首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Snow cover is characterized by the high albedo, low thermal conductivity, and notable heat transition during phase changes. Thus, snow cover significantly affects the ground thermal regime. A comparison of the snow cover in high latitudes or high-altitude snowy mountain regions indicates that the eastern Tianshan Mountains (China) show a characteristically thin snow cover (snow depth below 15 cm) with remarkable temporal variability. Based on snow depth, heat flux, and ground temperature from 2014 to 2015 in the Urumqi River source, the spatialtemporal characteristics of snow cover and snow cover influences on the thermal conditions of active layer in the permafrost area were analyzed. During the autumn (Sept. - Oct.), thin and discontinuous snow cover can noticeably accelerate the exothermic process of the ground, producing a cooling effect on the shallow soil. During the winter (Nov. - Mar.), it is inferred that the effective thermal insulation starts with snow depth exceeding 10 cm during early winter. However, the snow depth in this area is generally below 15 cm, and the resulting snow-induced thermal insulation during the winter is very limited. Due to common heavy snowfalls in the spring (Apr. to May), the monthly mean snow thickness in April reached to 15 cm and remained until mid-May. Snow cover during the spring significantly retarded the ground warming. Broadly, snow cover in the study area exerts a cooling effect on the active layer and plays a positive role in the development and preservation of permafrost.  相似文献   

2.
Precipitation,a basic component of the water cycle,is significantly important for meteorological,climatological and hydrological research.However,accurate estim...  相似文献   

3.
Snow avalanche is a serious threat to the safety of roads in alpine mountains. In the western Tianshan Mountains, large scale avalanches occur every year and affect road safety. There is an urgent need to identify the characteristics of triggering factors for avalanche activity in this region to improve road safety and the management of natural hazards. Based on the observation of avalanche activity along the national road G218 in the western Tianshan Mountains, avalanche event data in combination with meteorological, snowpack and earthquake data were collected and analyzed. The snow climate of the mountain range was examined using a recently developed snow climate classification scheme, and triggering conditions of snow avalanche in different snow climate regions were compared. The results show that snowfall is the most common triggering factor for a natural avalanche and there is high probability of avalanche release with snowfall exceeding 20.4 mm during a snowfall period. Consecutive rise in temperature within three days and daily mean temperature reaching 0.5°C in the following day imply a high probability of temperaturerise-triggered avalanche release. Earthquakes have a significant impact on the formation of large size avalanches in the area. For the period 2011-2017, five cases were identified as a consequence of earthquake with magnitudes of 3.3≤M_L≤5.1 and source-to-site distances of 19~139 km. The Tianshan Mountains are characterized by a continental snow climate with lower snow density, lower snow shear strength and high proportion depth hoar, which explains that both the snowfall and temperature for triggering avalanche release in the continental snow climate of the Tianshan Mountains are lower than that in maritime snow climate and transitional snow climate regions. The findings help forecast avalanche release for mitigating avalanche disaster and assessing the risk of avalanche disaster.  相似文献   

4.
A pollen study was conducted on an alpine marsh sediment in the Son Kul Basin and was allowed to reconstruct changes in vegetation dynamics and climatic information in the western Tianshan Mountains during the past 2000 years. Pollen diagram reveals that regional vegetation is dominated by alpine meadow in the past 2000 years, being similar with modern vegetation components in the basin. The Artemisia/Chenopodiaceae-indicated moisture exhibits a warm-dry Roman Warm Period(RWP, ~0-~500 AD), a cold-dry Dark Ages Cold Period(DACP, ~500-~800 AD), a warm-wet Medieval Warm Period(MWP, ~800-~1350 AD), a cold-dry Little Ice Age(LIA, ~1350-~1850 AD) and a warm-dry Current Warm Period(CWP, since ~1850 AD). Our pollen-based moisture reconstructions are supported by other nearby moisture records. Combined with other pollen data in the western Tianshan Mountains, we found that the vegetation was relatively stable before ~1650-~1750 AD and the anthropogenic activities obviously intensified afterwards(especially at the middle-elevation sites). Further work involving more and higher-resolution palaeovegetation records would contribute to fully understand the information on the complex links between environmental, climatic and anthropogenic changes in the western Tianshan Mountains.  相似文献   

