共查询到20条相似文献,搜索用时 10 毫秒
1.
1961~2010年河西地区平均风速时空变化趋势分析 总被引:4,自引:2,他引:4
利用河西地区15个气象站点1961~2010年月平均风速和最大风速日值资料,采用M-K突变检验、ArcGIS中的IDW插值和小波分析等方法分析河西地区平均风速的时空变化趋势。结果表明:近50 a来,河西地区年平均风速呈明显下降趋势,其递减速率为0.14 m/( s?10 a)(α=0.001);该地区四季平均风速均呈减少趋势且减少趋势相同;平均风速的变化在空间分布上存在差异,具体表现为年平均风速的递减趋势是自西向东逐渐减小,瓜州和玉门是该地区减幅最大的区域,而乌鞘岭却呈现出微增的趋势;风速的长期变化具有一定的突变性,其年平均风速在1985年发生突变;该地区平均风速存在存在多尺度的周期结构特性,其变化周期为6、19和25 a。 相似文献
2.
基于我国风蚀区239个气象站点逐时风速数据,采用谐波分析方法分析我国风蚀区风速日变率特征。结果表明:85.3%的站点有且只有第一个谐波通过F检验,日变率以24 h为周期;14.2%的站点第一和二个谐波通过检验,日变率以24 h为主周期,以12 h为副周期;西藏墨竹工卡站第一和三个谐波通过检验。日平均风速变化范围为0.96~8.36 m·s-1,均值为2.42 m·s-1;风速>3 m·s-1站点集中分布在内蒙古北部高原、青藏高原地形平坦的高原区、甘肃河西走廊及新疆东北部。季节风速表现出春季 > 冬季 > 夏季 > 秋季的特征;第一个谐波振幅变化范围为0.28~3.28 m·s-1;相位变化范围为-1.55~4.67,集中在3.21~4.67,表明大部分站点在午后风速值达到最大。研究可为逐时风速的随机模拟提供基础,进而为风蚀区风蚀量估算提供更好的数据支撑。 相似文献
3.
1971-2013年环渤海地区风速的时空特征 总被引:1,自引:1,他引:1
基于环渤海地区60个站点1971-2013年日序列最大风速数据,采用线性倾向估计、Mann-kendall检验、反距离加权插值、小波分析等方法,分析了近年来环渤海地区风速的年、季节的变化趋势及其空间分异等特征。结果表明:(1)环渤海地区年均最大风速为6.35 m·s-1,并以0.423 m·s-1的年代变化速率呈显著的下降趋势。区内除承德、丰宁和阜新站点呈略微上升趋势,其余站点均呈下降趋势,整体上表现为南部下降幅度高而北部下降幅度低。四季最大风速也均呈显著的下降趋势,冬、春季的最大风速对全年趋势演变贡献率较大。(2)偏北风(尤其是北西北风)和偏南风(尤其是南西南风)是本区的主要风向。春、夏两季以偏南风为主要风向,秋、冬两季则以偏北风为主要风向。(3)环渤海地区最大风速减少的主要原因是各站点日最大风速为5级及以上的发生频率分别以0.912、0.671、0.271、0.076 d·a-1的速率呈下降趋势;大风频率也以1.019 d.a-1的速率呈下降趋势。冬半年是本区大风日数相对较多的时段,春季尤甚。(4)本区多数地区属大风较少区和较多区,其中大风较多区的站点最多(31个),而大风频发区的站点最少(仅4个)。位于大风较少区的站点数增长迅速,而大风较多区、多发区和频发区的站点数则均呈现下降趋势。最大风速与大风日数均具有25~30 a的显著振荡周期。 相似文献
4.
利用北方风蚀区155个气象站点1971-2015年平均风速数据,采用气候趋势分析、空间插值和小波分析等方法分析北方风蚀区平均风速的时空变化趋势。结果表明:近45 a来,北方风蚀区年平均风速为2.70 m·s-1,呈明显减小趋势,其递减速率为0.017 m·s-1·a-1(α=0.001),1980s风速减小最快,1990s减小最缓慢,2010s风速出现增大趋势;我国北方风蚀区四季的平均风速均呈现下降趋势,下降速度春季>夏季>秋季>冬季(α=0.001),不同年代不同季节风速变化存在较大差异,2010s除春季外其他季节风速均呈现增大趋势;空间分布上显示,风速变化幅度空间分布差异明显,北方风蚀区内的新疆西北部和东南部、青海、内蒙古中部和东北部、黑龙江以及吉林为风速降低较快的区域,甘肃东南部、宁夏、陕西和山西北部以及新疆的东北部和西部等地区是风速降低不明显的区域。春季和夏季风速降低较快的区域面积扩大,冬季和秋季风速降低较缓的区域扩大;平均风速存在多时间尺度的周期性结构特征,28 a时间尺度左右为风速变化的主周期,平均变化周期为18 a。 相似文献
5.
