首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In geological materials, anisotropy may arise due to different mechanisms and can be found at different scales. Neglecting anisotropy in traveltime tomographic reconstruction leads to artefacts that can obscure important subsurface features. In this paper, a geostatistical tomography algorithm to invert cross‐hole traveltime data in elliptically anisotropic media is presented. The advantages of geostatistical tomography are that the solution is regularized by the covariance of the model parameters, that known model parameters can be used as constraints and fitted exactly or within a prescribed variance and that stochastic simulations can be performed to appraise the variability of the solution space. The benefits of the algorithm to image anisotropic media are illustrated by two examples using synthetic georadar data and real seismic data. The first example confirms suspected electromagnetic anisotropy in the vadose zone caused by relatively rapid water content variations with respect to wavelength at georadar frequencies. The second presents how sonic log data can be used to constrain the inversion of cross‐well seismic data and how geostatistical simulations can be used to infer parameter uncertainty. Results of both examples show that considering anisotropy yields a better fit to the data at high ray angles and reduces reconstruction artefacts.  相似文献   

3.
By reparameterization of the kinematic expressions for remigration in elliptically anisotropic media using a new ellipticity parameter, we derive a new image-wave equation in elliptically anisotropic media describing the position of the reflector as a function of the medium ellipticity. This image wave equation, which is a kind of medium-dependent one-way wave equation, can be used for automatically stretching a time-migrated image in depth until wells are tied or other given geologic criteria are met. In this way, it provides a useful means to use a priori depth information for finding an estimate of the vertical velocity, which cannot be detected from time processing only. Simple numerical examples confirm the validity of the image-wave equation even for nonconstant velocity.  相似文献   

4.
A new method to trace rays in irregular grids based on Fermat's principle of minimum time is introduced. Besides the usual transmitted and reflected waves, refracted, diffracted and converted waves can also be simulated. The proposed algorithm is fast and stable, and respects the reciprocity principle between source and receiver better than procedures adopting the shooting method. It is particularly suited to form part of a traveltime inversion procedure. The use of irregular grids allows adaptation of the earth discretization to the available acquisition geometry and ray distribution, to obtain more stable and reliable tomographic images.  相似文献   

5.
Wavefront construction (WFC) methods provide robust tools for computing ray theoretical traveltimes and amplitudes for multivalued wavefields. They simulate a wavefront propagating through a model using a mesh that is refined adaptively to ensure accuracy as rays diverge during propagation. However, an implementation for quasi-shear (qS) waves in anisotropic media can be very difficult, since the two qS slowness surfaces and wavefronts often intersect at shear-wave singularities. This complicates the task of creating the initial wavefront meshes, as a particular wavefront will be the faster qS-wave in some directions, but slower in others. Analogous problems arise during interpolation as the wavefront propagates, when an existing mesh cell that crosses a singularity on the wavefront is subdivided. Particle motion vectors provide the key information for correctly generating and interpolating wavefront meshes, as they will normally change slowly along a wavefront. Our implementation tests particle motion vectors to ensure correct initialization and propagation of the mesh for the chosen wave type and to confirm that the vectors change gradually along the wavefront. With this approach, the method provides a robust and efficient algorithm for modeling shear-wave propagation in a 3-D, anisotropic medium. We have successfully tested the qS-wave WFC in transversely isotropic models that include line singularities and kiss singularities. Results from a VTI model with a strong vertical gradient in velocity also show the accuracy of the implementation. In addition, we demonstrate that the WFC method can model a wavefront with a triplication caused by intrinsic anisotropy and that its multivalued traveltimes are mapped accurately. Finally, qS-wave synthetic seismograms are validated against an independent, full-waveform solution.  相似文献   

6.
耗散大气中的声波射线追踪   总被引:1,自引:1,他引:0       下载免费PDF全文
基于分层大气中声波的局地色散关系方程,建立一种计入真实大气衰减效应的有耗大气声波射线追踪模型.在色散方程的虚部中导出声波在运动大气中的耗散系数和竖直方向上的增长因子,并利用真实大气中的衰减理论对所得到的耗散系数进行修正.利用Hamilton方程组解出大气声波在考虑耗散效应下的射线微分方程组.该有耗射线追踪模型的数值模拟结果表明,声波的耗散效应对声波的传播路径存在一定影响,在近场情况下,这种影响可以忽略,但是对于声波的远场传播,则影响较大.  相似文献   

