxidizing conditions. The absence of magnetite in most of the experiments allows the determination of differentiation trends as a function of oxygen fugacity and water content, demonstrating that in an oxide-free crystallization sequence, water systematically affects the differentiation trend, while oxygen fugacity seems to have a negligible effect.  相似文献   

10.
In order to shed light on upper crustal differentiation of mantle-derived basaltic magmas in a subduction zone setting, we have determined the mineral chemistry and oxygen and hydrogen isotope composition of individual cumulus minerals in plutonic blocks from St. Vincent, Lesser Antilles. Plutonic rock types display great variation in mineralogy, from olivine–gabbros to troctolites and hornblendites, with a corresponding variety of cumulate textures. Mineral compositions differ from those in erupted basaltic lavas from St. Vincent and in published high-pressure (4–10 kb) experimental run products of a St. Vincent high-Mg basalt in having higher An plagioclase coexisting with lower Fo olivine. The oxygen isotope compositions (δ18O) of cumulus olivine (4.89–5.18‰), plagioclase (5.84–6.28‰), clinopyroxene (5.17–5.47‰) and hornblende (5.48–5.61‰) and hydrogen isotope composition of hornblende (δD = −35.5 to −49.9‰) are all consistent with closed system magmatic differentiation of a mantle-derived basaltic melt. We employed a number of modelling exercises to constrain the origin of the chemical and isotopic compositions reported. δ18OOlivine is up to 0.2‰ higher than modelled values for closed system fractional crystallisation of a primary melt. We attribute this to isotopic disequilibria between cumulus minerals crystallising at different temperatures, with equilibration retarded by slow oxygen diffusion in olivine during prolonged crustal storage. We used melt inclusion and plagioclase compositions to determine parental magmatic water contents (water saturated, 4.6 ± 0.5 wt% H2O) and crystallisation pressures (173 ± 50 MPa). Applying these values to previously reported basaltic and basaltic andesite lava compositions, we can reproduce the cumulus plagioclase and olivine compositions and their associated trend. We conclude that differentiation of primitive hydrous basalts on St. Vincent involves crystallisation of olivine and Cr-rich spinel at depth within the crust, lowering MgO and Cr2O3 and raising Al2O3 and CaO of residual melt due to suppression of plagioclase. Low density, hydrous basaltic and basaltic andesite melts then ascend rapidly through the crust, stalling at shallow depth upon water saturation where crystallisation of the chemically distinct cumulus phases observed in this study can occur. Deposited crystals armour the shallow magma chamber where oxygen isotope equilibration between minerals is slowly approached, before remobilisation and entrainment by later injections of magma.  相似文献   

11.
The results of an experimental study of limestone assimilation by hydrated basaltic magmas in the range 1,050–1,150°C, 0.1–500 MPa are reported. Alkali basalts doped with up to 19 wt% of Ca, Mg-carbonates were equilibrated in internally heated pressure vessels and the resulting phase relationships are described. The major effects of carbonate incorporation are: (1) generation of CO2-rich fluid phases; (2) change in liquidus phase equilibria; the crystallization of Ca-rich clinopyroxene is favored and the other phases (e.g. olivine, plagioclase), present in the absence of carbonate assimilation, are consumed. As a consequence of the massive clinopyroxene crystallization, the residual melt is strongly silica-depleted and becomes nepheline-normative. Compositional and mineralogical evolutions observed in Mt. Vesuvius eruptive products match those documented in our experiments with added carbonates, suggesting the possibility that carbonate assimilation increased during the last 25 ka of activity. In Central-Southern Italy, carbonate assimilation at shallow levels probably superimposes on deeper source heterogeneities.  相似文献   