风速时空演变特征分析是气候变化研究的主要方面之一,对气候异常评估与防风预测预报工作有重要意义。以辽宁省为研究区,利用1960-2014年省内23个气象站点逐日气象数据,采用线性回归、Mann-Kendall法分析风速多时间格局演变情况。借助ArcGIS软件中反距离权重插值与表面分析模块对研究区进行空间分析,并通过Pearson相关性检验探讨风速与气温、气压的相关关系。结果表明:(1) 从时间格局上看,1960年以来辽宁省平均风速总体呈显著下降趋势,年内下降趋势为“双峰型”,递减率0.559 m·s-1·(10 a)-1;年际递减率为0.22 m·s-1·(10 a)-1;四季风速递减率春季 > 冬季 > 秋季 > 夏季。(2) 就空间格局而言,空间分布特征由中部向东西两侧递减,季节差异性较小。(3) 辽宁省风速降低与气温、气压变化有关,且风速与气温呈负相关,与气压呈正相关。 相似文献
6.
秦岭南北风速时空变化及突变特征分析 总被引:4,自引:0,他引:4
根据秦岭南北47个气象站1960~2011年逐月风速和气温资料,采用样条曲线插值法(Spline)、Pettitt突变点检验、气候倾向率和相关分析等方法对该区风速的空间分布、时空演变特征及其可能影响因素进行了分析。结果表明:①秦岭南北风速空间分布呈东高西低、北高南低格局,按其大小排序为秦岭以北>秦岭南坡>汉水流域>巴巫谷地。四季风速排序为春季>冬季>夏季>秋季,均以秦岭以北最大。②近52 a来,秦岭南北整体和各子区年平均风速呈现一致的显著下降趋势,下降最快的为秦岭南坡,最慢的为汉水流域。四季风速下降速率排序为冬季>春季>秋季>夏季。③年和季节尺度风速的突变集中出现在1969~1974、1978~1981和1990~1994年间,秦岭南北整体于1981年突变。④气象台站周边的城市化发展和风速测量仪器的更换都对风速的变化产生了一定影响,但都不是风速显著下降的主要原因,大气环流变化和气候变暖才是造成风速减小的可能原因。 相似文献
7.
祁连山东北缘最大风速气候特征 总被引:2,自引:0,他引:2
依托祁连山东北缘5个基本站和35个区域站观测资料,通过回归重建1971-2013年最大风速数据库,运用mann-kendall检验、EOF经验正交函数、耿贝尔分布分析了研究区域最大风速特征。结果表明:最大风速在明显减小,民勤尤为明显(0.1879 m·s-1·a-1),在最大风速分布上形成3个极值中心:一是以红沙岗为代表的北部荒漠地区(22.75 m·s-1),二是以红山窑为代表的西部荒滩地区(21.76 m·s-1),三是以乌鞘岭为代表的祁连山地(21.54 m·s-1)。以红沙岗、红山窑、丰乐、乌鞘岭为代表站,分析发现前三者最大风速递减率分别为-0.173、-0.104、-0.103,特征显著,但乌鞘岭基本围绕在平均值附近波动。年最大风速多出现在2~6月,尤其以4~5月份为高发期,占到全年的34.8%~56.8%,EOF第一特征向量进一步揭示了北部沙漠地区和祁连山地的典型风险特征。以南湖—红崖山—昌宁为界的北部沙漠地带在未来10 a、20 a、30 a、50 a间最大风速分别为29.18、30.20、30.82、31.63 m·s-1,为典型的风灾危险区域。本文用区域站资料为最大风速危险区划提出了一些分析结论,可作为项目设计、民生安全、经济发展的参考依据,一定程度上填补了研究空白。 相似文献
8.
