首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Balancing lateral orogenic float of the Eastern Alps   总被引:2,自引:0,他引:2  
Oligocene to Miocene post-collisional shortening between the Adriatic and European plates was compensated by frontal thrusting onto the Molasse foreland basin and by contemporaneous lateral wedging of the Austroalpine upper plate. Balancing of the upper plate shortening by horizontal retrodeformation of lateral escaping and extruding wedges of the Austroalpine lid enables an evaluation of the total post-collisional deformation of the hangingwall plate. Quantification of the north–south shortening and east–west extension of the upper plate is derived from displacement data of major faults that dissect the Austroalpine wedges. Indentation of the South Alpine unit corresponds to 64 km north–south shortening and a minimum of 120 km of east–west extension. Lateral wedging affected the Eastern Alps east of the Giudicarie fault. West of the Giudicarie fault, north–south shortening was compensated by 50 to 80 km of backthrusting in the Lombardian thrust system of the Southern Alps. The main structures that bound the escaping wedges to the north are the Inntal fault system (ca. 50 km sinistral offset), the Königsee–Lammertal–Traunsee (KLT) fault (10 km) and the Salzach–Ennstal–Mariazell–Puchberg (SEMP) fault system (60 km). These faults, as well as a number of minor faults with displacements less than 10 km, root in the basal detachment of the Alps. The thin-skinned nature of lateral escape-related structures north of the SEMP line is documented by industry reflection seismic lines crossing the Northern Calcareous Alps (NCA) and the frontal thrust of the Eastern Alps. Complex triangle zones with passive roof backthrusts of Middle Miocene Molasse sediments formed in front of the laterally escaping wedges of the northern Eastern Alps. The aim of this paper is a semiquantitative reconstruction of the upper plate of the Eastern Alps. Most of the data is published elsewhere.  相似文献   

2.
Questions persist concerning the earthquake potential of the populous and industrial Lake Ontario (Canada–USA) area. Pertinent to those questions is whether the major fault zone that extends along the St. Lawrence River valley, herein named the St. Lawrence fault zone, continues upstream along the St. Lawrence River valley at least as far as Lake Ontario or terminates near Cornwall (Ontario, Canada)–Massena (NY, USA). New geological studies uncovered paleotectonic bedrock faults that are parallel to, and lie within, the projection of that northeast-oriented fault zone between Cornwall and northeastern Lake Ontario, suggesting that the fault zone continues into Lake Ontario. The aforementioned bedrock faults range from meters to tens of kilometers in length and display kinematically incompatible displacements, implying that the fault zone was periodically reactivated in the study area. Beneath Lake Ontario the Hamilton–Presqu'ile fault lines up with the St. Lawrence fault zone and projects to the southwest where it coincides with the Dundas Valley (Ontario, Canada). The Dundas Valley extends landward from beneath the western end of the lake and is marked by a vertical stratigraphic displacement across its width. The alignment of the Hamilton–Presqu'ile fault with the St. Lawrence fault zone strongly suggests that the latter crosses the entire length of Lake Ontario and continues along the Dundas Valley.The Rochester Basin, an east–northeast-trending linear trough in the southeastern corner of Lake Ontario, lies along the southern part of the St. Lawrence fault zone. Submarine dives in May 1997 revealed inclined layers of glaciolacustrine clay along two different scarps within the basin. The inclined layers strike parallel to the long dimension of the basin, and dip about 20° to the north–northwest suggesting that they are the result of rigid-body rotation consequent upon post-glacial faulting. Those post-glacial faults are growth faults as demonstrated by the consistently greater thickness, unit-by-unit, of unconsolidated sediments on the downthrown (northwest) side of the faults relative to their counterparts on the upthrown (southeast) side. Underneath the western part of Lake Ontario is a monoclinal warp that displaces the glacial and post-glacial sediments, and the underlying bedrock–sediment interface. Because of the post-glacial growth faults and the monoclinal warp the St. Lawrence fault zone is inferred to be tectonically active beneath Lake Ontario. Furthermore, within the lake it crosses at least five major faults and fault zones and coexists with other neotectonic structures. Those attributes, combined with the large earthquakes associated with the St. Lawrence fault zone well to the northeast of Lake Ontario, suggest that the seismic risk in the area surrounding and including Lake Ontario is likely much greater than previously believed.  相似文献   