12.
Experimental Constraints on the Origin of the 1991 Pinatubo Dacite   总被引:12,自引:2,他引:12  
Crystallization (dacite) and interaction (dacite–peridotite)experiments have been performed on the 1991 Pinatubo dacite(Luzon Island, Philippines) to constrain its petrogenesis. Inthe dacite–H2O system at 960 MPa, magnetite and eitherclinopyroxene (low H2O) or amphibole (high H2O) are the liquidusphases. No garnet is observed at this pressure. Dacite–peridotite interaction at 920 MPa produces massive orthopyroxenecrystallization, in addition to amphibole ± phlogopite.Amphibole crystallizing in dacite at 960 MPa has the same compositionas the aluminium-rich hornblende preserved in the cores of amphibolephenocrysts in the 1991 dacite, suggesting a high-pressure stageof dacite crystallization with high melt H2O contents (>10wt %) at relatively low temperature (<950°C). The compositionsof plagioclase, amphibole and melt inclusion suggest that thePinatubo dacite was water-rich, oxidized and not much hotterthan 900°C, when emplaced into the shallow magma reservoirin which most phenocrysts precipitated before the onset of the1991 eruption. The LREE-enriched REE pattern of the whole-rockdacite demands garnet somewhere during its petrogenesis, whichin turn suggests high-pressure derivation. Partial melting ofsubducted oceanic crust yields melts unlike the Pinatubo dacite.Interaction of these slab melts with sub-arc peridotite is unableto produce a Pinatubo type of dacite, nor is a direct mantleorigin conceivable on the basis of our peridotite–daciteinteraction experimental results. Dehydration melting of underplatedbasalts requires unrealistically high temperatures and doesnot yield dacite with the low FeO/MgO, and high H2O, Ni andCr contents typical of the Pinatubo dacite. The most plausibleorigin of the Pinatubo dacite is via high-pressure fractionationof a hydrous, oxidized, primitive basalt that crystallized amphiboleand garnet upon cooling. Dacite melts produced in this way weredirectly expelled from the uppermost mantle or lower crust toshallow-level reservoirs from which they erupted occasionally.Magmas such as the Pinatubo dacite may provide evidence forthe existence of particularly H2O-rich conditions in the sub-arcmantle wedge rather than the melting of the young, hot subductingoceanic plate. KEY WORDS: Pinatubo dacite; slab melt; experimental petrology; arc magmas  相似文献   

13.
Mid-ocean ridge basalts (MORBs) from East Pacific Rise (EPR) 13°N are analysed for major and trace elements, both of which show a continuous evolving trend. Positive MgO-Al2O3 and negative MgO-Sc relationships manifest the cotectic crystallization of plagioclase and olivine, which exist with the presence of plagioclase and olivine phenocrysts and the absence of clinopyroxene phenocrysts. However, the fractionation of clinopyroxene is proven by the positive correlation of MgO and CaO. Thus, MORB samples are believed to show a "clinopyroxene paradox". The highest magnesium.bearing MORB sample E13-3B (MGO=9.52%) is modelled for isobaric crystallization with COMAGMAT at different pressures. Observed CaO/Al2O3 ratios can be derived from E13-3B only by fractional crystallization at pressure >4±1 kbar, which necessitates clinopyroxene crystallization and is not consistent with cotectic crystallization of olivine plus plagioclase in the magma chamber (at pressure~1 kbar). The initial compositions of the melt inclusions, which could represent potential parental magmas, are reconstructed by correcting for post-entrapment crystallization (PEC). The simulated crystallization of initial melt inclusions also produce observed CaO/Al2O3 ratios only at >4±1 kbar, in which clinopyroxene takes part in crystallization. It is suggested that MORB magmas have experienced clinopyroxene fractionation in the lower crust, in and below the Moho transition zone. The MORB magmas have experienced transition from clinopyroxene+plagioclase+olivine crystallization at >4±1 kbar to mainly olivine+plagioclase crystallization at <1 kbar, which contributes to the explanation of the "clinopyroxene paradox".  相似文献   

14.
 Picritic units of the Miocene shield volcanics on Gran Canaria, Canary Islands, contain olivine and clinopyroxene phenocrysts with abundant primary melt, crystal and fluid inclusions. Composition and crystallization conditions of primary magmas in equilibrium with olivine Fo90-92 were inferred from high-temperature microthermometric quench experiments, low-temperature microthermometry of fluid inclusions and simulation of the reverse path of olivine fractional crystallization based on major element composition of melt inclusions. Primary magmas parental for the Miocene shield basalts range from transitional to alkaline picrites (14.7–19.3 wt% MgO, 43.2–45.7 wt% SiO2). Crystallization of these primary magmas is believed to have occurred over the temperature range 1490–1150° C at pressures ≈5 kbar producing olivine of Fo80.6-90.2, high-Ti chrome spinel [Mg/ (Mg+Fe2+)=0.32–0.56, Cr/(Cr+Al)=0.50–0.78, 2.52–8.58 wt% TiO2], and clinopyroxene [Mg/(Mg+Fe)=0.79–0.88, Wo44.1-45.3, En43.9-48.0, Fs6.8-11.0] which appeared on the liquidus together with olivine≈Fo86. Redox conditions evolved from intermediate between the QFM and WM buffers to late-stage conditions of NNO+1 to NNO+2. The primary magmas crystallized in the presence of an essentially pure CO2 fluid. The primary magmas originated at pressures >30 kbar and temperatures of 1500–1600° C, assuming equilibrium with mantle peridotite. This implies melting of the mantle source at a depth of ≈100 km within the garnet stability field followed by migration of melts into magma reservoirs located at the boundary between the upper mantle and lower crust. The temperatures and pressures of primary magma generation suggest that the Canarian plume originated in the lower mantle at depth ≈900 km that supports the plume concept of origin of the Canary Islands. Received: 23 October 1995/Accepted: 21 February 1996  相似文献   