7.
对复杂山地介质的非均质性以及介质中地震波运动学特征进行深入研究,对于提高复杂山地区域地震勘探的效果有着重要的理论意义和实际价值.为了研究复杂山地非均质性和该介质中地震波的一些运动特性,提出了一种复杂山地随机介质的建模方法和一种新的射线追踪算法.与常规算法相比,复杂山地随机介质的生成方法采用更贴近实际介质特点的梯度介质作为背景介质,并在模型生成过程中加入地形修正步骤;新提出的GMM-ULTI射线追踪算法,充分融合群推进法、迎风思想、走时插值法的优势,采用先计算走时后追踪射线路径的两步策略完成射线追踪.算法分析与计算实例表明:复杂山地随机介质的生成方法能灵活、精细且更贴近实际地刻画复杂山地介质的非均质特点;新射线追踪算法兼顾精度和效率、能无条件稳定且灵活地适应复杂山地随机介质的特点;同时基于对几个模型试算结果的分析也得出了复杂山地随机介质中的地震波的一些传播规律.  相似文献   

8.
VTI介质起伏地表地震波场模拟   总被引:4,自引:9,他引:4       下载免费PDF全文
起伏地表下地震波场模拟有助于解释主动源和被动源地震探测中穿过山脉和盆地的测线所获得的资料.然而传统的有限差分法处理起伏的自由边界比较困难,为了克服这一困难,我们将笛卡尔坐标系的各向异性介质弹性波方程和自由边界条件变换到曲线坐标系中,采用一种稳定的、显式的二阶精度有限差分方法离散(曲线坐标系)VTI介质中的弹性波方程;对地表自由边界条件处理时采用了一种修饰的差分算子来计算弹性波方程中的混合导数项在自由边界上的法向导数.兰姆问题的解析解与本文的数值解对比结果表明该方法可以有效地处理自由地表边界条件.模拟实例表明:起伏地表对地震波场有重要影响,各向异性导致弹性波波前形状复杂且具有明显的方向性.  相似文献   

9.
The linear traveltime interpolation (LTI) method is a suitable ray‐tracing technique for modelling first‐arrival times in isotropic media. LTI is extended to elliptical anisotropic media and applied to a tomographic inversion procedure. A theoretical formulation is first derived and then LTI implementation is discussed in terms of source–receiver arrays and cell size. The method is then combined with the tomographic inversion procedure adopted. The matching of the ray tracing with inversion in elliptical anisotropic media posed a double non‐linear problem. Thus two assumptions were made: the velocity in each cell is uniform and the main directions of anisotropy are known. To take into account the geometrical characteristics of the area under investigation (depth and velocity of the weathering, and thickness of the inner media), cells of varying size were considered. No hypothesis was made on anisotropy weakness.
The algorithm was first tested on synthetic models and then applied to a field survey. On comparing the results of the synthetic models and the field survey with those obtained with a linear raypath approximation, it was found that there were fewer data misfits.  相似文献   

10.
Elastic wave propagation in inhomogeneous anisotropic media   总被引:1,自引:0,他引:1  
IntroductionThemediaineartharequitecomplex.Thereexistseveraluncontinuousplains.Normaly,itisusedtoapproximaterealmediumwithlay...  相似文献   

11.
实际地层中传播的地震波普遍存在速度各向异性和能量衰减现象,因此基于弹性介质假设条件下的地震射线正反演算法具有一定的局限性,而研究黏弹性各向异性介质中的地震波传播规律可为揭示地下结构提供更加可靠的理论依据.射线追踪技术是揭示高频地震波传播特性的有效手段之一,然而绝大多数研究仅限于弹性介质.针对黏弹性各向异性介质,本文首先给出了一种射线速度和振幅衰减的计算方法,然后结合改进型最短路径算法,在实空间内实现了计算复杂介质模型中地震波(qP,qSV,qSH)的射线路径和传播走时以及能量衰减(虚走时).该算法适用于复杂黏弹性各向异性介质.误差分析结果显示,实走时的最大相对误差小于0.13%,虚走时的最大相对误差小于0.55%,表明该算法具有较高的计算精度.  相似文献   