3.
A statistical analysis was carried out to investigate spatial associations between natural seismicity and faults in southeastern Ontario and north-central New York State (between 73°18′ and 77°00′W and 43°30′ and 45°18′N). The study area is situated to the west of the seismically active St. Lawrence fault zone, and to the east of the Lake Ontario basin where recently documented geological and geophysical evidence points to possible neotectonic faulting. The weights of evidence method was used to judge the spatial associations between seismic events and populations of faults in eight arbitrarily defined orientation groups. Spatial analysis of data sets for seismic events in the periods 1930–1970 and post-1970 suggest stronger spatial associations between earthquake epicentres and faults with strikes that lie in the NW–SE quadrants, and weaker spatial associations of epicentres with faults that have strikes in the NE–SW quadrants. The strongest spatial associations were determined for groups of faults with strikes between 101° and 146°. The results suggest that faults striking broadly NW–SE, at high angles to the regional maximum horizontal compressive stress, are statistically more likely to be spatially associated with seismic events than faults striking broadly NE–SW. If the positive spatial associations can be interpreted as indicating genetic relationships between earthquakes and mapped faults, then the results may suggest that, as a population, NW–SE trending faults are more likely to be seismically active than NE–SW striking faults. Detailed geological studies of faults in the study area would be required to determine possible neotectonic displacements and the kinematics of the displacements.  相似文献   

4.
GPS-derived velocities (1993–2002) in northwestern California show that processes other than subduction are in part accountable for observed upper-plate contraction north of the Mendocino triple junction (MTJ) region. After removing the component of elastic strain accumulation due to the Cascadia subduction zone from the station velocities, two additional processes account for accumulated strain in northern California. The first is the westward convergence of the Sierra Nevada–Great Valley (SNGV) block toward the coast and the second is the north–northwest impingement of the San Andreas fault system from the south on the northern California coastal region in the vicinity of Humboldt Bay. Sierra Nevada–Great Valley block motion is northwest toward the coast, convergent with the more northerly, north–northwest San Andreas transform fault-parallel motion. In addition to the westward-converging Sierra Nevada–Great Valley block, San Andreas transform-parallel shortening also occurs in the Humboldt Bay region. Approximately 22 mm/yr of distributed Pacific–SNGV motion is observed inland of Cape Mendocino across the northern projections of the Maacama and Bartlett Springs fault zones but station velocities decrease rapidly north of Cape Mendocino. The resultant 6–10 mm/yr of San Andreas fault-parallel shortening occurs above the southern edge of the subducted Gorda plate and at the latitude of Humboldt Bay. Part of the San Andreas fault-parallel shortening may be due to the viscous coupling of the southern edge of the Gorda plate to overlying North American plate. We conclude that significant portions of the upper-plate contraction observed north of the MTJ region are not solely a result of subduction of the Gorda plate but also a consequence of impingement of the western edge of the Sierra Nevada–Great Valley block and growth of the northernmost segments of the San Andreas fault system.  相似文献   