15.
Plagioclase-bearing peridotites are commonly associated with gabbroic rocks sampled around the Moho Transition Zone. Based on mineral chemistry, texture, and spatial relations, the formation of plagioclase-bearing peridotites has been attributed to impregnation of basalt into residual peridotites. We conducted reactive dissolution and crystallization experiments to test this hypothesis by reacting a primitive mid-ocean ridge basalt with a melt-impregnated lherzolite at 1,300 °C and 1 GPa and then cooling to 1,050 °C as pressure decreased to 0.7 GPa. Crystallization during cooling produced lithologic sequences of gabbro–wehrlite or gabbro–wehrlite–peridotite, depending on reaction time. Wehrlitic and peridotitic sections contain significant amounts of plagioclase interstitial to olivine and clinopyroxene and plagioclase compositions are spatially homogeneous. Clinopyroxene in the wehrlite–peridotite section is reprecipitated from the melt and exhibits poikilitic texture with small rounded olivine chadacrysts. Mineral composition in olivine and clinopyroxene varies spatially, both at the scale of the sample and within individual grains. Olivine grains that crystallized close to the melt–peridotite interface are enriched in iron due to their proximity to the basaltic melt reservoir. Consistent with many field studies, we observed gradual spatial variation in olivine and clinopyroxene composition across a lithologically sharp boundary between the gabbro and wehrlite–peridotite. Plagioclase compositions show no obvious dependence on distance from the melt–rock interface and were precipitated from late-stage trapped melts. Compositional trends of olivine, pyroxene, and plagioclase are consistent with previous experimental results and natural observations of the Moho Transition Zone. Different lithological sequences form based primarily on the melt–rock ratio, composition of the melt and host peridotite, and thermochemical conditions, but are expected to grade from gabbro to wehrlite or troctolite to peridotite. Plagioclase-bearing peridotite represents the low melt–rock ratio end member where pyroxene is only partially replaced by olivine and melt, whereas dunite is expected to form where melts overwhelm and consume all other phases. This study confirms that under nominally anhydrous conditions, the gabbro–wehrlite–plagioclase-peridotite sequence can be formed by reaction between basalt and lherzolite and subsequent crystallization at intermediate to low pressures. Melt–rock reaction is a fundamental process in the formation of new crust at the shallowest part of the melting column where pyroxene-undersaturated melts percolate through depleted peridotite.  相似文献   

16.
The chemical compositions of melt inclusions in a primitive and an evolved basalt recovered from the mid-Atlantic ridge south of the Kane Fracture Zone (23°–24°N) are determined. The melt inclusions are primitive in composition (0.633–0.747 molar Mg/(Mg+Fe2+), 1.01–0.68 wt% TiO2) and are comparable to other proposed parental magmas except in having higher Al2O3 and lower CaO. The primitive melt inclusion compositions indicate that the most primitive magmas erupted in this region are not near primary magma compositions. Olivine and plagioclase microphenocrysts are close to exchange equilibrium with their respective basalt glasses, whose compositions are displaced toward olivine from 1 atm three phase saturation. The most primitive melt inclusion compositions are close to exchange equilibrium with the anorthitic cores of zoned plagioclases (An78.3-An83.1; the hosts for the melt inclusions in plagioclase) and with olivines more forsteritic (Fo89-Fo91) than the olivine microphenocrysts (the hosts for the melt inclusions in olivine). Xenocrystic olivine analyzed is Fo89 but contains no melt inclusions. These observations indicate that olivines have exchanged components with the melt after melt inclusion entrapment, whereas plagioclase compositions have remained the same since melt inclusion entrapment. Common denominator element ratio diagrams and oxide versus oxide variation diagrams show that the melt inclusion compositions, which represent liquids higher along the liquid line of descent, are related to the glass compositions by the fractionation of olivine, plagioclase and clinopyroxene (absent from the mincral assemblage), probably occurring at elevated pressures. A model is proposed whereby clinopyroxene segregates from the melt at elevated pressures (to account for its absence in the erupted lavas that have the chemical imprint of clinopyroxene fractionation). Zoned plagioclases in the erupted lavas are thought to be survivors of decompressional melting during magma ascent. Since similar primitive melt inclusions occur in olivine microphenocrysts and in the cores of zoned plagioclases, any model must account for all phases present.  相似文献   