12.
Summary Love wave propagation in a finite set of anisotropic inhomogeneous layers lying between two anisotropic homogeneous half spaces is considered. Generalized frequency equation is obtained by using the Thomson-Haskell matrix method. The usefulness of the general analytical result for discussing more special cases of interest in seismology is brought out in the end.  相似文献   

13.
Summary The possibility of propagation of Rayleigh waves in an incompressible crust of constant density and rigidity varying exponentially with depth lying on a semi-infinite transversely isotropic base has been discussed in this paper. Frequency equation has been derived and numerical calculations are made. The result obtained in this case is compared with that ofNewlands [3]2) andDutta [4].  相似文献   

14.
Wavefield extrapolation operators for elliptically anisotropic media offer significant cost reduction compared with that for the transversely isotropic case, particularly when the axis of symmetry exhibits tilt (from the vertical). However, elliptical anisotropy does not provide accurate wavefield representation or imaging for transversely isotropic media. Therefore, we propose effective elliptically anisotropic models that correctly capture the kinematic behaviour of wavefields for transversely isotropic media. Specifically, we compute source‐dependent effective velocities for the elliptic medium using kinematic high‐frequency representation of the transversely isotropic wavefield. The effective model allows us to use cheaper elliptic wave extrapolation operators. Despite the fact that the effective models are obtained by matching kinematics using high‐frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy trade‐off for wavefield computations in transversely isotropic media, particularly for media of low to moderate complexity. In addition, the wavefield solution is free from shear‐wave artefacts as opposed to the conventional finite‐difference‐based transversely isotropic wave extrapolation scheme. We demonstrate these assertions through numerical tests on synthetic tilted transversely isotropic models.  相似文献   

15.
The complex‐valued first‐arrival traveltime can be used to describe the properties of both velocity and attenuation as seismic waves propagate in attenuative elastic media. The real part of the complex‐valued traveltime corresponds to phase arrival and the imaginary part is associated with the amplitude decay due to energy absorption. The eikonal equation for attenuative vertical transversely isotropic media discretized with rectangular grids has been proven effective and precise to calculate the complex‐valued traveltime, but less accurate and efficient for irregular models. By using the perturbation method, the complex‐valued eikonal equation can be decomposed into two real‐valued equations, namely the zeroth‐ and first‐order traveltime governing equations. Here, we first present the topography‐dependent zeroth‐ and first‐order governing equations for attenuative VTI media, which are obtained by using the coordinate transformation from the Cartesian coordinates to the curvilinear coordinates. Then, we apply the Lax–Friedrichs sweeping method for solving the topography‐dependent traveltime governing equations in order to approximate the viscosity solutions, namely the real and imaginary parts of the complex‐valued traveltime. Several numerical tests demonstrate that the proposed scheme is efficient and accurate in calculating the complex‐valued P‐wave first‐arrival traveltime in attenuative VTI media with an irregular surface.  相似文献   

16.
芦俊  石瑛  杨春颖 《地球物理学报》2018,61(8):3310-3323

针对裂缝各向异性介质,本文提出一种非正交假设下的矢量波场分离方法.本文首先对多分量地震勘探中常见的波型泄漏现象进行了数学描述,提出在纵、横波波场分离的同时应该考虑恢复纵、横波的矢量振幅.为了对裂缝方位角与各向异性系数进行定量预测,本文将矢量波场分离拆分成三个步骤来实施:第一步,用Z、R两分量的仿射坐标系变换分离ZR平面内的P波投影与SV波;第二步,用ZR平面内的P波投影与T分量的仿射坐标系变换分离P波与SH波;第三步,用纯净的SV波与SH波的成像剖面分离快慢横波,并预测裂缝发育参数.模型数据与实际数据的试验结果表明,本文提出的纵、横波波场分离方法能够获得完整的矢量振幅信息,并提供裂缝预测的精度.