5.
The Horse Prairie basin of southwestern Montana is a complex, east-dipping half-graben that contains three angular unconformity-bounded sequences of Tertiary sedimentary rocks overlying middle Eocene volcanic rocks. New mapping of the basin and its hanging wall indicate that five temporally and geometrically distinct phases of normal faulting and at least three generations of fault-related extensional folding affected the area during the late Mesozoic (?) to Cenozoic. All of these phases of extension are evident over regional or cordilleran-scale domains. The extension direction has rotated 90° four times in the Horse Prairie area resulting in a complex three-dimensional strain field with 60% east–west and >25% north–south bulk extension. Extensional folds with axes at high angles to the associated normal fault record most of the three-dimensional strain during individual phases of extension (phases 3a, 3b, and 4). Cross-cutting relationships between normal faults and Tertiary volcanic and sedimentary rocks constrain the ages of each distinct phase of deformation and show that extension continued episodically for more than 50 My. Gravitational collapse of the Sevier fold and thrust belt was the ultimate cause of most of the extension.  相似文献   

6.
Many stable continental regions have subregions with poorly defined earthquake hazards. Analysis of minor structures (folds and faults) in these subregions can improve our understanding of the tectonics and earthquake hazards. Detailed structural mapping in Pottawatomie County has revealed a suite consisting of two uplifted blocks aligned along a northeast trend and surrounded by faults. The first uplift is located southwest of the second. The northwest and southeast sides of these uplifts are bounded by northeast-trending right-lateral faults. To the east, both uplifts are bounded by north-trending reverse faults, and the first uplift is bounded by a north-trending high-angle fault to the west. The structural suite occurs above a basement fault that is part of a series of north–northeast-trending faults that delineate the Humboldt Fault Zone of eastern Kansas, an integral part of the Midcontinent Rift System. The favored kinematic model is a contractional stepover (push-up) between echelon strike-slip faults. Mechanical modeling using the boundary element method supports the interpretation of the uplifts as contractional stepovers and indicates that an approximately east–northeast maximum compressive stress trajectory is responsible for the formation of the structural suite. This stress trajectory suggests potential activity during the Laramide Orogeny, which agrees with the age of kimberlite emplacement in adjacent Riley County. The current stress field in Kansas has a N85°W maximum compressive stress trajectory that could potentially produce earthquakes along the basement faults. Several epicenters of seismic events (<M2.0) are located within 10 km of the structural suite. One epicenter is coincident with the northwest boundary of the uplift. This structural suite, a contractional stepover between echelon northeast-trending right-lateral faults, is similar to that mapped in the New Madrid Seismic Zone, and both areas currently feature roughly east–west maximum compressive stress trajectory. Based on these similarities, the faults in Pottawatomie County have the potential for seismicity. The results demonstrate that mechanical analysis of minor structural features can improve our knowledge of local earthquake hazards.  相似文献   

7.
Diatom data from the Skagerrak–Kattegat show that large amounts of meltwater were discharged into the Kattegat–Skagerrak from the Baltic Ice Lake during the Younger Dryas interval. Strong meltwater discharge greatly freshened surface-water salinity in the Kattegat and areas along the Swedish west coast and possibly changed the directions of sea-surface salinity gradients from north–south to east–west or northwest–southeast. It resulted in a markedly stratified water column in salinity in the Kattegat, which complicates the environmental interpretation based on different types of microfossils. The meltwater influence on the large area of the Skagerrak during the Younger Dryas was, however, restricted along the Norwegian coast where it flowed into the Norwegian Sea.  相似文献   

8.
Ten new focal mechanisms are derived for earthquakes in southern Central America and its adjacent regions. These are combined with a study of seismicity and data of previous workers to delineate the position and nature of the plate boundaries in this complex region.The Middle America subduction zone may be divided into four or five distinct seismic segments. The plate boundary between North America and the Caribbean near the trench might be located more towards the south than previously suspected. Subduction has basically stopped south of the underthrusting Cocos Ridge. There is not much evidence for a seismically active strike-slip fault south of Panama, but its existence cannot be ruled out. More activity reveals the zone north of Panama which is identified as a subduction zone with normal fault events. Shallow seismicity induced by the interaction of the Nazca plate extends from the Colombia-Panama border south along the Pacific coast to meet a high-angle continental thrust fault system. Subduction with a pronounced slab starts only south of that point near a hot region which offsets the seismic trend at the trench. The Carnegie Ridge and/or the change of direction of subduction in Ecuador produce a highly active zone of seismicity mainly at the depth of 200 km. The area in the Pacific displays a termination of activity at a propagating rift west of the Galapagos Islands. The main eastern boundary of the Cocos plate, the Panama Fracture Zone, is offset towards the west at the southern end of the Malpelo Ridge. Its northern end consists of two active branches as defined by large earthquakes. A strike-slip mechanism near the southeastern flank of the Cocos Ridge was previously believed to be the site of an extended fracture zone. This paper proposes submarine volcanic activity as an alternative explanation.  相似文献   