17.
 Investigations of peridotite xenolith suites have identified a compositional trend from lherzolite to magnesian wehrlite in which clinopyroxene increases at the expense of orthopyroxene and aluminous spinel, and in which apatite may be a minor phase. Previous studies have shown that this trend in mineralogy and chemical composition may result from reaction between sodic dolomitic carbonatite melt and lherzolite at pressures around 1.7 to 2 GPa. This reaction results in decarbonation of the carbonatite melt, releasing CO2-rich fluid. In this study, we have experimentally reversed the decarbonation reaction by taking two natural wehrlite compositions and reacting them with CO2 at a pressure of 2.2 GPa and temperatures from 900 to 1150° C. Starting materials were pargasite-bearing wehrlites, one with minor apatite (composition 71001*) and one without apatite (composition 70965*). At lower temperatures (900° C) the products were apatite+pargasite+magnesite harzburgite for runs using composition 71001*, and pargasite+dolomite lherzolite for runs using composition 70965*. At and above 1000° C, carbonatite melt with harzburgite residue (olivine+orthopyroxene+spinel) and with lherzolite residue (olivine+orthopyroxene+clinopyroxene+ spinel) were produced respectively. Phase compositions in reactants and products are consistent with the documented carbonatite/lherzolite reactions, and also permit estimation of the carbonatite melt compositions. In both cases the melts are sodic dolomitic carbonatites. The study supports the hypothesis of a significant role for ephemeral, sodic dolomitic melts in causing metasomatic changes in the lithosphere at P≤2 GPa. The compositions of wehrlites imply fluxes of CO2, released by metasomatic reactions, which are locally very large at around 5 wt% CO2. Received: 15 December 1995/Accepted: 14 February 1996  相似文献   

18.
 All six Holocene volcanic centers of the Andean Austral Volcanic Zone (AVZ; 49–54°S) have erupted exclusively adakitic andesites and dacites characterized by low Yb and Y concentrations and high Sr/Y ratios, suggesting a source with residual garnet, amphibole and pyroxene, but little or no olivine and plagioclase. Melting of mafic lower crust may be the source for adakites in some arcs, but such a source is inconsistent with the high Mg# of AVZ adakites. Also, the AVZ occurs in a region of relatively thin crust (<35 km) within which plagioclase rather than garnet is stable. The source for AVZ adakites is more likely to be subducted oceanic basalt, recrystallized to garnet-amphibolite or eclogite. Geothermal models indicate that partial melting of the subducted oceanic crust is probable below the Austral Andes due to the slow subduction rate (2 cm/year) and the young age (<24 Ma) of the subducted oceanic lithosphere. Geochemical models for AVZ adakites are also consistent with a large material contribution from subducted oceanic crust (35–90% slab-derived mass), including sediment (up to 4% sediment-derived mass, representing approximately 15% of all sediment subducted). Variable isotopic and trace-element ratios observed for AVZ adakites, which span the range reported for adakites world-wide, require multistage models involving melting of different proportions of subducted basalt and sediment, as well as an important material contribution from both the overlying mantle wedge (10–50% mass contribution) and continental crust (0–30% mass contribution). Andesites from Cook Island volcano, located in the southernmost AVZ (54°S) where subduction is more oblique, have MORB-like Sr, Nd, Pb and O isotopic composition and trace-element ratios. These can be modeled by small degrees (2–4%) of partial melting of eclogitic MORB, yielding a tonalitic parent (intermediate SiO2, CaO/Na2O>1), followed by limited interaction of this melt with the overlying mantle (≥90% MORB melt, ≤10% mantle), but only very little (≤1%) or no participation of either subducted sediment or crust. In contrast, models for the magmatic evolution of Burney (52°S), Reclus (51°S) and northernmost AVZ (49–50°S) andesites and dacites require melting of a mixture of MORB and subducted sediment, followed by interaction of this melt not only with the overlying mantle, but the crust as well. Crustal assimilation and fractional crystallization (AFC) processes and the mass contribution from the crust become more significant northwards in the AVZ as the angle of convergence becomes more orthogonal. Received: 1 March 1995 / Accepted: 13 September 1995  相似文献   