5.
《山地科学学报》2021,18(10):2656-2671
Accurate measurements of glacier elevation changes play a crucial role in various glaciological studies related to glacier dynamics and mass balance. In this paper, glacier elevation changes of Urumqi Glacier No.1 between August 2015 and August 2017 were investigated using Sentinel-1 A data and DInSAR technology. Meanwhile, the atmospheric delay error was corrected with the MODIS MOD05_L2 products. The weight selection iteration method was applied to calibrate the glacier elevation changes in the mass balance years 2015-2016 and 2016-2017. Finally, the geodetic method was employed to calculate the elevation change values of individual stakes of Urumqi Glacier No.1. Moreover, the elevation change values corrected by the weight selection iteration method were verified. Results showed as follows:(1) the elevation of Urumqi Glacier No.1 glacier affected by atmospheric delay was 1.270 cm from 2015 to 2016. The glacier elevation affected by atmospheric delay from 2016 to 2017 was 1.071 cm.(2) The elevation change value of Urumqi Glacier No.1 was-1.101 m from 2015 to 2016, and the elevation of Urumqi Glacier No.1 decreased by 1.299 m from 2016 to 2017. The overall thickness of Urumqi Glacier No. 1 was thinning.(3) By comparing the elevation change results of individual stakes with corresponding points corrected by the weight selection iteration method, the mean squared errors of difference were 0.343 m and 0.280 m between the two mass balance years, respectively.(4) The accuracy of elevation change in non-glaciated areas was 0.039 m from 2015 to 2016 and 0.034 m from 2016 to 2017. Therefore, it is reliable to use Sentinel-1 A data and the study method proposed in this paper to calculate the elevation change of mountain glaciers with very low horizontal movement.  相似文献   

6.
在洪水灾情监测中,快速准确的获取淹没区域和洪灾面积,对防汛救灾和灾后重建工作具有重要价值.本文以2017年美国圣路易斯洪水为例,基于Sentinel-1 SAR数据,利用变化检测和阈值相结合的方法实现大范围洪水淹没提取,将VV/VH极化数据分别与从同期Sentinel-2光学影像中获取的洪水淹没范围进行比较,评定极化方...  相似文献   

7.
This article discussed about snow temperature variations and their impact on snow cover parameters. Automatic temperature recorders were used to sample at 10-minute intervals at the Tianshan Station for Snow-cover and Avalanche Research, Chinese Academy of Sciences. 10-layer snow temperature and the snow cover parameters were measured by the snow property analyzer (Snow Fork) in its Stable period, Interim period and Snow melting period. Results indicate that the amplitude of the diurnal fluctuation in the temperature during Snow melting period is 1.62 times greater than that during Stable period. Time up to the peak temperature at the snow surface lags behind the peak solar radiation by more than 2.5 hours, and lags behind the peak atmospheric temperature by more than 0.2 hours during all three periods. The optimal fitted function of snow temperature profile becomes more complicated from Stable period to Snow melting period. 22 h temperature profiles in Stable period are the optimal fitted by cubic polynomial equation. In Interim period and Snow melting period, temperature profiles are optimal fitted by exponential equation between sunset and sunrise, and by Fourier function when solar radiation is strong. The vertical gradient in the snow temperature reaches its maximum value at the snow surface for three periods. The peak of this maximum value occurs during Stable period, and is 4.46 times greater than during Interim period. The absolute value of temperature gradient is lower than 0.1°C cm−1 for 30 cm beneath snow surface. Snow temperature and temperature gradient in Stable period∼Interim period indirectly cause increase (decrease) of snow density mainly by increasing (decreasing) permittivity. While it dramatically increases its water content to change its permittivity and snow density in Snow melting period.  相似文献   

8.
9.
In this study, meteorological factors and snowmelt rate at an open site on sunny slope(OPS) and beneath forest canopy openness on shady slope(BFC) were measured using an automatic weather station and snow lysimeter during the snowmelt period in 2009, 2010 and 2013. The energy budget over snow surface was calculated according to these meteorological datasets. The analysis results indicated that the net shortwave radiation(K) and sensible heat flux(H) were energy sources, and the latent heat flux(LVE) was energy sinks of snow surfaces at all sites. The net longwave radiation(L) was energy sink at OPS and 80% BFC, but energy source at 20% BFC. The gain of K, H, and the loss of LVE at BFC were obviously lower than those at OPS. The L was the maximum difference of energy budget between snow surface at BFC and OPS. In warm and wet years, the most important factor of the energy budget variation at OPS was air humidity and the second mostimportant factor was air temperature. However, the ground surface temperature on the sunny slope was the most important factor for L and energy budget at BFC. With the increases in forest canopy openness and the slope of adjacent terrains, the influences of ground surface temperature on the sunny slope on L and the energy budget over snow surface at BFC increased, especially when the snow cover on the sunny slope melts completely.  相似文献   

10.
CLIMATICTRENDINDICATEDBYVARIATIONSOFGLACIERSANDLAKESINTHETIANSHANMOUNTAINS¥HuRuji;YangChuande;MaHong;JiangFengqing(XinjiangIn...  相似文献   