9.
The study area is located in the south-eastern part of the Crati valley (Northern Calabria, Italy), which is a graben bordered by N–S trending normal faults and crossed by NW–SE normal left-lateral faults. Numerous severe crustal earthquakes have affected the area in historical time. Present-day seismic activity is mainly related to the N–S faults located along the eastern border of the graben. In this area, much seismically induced deep-seated deformation has also been recognised.In the present paper, radon concentrations in soil gas have been measured and compared with (a) lithology, (b) Quaternary faults, (c) historical and instrumental seismicity, and (d) deep-seated deformation.The results highlight the following:
(a) There is no evidence of a strong correlation between lithology and the radon anomalies.
(b) A clear correlation between the N–S geometry of radon anomalies and the orientation of main fault systems has been recognised, except in the southernmost part of the area, where the radon concentrations are strongly affected by the superposition of the N–S and the NW–SE fault systems.
(c) Epicentral zones of instrumental and historical earthquakes correspond to the highest values of radon concentrations, probably indicating recent activated fault segments. In particular, high radon values occur in the zones struck by earthquakes in 1835, 1854, and 1870.
(d) Deep-seated gravitational deformation generally coincides with zones characterised by low radon concentrations.
In the studied area, the anisotropic distribution of radon concentrations is congruent with the presence of neotectonic features and deep-seated gravitational phenomena. The method used in this study could profitably contribute towards either seismic risk or deep-seated gravitational deformation analyses.  相似文献   

10.
We describe an active right-lateral strike-slip fault zone along the southern margin of the Japan Sea, named the Southern Japan Sea Fault Zone (SJSFZ). Onshore segments of the fault zone are delineated on the basis of aerial photograph interpretations and field observations of tectonic geomorphic features, whereas the offshore parts are interpreted from single-/multichannel seismic data combined with borehole information. In an effort to evaluate late Quaternary activity along the fault zone, four active segments separated by uplifting structures are identified in this study. The east–northeast-trending SJSFZ constitutes paired arc-parallel strike-slip faults together with the Median Tectonic Line (MTL), both of which have been activated by oblique subduction of the Philippine Sea plate during the Quaternary. They act as the boundaries of three neotectonic stress domains around the eastern margin of the Eurasian plate: the near-trench Outer zone and NW–SE compressive Inner zone of southwest Japan arc, and the southern Japan Sea deformed under E–W compression from south to north.  相似文献   