19.
Two series of anhydrous experiments have been performed in anend-loaded piston cylinder apparatus on a primitive, mantle-derivedtholeiitic basalt at 0·7 GPa pressure and temperaturesin the range 1060–1270°C. The first series are equilibriumcrystallization experiments on a single basaltic bulk composition;the second series are fractionation experiments where near-perfectfractional crystallization was approached in a stepwise mannerusing 30°C temperature increments and starting compositionscorresponding to that of the previous, higher temperature glass.At 0·7 GPa liquidus temperatures are lowered and thestability of olivine and plagioclase is enhanced with respectto clinopyroxene compared with phase equilibria of the samecomposition at 1·0 GPa. The residual solid assemblagesof fractional crystallization experiments at 0·7 GPaevolve from dunites, followed by wehrlites, gabbronorites, andgabbros, to diorites and ilmenite-bearing diorites. In equilibriumcrystallization experiments at 0·7 GPa dunites are followedby plagioclase-bearing websterites and gabbronorites. In contrastto low-pressure fractionation of tholeiitic liquids (1 bar–0·5GPa), where early plagioclase saturation leads to the productionof troctolites followed by (olivine) gabbros at an early stageof differentiation, pyroxene still crystallizes before or withplagioclase at 0·7 GPa. The liquids formed by fractionalcrystallization at 0·7 GPa evolve through limited silicaincrease with rather strong iron enrichment following the typicaltholeiitic differentiation path from basalts to ferro-basalts.Silica enrichment and a decrease in absolute iron and titaniumconcentrations are observed in the last fractionation step afterilmenite starts to crystallize, resulting in the productionof an andesitic liquid. Liquids generated by equilibrium crystallizationexperiments at 0·7 GPa evolve through constant SiO2 increaseand only limited FeO enrichment as a consequence of spinel crystallizationand closed-system behaviour. Empirical calculations of the (dry)liquid densities along the liquid lines of descent at 0·7and 1·0 GPa reveal that only differentiation at the baseof the crust (1·0 GPa) results in liquids that can ascendthrough the crust and that will ultimately form granitoid plutonicand/or dacitic to rhyodacitic sub-volcanic to volcanic complexes;at 0·7 GPa the liquid density increases with increasingdifferentiation as a result of pronounced Fe enrichment, renderingit rather unlikely that such differentiated melt will reachshallow crustal levels. KEY WORDS: tholeiitic magmas; experimental petrology; equilibrium crystallization; fractional crystallization  相似文献   

20.
Piston-cylinder experiments on a Pleistocene adakite from Mindanao in the Philippines have been used to establish near-liquidus and sub-liquidus phase relationships relevant to conditions in the East Philippines subduction zone. The experimental starting material belongs to a consanguineous suite of adakitic andesites. Experiments were conducted at pressures from 0.5 to 2 GPa and temperatures from 950 to 1,150°C. With 5 wt. % of dissolved H2O in the starting mix, garnet, clinopyroxene and orthopyroxene are liquidus phases at pressures above 1.5 GPa, whereas clinopyroxene and orthopyroxene are liquidus (or near-liquidus) phases at pressures <1.5 GPa. Although amphibole is not a liquidus phase under any of the conditions examined, it is stable under sub-liquidus conditions at temperature ≤1,050°C and pressures up to 1.5 GPa. When combined with petrographic observations and bulk rock chemical data for the Mindanao adakites, these findings are consistent with polybaric fractionation that initially involved garnet (at pressures >1.5 GPa) and subsequently involved the lower pressure fractionation of amphibole, plagioclase and subordinate clinopyroxene. Thus, the distinctive Y and HREE depletions of the andesitic adakites (which distinguish them from associated non-adakitic andesites) must be established relatively early in the fractionation process. Our experiments show that this early fractionation must have occurred at pressures >1.5 GPa and, thus, deeper than the Mindanao Moho. Published thermal models of the Philippine Sea Plate preclude a direct origin by melting of the subducting ocean crust. Thus, our results favour a model whereby basaltic arc melt underwent high-pressure crystal fractionation while stalled beneath immature arc lithosphere. This produced residual magma of adakitic character which underwent further fractionation at relatively low (i.e. crustal) pressures before being erupted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号