祁连山区植被物候遥感监测与变化趋势 总被引:1,自引:0,他引:1
基于1982-2006年GIMMS NDVI时间序列数据,利用Double Logistic拟合方法提取了祁连山区植被的生长季始期、生长季末期和生长季长度参数,分析了植被物候期的时间变化趋势及空间分异特征。结果表明:祁连山植被从东南向西北逐渐变绿,而从西北到东南逐渐变黄,植被生长季呈现出东南地区比西北地区长、河谷地区比高山地区长的特征。25年内植被年生长季始期呈提前趋势,提前幅度为0.044 d·a-1,年代趋势为延迟-提前-延迟;年生长季末期也呈提前趋势,提前幅度为0.059 d·a-1,年代趋势为延迟-提前;生长季长度略有缩短,缩短幅度为0.015 d·a-1,年代趋势为缩短-延长-缩短。25年内祁连山区植被生长季始期、末期提前不明显的区域主要为高山地区,分别占51.46%、42.77%;生长季始期、末期推迟不明显区域主要为河谷地区,分别占44.41%、52.91%;植被生长季高山地区延长不明显,河谷地区缩短不明显,总体上植被物候没有出现明显变化。 相似文献
9.
利用阿勒泰地区6个气象站点1962-2016年平均风速日值数据资料,采用滑动趋势分析、Mann-Kendall突变检测、Molet小波分析、ArcGIS中插值等方法,研究近55 a来阿勒泰地区平均风速的变化趋势。分析表明:(1)阿勒泰地区风速整体呈显著下降趋势,平均以0.021 1 m·s-1·a-1的速率逐步降低,四个季节风速变化趋势与全年一致,其中,夏季下降最突出,递减率为-0.025 4 m·s-1·a-1。(2)平均风速空间分布差异明显,总体表现为自西向东逐渐降低。(3)Molet小波分析显示,全年及四个季节平均风速变化均存在25~28 a变化周期,春、夏、秋、冬季表现强弱不同,体现出季节性差异。(4)全区年平均风速于1990年发生突变,但不同季节突变年份存在较大差异,春季、夏季和秋季平均风速突变分别发生在1994年、1993年和1990年,而冬季发生在1983年。(5)城市化进程不是风速显著降低的关键原因,相对于城市化进程,大气环流的变化可能是引起阿勒泰地区风速降低的关键因素。 相似文献
10.
科学监测祁连山积雪面积及变化特征对该区域气候研究、雪水资源开发利用、环境灾害预报及生态环境保护等具有重要意义。基于2001—2017年MOD10A2积雪产品和气象数据,分析祁连山积雪面积动态变化特征及与气温降水关系。结果显示:(1) 2001—2017年祁连山积雪面积年际波动趋势较大,呈减小趋势,多年平均积雪面积约为5×104km2,占祁连山总面积的25. 9%;年内变化成"M"型,即在一个积雪年中有两个波峰和波谷,波峰出现在11月和1月,波谷出现在7月;季节变化波动趋势较大,夏冬季积雪面积减小趋势大于春季,秋季呈现略微增加趋势。(2)祁连山区积雪面积主要分布在3 000~4 000 m及4 000~5 000 m,积雪覆盖率随着海拔上升呈现逐渐增大的趋势;祁连山区不同坡向积雪覆盖面积差异较大,积雪覆盖率差异较小;积雪频率高值区呈典型的条带状分布,与祁连山地形相一致,呈西北—东南分布,且分布西部大于东部。(3)初步分析认为祁连山积雪面积变化对气温要素更敏感。 相似文献
11.
当前气温插值方法多将高程、经纬度等作为影响因素,无法解决风向、风速对气温空间分布的影响问题。该文提出一种顾及风向和风速的气温空间插值方法:1)根据气象观测站点的风向、风速数据进行插值,生成连续的风场表面;2)基于该风场数据利用高斯扩散模型构建成本表面;3)利用Dijkstra最短路径算法计算观测点与待求点的累计移动成本最短路径(SPOCMC);4)将SPOCMC作为协变量进行薄盘光滑样条插值以实现气温插值。为验证该方法的有效性和可靠性,选取山东省109个气象观测点样本数据,以SPOCMC、DEM和SPOCMC-DEM分别作为协变量对气温数据进行薄盘光滑样条插值,结果显示:SPOCMC-DEM法的MAE和RMSE均值(分别为0.517、0.779)略低于SPOCMC法(0.583、1.016),显著低于DEM法(0.809、1.231),表明添加SPOCMC作为协变量可有效提高气温空间插值的准确性。在江苏省与贵州省的插值实验结果证明了该方法的普适性。 相似文献
12.