11.
The East Anatolian Fault Zone (EAFZ) is among the most important active continental transform fault zones in the world as testified by major historical and minor instrumental seismicity. The first paleoseismological exploratory trenching study on the EAFZ was done on the Palu–Lake Hazar segment (PLHS), which is one of the six segments forming the fault zone, in order to determine its past activity and to assess its earthquake hazard.The results of trenching indicate that the latest surface rupturing earthquakes on this segment may be the Ms=7.1+ 1874 and Ms=6.7 1875 events, and there were other destructive earthquakes prior to these events. The recurrence interval for a surface rupturing large (M>7) earthquake is estimated as minimum 100±35 and maximum 360 years. Estimates for the maximum possible paleoearthquake magnitude are (Mw) 7.1–7.7 for the Palu–Lake Hazar segment based on empirical magnitude fault rupture relations.An alluvial fan dated 14,475–15,255 cal years BP as well as another similar age fan with an abandoned stream channel on it are offset in a left-lateral sense 175 and 160.5 m, respectively, indicating an average slip rate of 11 mm/year. Because 127 years have elapsed since the last surface rupturing event, this slip rate suggests that 1.4 m of left-lateral strain has accumulated along the segment, ignoring possible creep effects, folding and other inelastic deformation. A 2.5 Ma age for the start of left-lateral movement on the segment, and in turn the EAFZ, is consistent with a slip rate of 11 mm/year and a previously reported 27 km total left-lateral offset. The cumulative 5–6 mm/year vertical slip rate near Lake Hazar suggests a possible age of 148–178 ka for the lake. Our trenching results indicate also that a significant fraction of the slip across the EAFZ zone is likely to be accommodated seismically. The present seismic quiescence compared with the past activity (paleoseismic and historic) indicate that the EAFZ may be “locked” and accumulating elastic strain energy but could move in the near future.  相似文献   

12.
This review of geological, seismological, geochronological and paleobotanical data is made to compare historic and geologic rates and styles of deformation of the Sierra Nevada and western Basin and Range Provinces. The main uplift of this region began about 17 m.y. ago, with slow uplift of the central Sierra Nevada summit region at rates estimated at about 0.012 mm/yr and of western Basin and Range Province at about 0.01 mm/yr. Many Mesozoic faults of the Foothills fault system were reactivated with normal slip in mid-Tertiary time and have continued to be active with slow slip rates. Sparse data indicate acceleration of rates of uplift and faulting during the Late Cenozoic. The Basin and Range faulting appears to have extended westward during this period with a reduction in width of the Sierra Nevada.The eastern boundary zone of the Sierra Nevada has an irregular en-echelon pattern of normal and right-oblique faults. The area between the Sierra Nevada and the Walker Lane is a complex zone of irregular patterns of hörst and graben blocks and conjugate normal-to right- and left-slip faults of NW and NE trend, respectively. The Walker Lane has at least five main strands near Walker Lake, with total right-slip separation estimated at 48 km. The NE-trending left-slip faults are much shorter than the Walker Lane fault zone and have maximum separations of no more than a few kilometers. Examples include the 1948 and 1966 fault zone northeast of Truckee, California, the Olinghouse fault (Part III) and possibly the almost 200-km-long Carson Lineament.Historic geologic evidence of faulting, seismologic evidence for focal mechanisms, geodetic measurements and strain measurements confirm continued regional uplift and tilting of the Sierra Nevada, with minor internal local faulting and deformation, smaller uplift of the western Basin and Range Province, conjugate focal mechanisms for faults of diverse orientations and types, and a NS to NE—SW compression axis (σ1) and an EW to NW—SE extension axis (σ3).  相似文献   

13.
The study region is located in the Lower Tagus Valley, central Portugal, and includes a large portion of the densely populated area of Lisbon. It is characterized by a moderate seismicity with a diffuse pattern, with historical earthquakes causing many casualties, serious damage and economic losses. Occurrence of earthquakes in the area indicates the presence of seismogenic structures at depth that are deficiently known due to a thick Cenozoic sedimentary cover. The hidden character of many of the faults in the Lower Tagus Valley requires the use of indirect methodologies for their study. This paper focuses on the application of high-resolution seismic reflection method for the detection of near-surface faulting on two major tectonic structures that are hidden under the recent alluvial cover of the Tagus Valley, and that have been recognized on deep oil-industry seismic reflection profiles and/or inferred from the surface geology. These are a WNW–ESE-trending fault zone located within the Lower Tagus Cenozoic basin, across the Tagus River estuary (Porto Alto fault), and a NNE–SSW-trending reverse fault zone that borders the Cenozoic Basin at the W (Vila Franca de Xira–Lisbon fault). Vertical electrical soundings were also acquired over the seismic profiles and the refraction interpretation of the reflection data was carried out. According to the interpretation of the collected data, a complex fault pattern disrupts the near surface (first 400 m) at Porto Alto, affecting the Upper Neogene and (at least for one fault) the Quaternary, with a normal offset component. The consistency with the previous oil-industry profiles interpretation supports the location and geometry of this fault zone. Concerning the second structure, two major faults were detected north of Vila Franca de Xira, supporting the extension of the Vila Franca de Xira–Lisbon fault zone northwards. One of these faults presents a reverse geometry apparently displacing Holocene alluvium. Vertical offsets of the Holocene sediments detected in the studied geophysical data of Porto Alto and Vila Franca de Xira–Lisbon faults imply minimum slip rates of 0.15–0.30 mm/year, three times larger than previously inferred for active faults in the Lower Tagus Valley and maximum estimates of average return periods of 2000–5000 years for M 6.5–7 co-seismic ruptures.  相似文献   