11.
Snowmelt is an important component of any snow-fed river system.The Jhelum River is one such transnational mountain river flowing through India and Pakistan.The basin is minimally glacierized and its discharge is largely governed by seasonal snow cover and snowmelt.Therefore,accurate estimation of seasonal snow cover dynamics and snowmeltinduced runoff is important for sustainable water resource management in the region.The present study looks into spatio-temporal variations of snow cover for past decade and stream flow simulation in the Jhelum River basin.Snow cover extent(SCE) was estimated using MODIS(Moderate Resolution Imaging Spectrometer) sensor imageries.Normalized Difference Snow Index(NDSI) algorithm was used to generate multi-temporal time series snow cover maps.The results indicate large variation in snow cover distribution pattern and decreasing trend in different sub-basins of the Jhelum River.The relationship between SCE-temperature,SCE-discharge and discharge-precipitation was analyzed for different seasons and shows strong correlation.For streamflow simulation of the entire Jhelum basin Snow melt Runoff Model(SRM) used.A good correlation was observed between simulated stream flow and in-situ discharge.The monthly discharge contribution from different sub-basins to the total discharge of the Jhelum River was estimated using a modified version of runoff model based on temperature-index approach developed for small watersheds.Stream power - an indicator of the erosive capability of streams was also calculated for different sub-basins.  相似文献   

12.
1INTRODUCTIONAtpresent,theresearchofnaturaldisastershasgotadvancesintimesequence,butitdevelopsslowlyinspacesequence,especialy...  相似文献   

13.
In the past two decades, because of the significant increase in the availability of differential interferometry from synthetic aperture radar and GPS data, spaceborne geodesy has been widely employed to determine the co-seismic displacement field of earthquakes. On April 18, 2021, a moderate earthquake(Mw 5.8) occurred east of Bandar Ganaveh, southern Iran, followed by intensive seismic activity and aftershocks of various magnitudes. We use two-pass D-InSAR and Small Baseline Inversion technique...  相似文献   

14.
THEORIGINANDCHARACTERISTICSOFTHEGLACIALDEBRISFLOWINTHEDUKUHIGHWAYOFTIANSHANMOUNTAINS,CHINA¥XiongHeigang(DepartmentofGeography...  相似文献   

15.
PALEOSOLSOFSANDYLANDSANDENVIRONMENTALCHANGESINTHEWESTERNPARTOFNORTHEASTPLAINOFCHINAWESTERNDURINGHOLOCENE¥QiuShanwen(裘善文)LiQus...  相似文献   

16.
Stable oxygen isotopes in precipitation contain meaningful environmental information on a synoptic scale and can be applied to diagnose hydrometeorological processes.A series of rainstorms occurred at the southern Tianshan Mountains during the period from May to June 2013,and the event-based precipitation was sampled along the mountain range from west to east.Based on δ18 O values in precipitation samples as well as the corresponding meteorological parameters,the moisture transport paths during the sampling period were identified.In late-May(stage 1),isotopes in precipitation collected generally showed a depleting trend.In mid-June(stage 2),there was no coherent trend of isotopes in precipitation for these stations,and only isotope values in Aksu showed a continually depleting trend.Checking other meteorological proxies during the sampling period,the event-based precipitation isotopes sensitively reflected the moisture process.In central Asia,both the westerly and monsoon moisture can be delivered to cause extreme precipitation events,and the isotopic information provides an alternative tool to investigate the atmospheric processes.  相似文献   

17.
Seasonal ice cover is uncommon on Australian lakes. In the Snowy Mountains, there are five natural, seasonally ice-covered lakes including Lake Cootapatamba, the highest lake in Australia. Blue Lake is the only one of the five lakes with sufficient volume to be relatively independent of short-term changes in ambient temperature, and therefore is the lake most likely to be of use in tracking long-term regional climate change. Ice forms on Blue Lake near the winter solstice and ice-breakup occurs from late September to November. Timing of breakup is related to spring temperature and, as such, mirrors the timing of general snow thaw in the mountains. The existence of historic photographs taken of the lake at about the time of ice breakup allows for the possibility of reconstructing a history of alpine climate and in 1905 ice breakup was probably as late as mid-December.  相似文献   

18.
Snow is a key variable that influences hydrological and climatic cycles.Land surface models employing snow physics-modules can simulate the snow accumulation an...  相似文献   

19.
20.
Glaciers were solid reservoirs and important water resources in western China, but they were retreating significantly in context of global warming. Laohugou Glacier No. 12 was the largest valley glacier in Qilian Mountains. In this study, realtime kinematic (RTK) data, topographic map and WorldView-2 satellite imagery were used to measure changes in terminus, extent and volume of Laohugou Glacier No. 12. Results showed that Laohugou Glacier No. 12 was shrinking significantly since 1957. From 1960 to 2015, the terminus reduction of Laohugou Glacier No. 12 was 402.96 m (3.99%) in total, and glacier length decreased to 9.7 km from 10.1 km. Reduction of glacier area and volume were the most obvious. From 1957 to 2015, glacier area and volume decreased by 1.54 km2 (7.03%) and 0.1816 km3, respectively. Reduction trend of terminus and area was slowing in 1950 -1980s, even stable for a period in the mid-1980s, and then accelerated. Ice core analysis result and nearly meteorological station data shown an increasing trend of temperature in 1957 -2015, it was a main reason of continuous retreating of Laohugou Glacier No.12.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号