利用阿克苏地区1960—2010年雷暴资料,采用气候倾向率、保证率等气候诊断方法,探讨了阿克苏地区雷暴的时空分布规律、气候变化趋势等。结果表明,阿克苏地区雷暴空间分布表现为西多东少、北多南少,位于该地区西部的乌什县为雷暴多发中心;全区年平均雷暴日数为18.7~52.0 d;阿克苏地区每10 a雷暴日数减少2.8 d;雷暴主要集中在3—11月,7月达到最大值,11月下旬至翌年2月基本无雷暴;80%的保证率下雷暴初日出现在5月中旬至下旬之间,雷暴终日出现在9月下旬至10月中旬之间;阿克苏地区一日当中雷暴主要发生在午后至前半夜,雷暴高峰值出现在16—19时,雷暴平均持续时间在35~47 min,雷暴出现最多的方位是W和N。 相似文献
13.
祁连山水源涵养林区降水及温度时空变化研究 总被引:2,自引:0,他引:2
研究大气降水及温度的时空变化对建立气候预警系统有重要的意义。利用气象和水文自动监测仪器沿环境梯度和植被类型对祁连山水源涵养林区温度及降水时空变化进行了动态监测。结果表明,祁连山西水林区降水呈单峰曲线型,主要集中在夏季,占全年降水的72%;在环境梯度上差异较大,表现为乔灌交错带处(3 300 m)降水为最大,交错带以下随海拔的升高降水增大,交错带以上由于降水复杂性导致随海拔的升高而减少;在年际上差异更大,2004年以前降水量随年份的增大有下降趋势,2004年以后降水量增幅较大。祁连山西水林区气温从1986年以来逐渐上升,但年均气温大多在0 ℃以下,最低为-1.33 ℃,从2003年以来气温迅速上升,年均温最高为2.5 ℃,通过研究发现24 a以来气温上升了3.83 ℃;由于气温的上升,导致土壤温度上升较快,尤其是表层和深层土壤温度上升更快,该结论与当前的众多结论是相吻合的。 相似文献
14.
以塔克拉玛干沙漠南缘策勒绿洲西部沙漠-绿洲过渡带为研究区,选择植被盖度 < 5%裸沙样地、植被盖度10%~15%柽柳样地和植被盖度20%~25%骆驼刺样地,利用可移动梯度风测量系统,获取了系统性天气过程中距离地表20 cm、40 cm、60 cm、100 cm和200 cm高度的风速及200 cm高度的风向系列数据,对3个样地平均风速、风速脉动和风向脉动进行分析和研究。结果表明:(1)植被的存在大幅度消弱了平均风速,随着植物密度的增加平均风速逐渐降低,风速廓线显示平均风速发生明显降低的转折高度与植被冠层的平均高度相对应。(2)3个样地脉动风速均近似服从高斯分布,可见植被的存在并未改变风速脉动分布规律。各样地风速脉动强度均随指示风速的增大而增大,随距离地表高度的降低而下降。风速脉动相对值总体上呈现随植物密度增大而增大的趋势,植物群落结构的差异增加了相对风速脉动垂直分布的复杂性。(3)风向脉动幅度以裸沙样地最小、柽柳样地次之、骆驼刺样地最大,即随植物密度增加而增大。同一样地内风向脉动值不随指示风速的变化而发生明显变化。 相似文献
15.
16.
风向对半固定沙垄表面风速影响——以古尔班通古特沙漠为例 总被引:1,自引:0,他引:1
利用DETI可移动测风系统对古尔班通古特沙漠半固定沙垄表面风速进行实地观测,获取了主要风季不同风向条件下沙垄表面7个典型部位距离地表20 cm、40 cm、60 cm、100 cm和200 cm 5个高度的风速系列数据,系统研究风向对半固定沙垄表面坡面风速及风速廓线的影响。结果表明,迎风坡的气流加速和背风坡的风速降低现象在实际观测中得到证实,但受风向的影响甚大。垄顶风速放大率随入射角的增大呈指数关系递增,而背风坡风速占垄顶风速的比率则随入射角的增大呈线性关系递减。大角度入射气流速度变化主要受控于沙垄形态,小角度入射气流速度变化主要受控于地表植被状况。无论气流以何种角度入射,距沙垄表面20 cm高度气流的加速均较其他高度缓和。沙垄底部和坡中下部的风速廓线变化趋势基本一致,且呈较好的对数拟合关系;两坡中上部和垄顶部的对数拟合方程相关系数偏小;受回旋涡流的影响,风速廓线在背风坡上部有明显偏折,初步断定涡流中心在距地表40 cm左右的高度。 相似文献
17.