14.
The central part of the Kamchatka Peninsula is characterized by a well defined depression associated with active volcanism, aligned NE–SW. On the east, the depression is bounded by a prominent system of active faults known as the East Kamchatka Fault Zone (EKFZ). In order to improve understanding of the behaviour and kinematic role of this fault zone a fieldwork programme, including study of trenches, was conducted in the north-central part of this system. Aerial photograph analysis, ground-truthed, indicates a westward fault dip with predominantly normal slip, while lateral offsets of river terraces and stream channels demonstrate a combined dextral component. Over 20 excavated pits and natural exposures were examined to confirm a detailed tephra succession extending from the early Holocene to recent historic eruptions. This chronological framework then provided age control on five past faulting events recognised in three trenches. These events took place at about 10.5, 6.0, 4.5 and, in a two-event succession within a short time span, at 3.3–3.2 ka BP. Event clustering may be characteristic and fault length–displacement values suggest earthquakes of M6.5, thus representing a significant new element in regional seismic hazard evaluations; additional to events generated at the subduction interface. The relatively long gap in faulting since the two most recent events may also be significant for hazard scenarios and there is a possible link between the faulting and volcanic activity in the depression. Overall, the EKFZ, together with the Nachiki Transverse Zone farther south, is thought to define a regional-scale block that is extending eastwards independently from the rest of Kamchatka.  相似文献   

15.
Reena De  J.R. Kayal   《Tectonophysics》2004,386(3-4):243-248
A microearthquake survey in the Sikkim Himalaya raised a question whether the north–south segment of the Main Central Thrust (MCT) in this part of the Himalaya is seismically active(?). Fault-plane solution of a cluster of events occurred below this segment of the MCT shows right-lateral strike-slip motion. The seismic observations and the geological evidences suggest that a NNE–SSW trending strike-slip fault, beneath this segment, caused right lateral movement on the MCT, and is seismically active.  相似文献   

16.
R.A. Klassen   《Applied Geochemistry》2009,24(8):1382-1393
As a pilot study for mapping the geochemistry of North American soils, samples were collected along two continental transects extending east–west from Virginia to California, and north–south from northern Manitoba to the US–Mexican border and subjected to geochemical and mineralogical analyses. For the northern Manitoba–North Dakota segment of the north–south transect, X-ray diffraction analysis and bivariate relations indicate that geochemical properties of soil parent materials may be interpreted in terms of minerals derived from Shield and clastic sedimentary bedrock, and carbonate sedimentary bedrock terranes. The elements Cu, Zn, Ni, Cr and Ti occur primarily in silicate minerals decomposed by aqua regia, likely phyllosilicates, that preferentially concentrate in clay-sized fractions; Cr and Ti also occur in minerals decomposed only by stronger acid. Physical glacial processes affecting the distribution and concentration of carbonate minerals are significant controls on the variation of trace metal background concentrations.  相似文献   