  相似文献   

17.
A comprehensive approach, based on the general nonlinear ray perturbation theory (Druzhinin, 1991), is proposed for both a fast and accurate uniform asymptotic solution of forward and inverse kinematic problems in anisotropic media. It has been developed to modify the standard ray linearization procedures when they become inconsistent, by providing a predictable truncation error of ray perturbation series. The theoretical background consists in a set of recurrent expressions for the perturbations of all orders for calculating approximately the body wave phase and group velocities, polarization, travel times, ray trajectories, paraxial rays and also the slowness vectors or reflected/transmitted waves in terms of elastic tensor perturbations. We assume that any elastic medium can be used as an unperturbed medium. A total 2-D numerical testing of these expressions has been established within the transverse isotropy to verify the accuracy and convergence of perturbation series when the elastic constants are perturbed. Seismological applications to determine crack-induced anisotropy parameters on VSP travel times for the different wave types in homogeneous and horizontally layered, transversally isotropic and orthorhombic structures are also presented. A number of numerical tests shows that this method is in general stable with respect to the choice of the reference model and the errors in the input data. A proof of uniqueness is provided by an interactive analysis of the sensitivity functions, which are also used for choosing optimum source/receiver locations. Finally, software has been developed for a desktop computer and applied to interpreting specific real VSP observations as well as explaining the results of physical modelling for a 3-D crack model with the estimation of crack parameters.  相似文献   

18.

岩石圈各向异性主要由上地幔矿物晶格优势排列方向和上地壳内裂缝、裂隙的定向分布造成.在各向异性特征显著区域,利用SKS震相剪切波分裂获得的延迟时间高达1.5 s以上.本文根据方位各向异性,利用广义反射透射系数矩阵方法正演S波接收函数,研究各向异性对不同反方位角接收函数转换震相走时的影响.我们发展了基于HTI模型各向异性走时校正的方法,成功的在单层和多层(快轴方向相同或不同)的各向异性介质中对齐不同反方位角接收函数的Moho面和LAB的转换震相走时.我们将该方法应用于在青藏高原东北缘的流动台站,试图在各向异性强度较大区域对实测数据转换震相走时的校正效果进行测试.结果表明:各向异性走时校正能够加强单台接收函数转换震相的可追踪性,能量增强的叠后转换震相在时深转换后更利于对界面深度的识别与判断;在考虑三维成像的情况下,我们的各向异性校正方法对提高成像结果的准确性有重要意义.

  相似文献   

19.
Ray path of head waves with irregular interfaces   总被引:1,自引:0,他引:1  
Head waves are usually considered to be the refracted waves propagating along flat interfaces with an underlying higher velocity. However, the path that the rays travel along in media with irregular interfaces is not clear. Here we study the problem by simulation using a new approach of the spectral-element method with some overlapped elements (SEMO) that can accurately evaluate waves traveling along an irregular interface. Consequently, the head waves are separated from interface waves by a time window. Thus, their energy and arrival time changes can be analyzed independently. These analyses demonstrate that, contrary to the case for head waves propagating along a flat interface, there are two mechanisms for head waves traveling along an irregular interface: a refraction mechanism and transmission mechanism. That is, the head waves may be refracted waves propagating along the interface or transmitted waves induced by the waves propagating in the higher-velocity media. Such knowledge will be helpful in constructing a more accurate inversion method, such as head wave travel-time tomography, and in obtaining a more accurate model of subsurface structure which is very important for understanding the formation mechanism of some special areas, such as the Tibetan Plateau.  相似文献   

20.
Dynamic ray tracing plays an important role in paraxial ray methods. In this paper, dynamic ray tracing systems for inhomogeneous anisotropic media, consisting of four linear ordinary differential equations of the first order along the reference ray, are studied. The main attention is devoted to systems expressed in a particularly simple choice of ray-centered coordinates, here referred to as the standard ray-centered coordinates, and in wavefront orthonormal coordinates. These two systems, known from the literature, were derived independently and were given in different forms. In this paper it is proved that both systems are fully equivalent. Consequently, the dynamic ray tracing system, consisting of four equations in wavefront orthonormal coordinates, can also be used if we work in ray-centered coordinates, and vice versa. vcerveny@seis.karlov.mff.cuni.cz  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号