雅鲁藏布江流域降水时空变化特征 总被引:1,自引:0,他引:1
雅鲁藏布江流域是全球气候变化的敏感区,该流域降水变化对青藏高原的水系统、生态系统和山地灾害系统的演变具有重要影响。本文通过流域水文分析,将雅鲁藏布江流域的三大水资源区细分为9个分区。基于雅鲁藏布江流域1979—2018年降水数据,综合分析了雅鲁藏布江流域及9个分区的年、干湿季、月降水量以及日、小时尺度极端降水的时空变化特征,探讨了降水和典型大尺度大气环流因子的相关性。结果表明:① 1979—2018年间,在流域尺度上,各时间尺度降水整体上均呈上升趋势。其中,年降水量上升趋势最大,为2.5 mm·a-1;年、干湿季降水量以及典型小时尺度极端降水(Rx3hour、Rx12hour)均在95%信度水平下显著上升。在水资源分区尺度上,各分区不同时间尺度降水的变化趋势呈现更明显的非一致性,所有分区除小时尺度极端降水均呈上升趋势外,其余时间尺度降水的趋势变化方向各异。② 雅鲁藏布江流域降水存在明显的空间分异性,且降水空间分异性会随着降水指标时间尺度的缩短而增强。各时间尺度降水整体上均呈现出自东部向西部逐渐减少的趋势,流域东南部(分区Ⅲ-2)始终是高值中心,流域中西部(分区Ⅰ-2、Ⅱ-1)存在区域性高值中心。③ 北半球副热带高压和北半球极涡对雅鲁藏布江流域降水变化具有显著影响。研究结果有助于掌握当地降水的多尺度变化特征,可为雅鲁藏布江流域和青藏高原地区的水循环研究、水资源开发利用和山洪灾害防治等提供科学基础。 相似文献
18.
利用滇西北高原1961-2009年逐月降水量资料,采用多种统计分析方法,研究滇西北高原降水量的时空变化特征。结果表明:滇西北高原冬季、夏季和年平均降水量空间分布的主要特征是一致多雨或少雨型,且均具有经向分布特征,其次为"西北部-东南部"或者"西部-东部"反位相振荡型。冬季、夏季和年平均降水量的两种主要空间分布型所对应的时间系数均以年际变化为主,周期变化主要集中在4年以下的高频振荡时域内,其次是周期为12年的年代际变化。近48年来,滇西北高原冬季和年平均降水量随时间变化总体上均以增加趋势为主,增加趋势不明显,夏季降水量变化则呈减少趋势,其中香格里拉县夏季降水量减少趋势明显。 相似文献
19.
依据Hadley中心提供的全球海冰密集度格点资料 ,利用诊断分析方法 ,对近 35年来南极海冰的时空变化特征进行了研究。研究表明 ,在南极地区 ,海冰平均北界和海冰总面积的变化基本一致 ,可以用海冰北界来研究南极海冰的时空变化特征。南极海冰最多和最少期分别出现在 9月和 2月 ;威德尔海和罗斯海地区海冰最多、变化最大 ,南极半岛地区海冰最少 ,变化也小 ;近 35年来环南极地区的海冰有明显的减少趋势。南极海冰变化的时空多样性十分明显 ,存在着 5个变化不同的区域 ,其中有两个区域近 35年来海冰范围扩大 ,面积增加 ,而另三个区域则海冰范围缩小 ,面积减少。不同区域的海冰都存在着较明显的 2- 3年和 5- 7年主振荡周期。南极海冰时空变化特征的研究对进一步认识南极地区海 冰 气相互作用的物理过程 ,讨论南极海冰变异与大气环流和天气气候的关系有重要意义 相似文献
20.
基于1960―2015年长江流域128个站点的月风速观测数据,结合地形特点将长江流域分成5个子区域,并运用一元线性回归、相关分析和修正的Mann-Kendall(MMK)检验对长江流域风速变化趋势的时空特征进行研究,结果表明:1)1960―2015年长江流域年平均风速以-0.006 5 m/s·a的速率显著下降,5个子区域中,区域中下游丘陵与平原区(R1)下降最显著,上游青藏高原区(R5)次之,上游盆地区(R3)变化最小。2)季节上,全区风速春季下降最快,夏季最慢。而子区域除R1冬季降幅最大外,其余区域季节风速变化速率也为春季降幅最大,夏季最小。逐月变化上,流域整体风速3月下降最快,8月最慢,各子区域风速最大降幅也集中在3月。3)空间分布上,长江流域年平均风速降幅呈现东部大、中部小、西部较大的特点,全区50%的站点下降趋势显著,且这些站点集中分布于R1地区。此外,4个季节风速与年风速的变化趋势呈现相似的空间分布特征。4)长江流域风速下降与北极涛动(AO)指数上升、区域气候变暖和城市化加速等有关。 相似文献