17.
Although the Southwest Seismic Zone (SWSZ), located about 150 km to the east of Perth in southwestern Australia, is one of the most seismically active areas in Australia, there is little understanding as to why the earthquakes are occurring.An analysis of geophysical, geological and geodetic data from the area suggests that the SWSZ coincides with a Precambrian terrane boundary. Seismic data show that the terrane boundary zone dips at a shallow angle in a northeasterly direction. Reactivation of this ‘zone of weakness’ in the contemporary stress field (east–west maximum horizontal stress) is interpreted to be the first-order control on seismicity in the region.Gravity data show that the terrane boundary is offset by near-orthogonal structures, which are interpreted as faults. At least one of these trends corresponds with a linear zone of epicentres. The temporal and spatial distributions of epicentres associated with the 1968 Meckering earthquake (ML 6.9) suggest that the second-order distribution of seismicity in the SWSZ can be explained by the ‘intersection model’, whereby stresses are amplified by space problems associated with displacements on crosscutting faults.It is speculated that a zone of high density and high seismic velocity in the lower crust may also be a second-order control on the local seismicity. However, confirmation awaits better delineation of the extent of this zone.  相似文献   

18.
In estimating the likelihood of an earthquake hazard for a seismically active region, information on the geometry of the potential source is important in quantifying the seismic hazard. The damage from an earthquake varies spatially and is governed by the fault geometry and lithology. As earthquake damage is amplified by guided seismic waves along fault zones, it is important to delineate the disposition of the fault zones by precisely determined hypocentral parameters. We used the double difference (DD) algorithm to relocate earthquakes in the Koyna-Warna seismic zone (KWSZ) region, with the P- and S-wave catalog data from relative arrival time pairs constituting the input. A significant improvement in the hypocentral estimates was achieved, with the epicentral errors <30 m and focal depth errors <75 m i.e. errors have been significantly reduced by an order of magnitude from the parameters determined by HYPO71. The earthquake activity defines three different fault segments. The seismogenic volume is shallower in the south by 3 km, with seismicity in the north extending to a depth of 11 km while in the south the deepest seismicity observed is at a depth of 8 km. By resolving the structure of seismicity in greater detail, we address the salient issues related to the seismotectonics of this region.  相似文献   

19.
Cross-line recording formed a companion experiment of the TRANSALP seismic reflection transect through the Eastern Alps, conducted by partner institutions from Austria, Germany and Italy in three field campaigns in the period fall 1998 to fall 1999. Besides of the originally expected three-dimensional control for the north–south running main transect, additional information on seismic anisotropy and alternative images of crucial parts of the main transect could be gained.Conventionally processed sections along N–S running common-midpoint (CMP) binning lines confirm and strengthen the predominance of midcrustal reflective structures of the ‘Sub-Tauern-Ramp’ beneath and south of the Tauern Window. Velocity analysis of the first arrivals exhibit about 10% higher velocities in east–west propagating P-waves, compatible with texture-dominated rock anisotropy, recorded on cross-lines at the Tauern Window. Pre-stack depth migration of cross-line recordings shows dominant south dip of the Sub-Tauern-Ramp with easterly dip components and a sub-horizontal root zone of the Sub-Dolomites-Ramp.  相似文献   

20.
Neotectonic morphologic evidence along the Boconó fault (with a mapped length of 500 km) consists of the typical features found along strike-slip faults; offset alluvium and drainage, shutterridges, closed depressions, sag ponds and marshes, fault scarps and trenches, triangular facets, and zones of mylonite and fault gouge. Evidence on fault planes, such as slickensides, suggests a predominant strike-slip displacement, and morphologic evidence suggests that this offset is right-lateral, with a magnitude of 60–100 m during the Holocene, and of several kilometers during the Quaternary. Calculations based on different empirical relationships suggest maximum expected Richter magnitudes of 7.2–7.9 for earthquakes along the fault (using rupture length estimates) and probable intervals of less than 200 years for events of magnitude 8 (using observed total displacement during the Holocene).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号