首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Erosion agents and patterns profoundly affect hillslope soil loss characteristics. However, few attempts have been made to analyze the effects of rainfall and inflow on soil erosion for hillslopes dominated by sheet erosion or rill erosion in the Chinese Mollisol region. The objective of this study was to discuss the erosive agent(rainfall or inflow), hillslope erosion pattern(sheet erosion or rill erosion) and slope gradient effects on runoff and soil losses. Two soil pans(2.0 m long, 0.5 m wide and 0.5 m deep) with 5° and 10° slopes were subjected to rainfall(0 and 70 mm h–1) and inflow(0 and 70 mm h–1) experiments. Three experimental combinations of rainfall intensity(RI) and inflow rate(IR) were tested using the same water supply of 70 mm by controllingthe run time. A flat soil surface and a soil bed with a straight initial rill were prepared manually, and represented hillslopes dominated by sheet erosion and rill erosion, respectively. The results showed that soil losses had greater differences among treatments than total runoff. Soil losses decreased in the order of RI70+IR70 RI70+IR0 RI0+IR70. Additionally, soil losses for hillslopes dominated by rill erosion were 1.7-2.2 times greater at 5° and 2.5-6.9 times greater at 10° than those for hillslopes dominated by sheet erosion. The loss of 0.25 mm soil particles and aggregates varying from 47.72%-99.60% of the total soil loss played a dominant role in the sediment. Compared with sheet erosion hillslopes, rill erosion hillslopes selectively transported more microaggregates under a relatively stable rill development stage, but rills transported increasinglymore macroaggregates under an active rill development stage. In conclusion, eliminating raindrop impact on relatively gentle hillslopes and preventing rill development on relatively steep hillslopes would be useful measures to decrease soil erosion and soil degradation in the Mollisol region of northeastern China.  相似文献   

2.
泥质砂岩残积土作为一种结构性很强的特殊土,具有崩解性强、抗冲蚀性差以及扰动性极大的特点,对工程建设有较大影响。为了探究泥质砂岩残积土边坡降雨冲刷机理,设计了边坡降雨冲刷试验,通过现场三维激光扫描技术测试分析了其表面冲刷效应;利用高密度电法进一步明确了泥质砂岩残积土边坡的入渗特性、表面冲刷演化机制及冲刷破坏机理。结果表明:冲刷试验的最初阶段,降水入渗强且主要向坡脚处运移,坡表未形成明显的细沟;冲刷试验中期,坡脚处土体最先达到饱和而形成坡面径流,细沟贯通扩大形成小规模冲槽以及片蚀区;冲刷试验后期,坡面中部和坡脚处土体冲蚀严重,坡脚处的冲槽向上部延伸,片蚀区扩大,导致表层土体结构发生变化,渗透性差异明显;泥质砂岩残积土坡体降雨冲刷主要划分为表层溅蚀、下层潜蚀和细沟贯通3个阶段,坡面土体流失主要发生在最后一个阶段,细沟率达到最高值16.9%,细沟贯通率也高达0.74。研究结果可以为深入探讨泥质砂岩残积土边坡冲蚀防护和研究冲蚀防护机理提供基础资料。  相似文献   

3.
137 Cs is an artificial radionuclide with a half-life of 30.2 years,which was released into the environment as a byproduct of atmospheric testing of nuclear weapons during the period of 1950s to 1970s with a peak deposition in 1963.137 Cs fallout was strongly and rapidly adsorbed by soil particles when it deposited on the ground mostly with precipitation.Its following movements will associate with the adsorbed particles.137 Cs tracing technique has been widely used in soil erosion and sedimentation studies since 1980s.This paper introduces the basis of the technique and shows several case studies of assessment of soil erosion rates,investigation of sediment sources and dating of reservoir deposits by using the technique in the Loess Plateau and the Upper Yangtze River Basin.  相似文献   

4.
A review on rill erosion process and its influencing factors   总被引:8,自引:0,他引:8  
Rills are frequently observed on slope farmlands and rill erosion significantly contributes to sediment yields. This paper focuses on reviewing the various factors affecting rill erosion processes and the threshold conditions of rill initiation. Six factors, including rainfall, runoff, soil, topography, vegetation and tillage system, are discussed. Rill initiation and network are explored. Runoff erosivity and soil erodibility are recognized as two direct factors affecting rill erosion and other types of factors may have indirect influences on rill erosion through increasing or decreasing the effects of the direct factors. Certain conditions are necessary for rill initiation and the critical conditions are different with different factors. Future studies should be focused on 1) the dynamic changes of rill networks; 2) the combined effect of multiple factors; and 3) the relationships of threshold values with other related factors.  相似文献   

5.
Gully erosion regionalization of black soil area in northeastern China   总被引:7,自引:0,他引:7  
Gully erosion is the frequent and main form of soil erosion in the black soil area of the northeastern China, which is one of the most important commodity grain production bases in China. It is encroaching upon the fertile farmland there. Regionalization of gully erosion can reveal the spatial distribution and regularity of the development of gully erosion. Based on the eco-geographical regional background features of the black soil area, this study combined the regionalization with influencing factors of the development of gully erosion. GIS spatial analysis, geostatistical analysis, spatial statistics, reclassification, debris polygon processing and map algebra methods were employed. As a result, the black soil area was divided into 12 subregions. The field survey data on type, length, volume and other characteristics indicators of gully erosion were used to calibrate the results. Then the features of every subregion, such as where the gully erosion is, how serious it is, and why it happens and develops, were expounded. The result is not only an essential prerequisite for gully erosion surveys and monitoring, but also an important basis for gully erosion prevention.  相似文献   

6.
The phenomenon of debris flow is intermediate between mass movement and solid transport. Flows can be sudden, severe and destructive. Understanding debris flow erosion processes is the key to providing geomorphic explanations, but progress has been limited because the physical-mechanical properties, movement laws and erosion characteristics are different from those of sediment-laden flow. Using infinite slope theory, this research examines the process and mechanism of downcutting erosion over a moveable bed in a viscous debris flow gully. It focuses specifically on the scour depth and the critical slope for viscous debris flow,and formulas for both calculations are presented.Both scour depth and the critical conditions of downcutting erosion are related to debris flow properties(sand volume concentration and flow depth) and gully properties(longitudinal slope,viscous and internal friction angle of gully materials,and coefficient of kinetic friction). In addition, a series of flume experiments was carried out to characterize the scouring process of debris flows with different properties. The calculated values agreed well with the experimental data. These theoretical formulas are reasonable, and using infinite slope theory to analyze down cutting erosion from viscous debris flow is feasible.  相似文献   

7.
Comparative study on rain splash erosion of representative soils in China   总被引:5,自引:0,他引:5  
As the first event of soil erosion, rain splash erosion supplies materials for subsequent transportation and entrainment. The Loess Plateau, the southern hilly region and the Northeast China are subject to serious soil and water loss; however, the characteristics of rain splash erosion in those regions are still unclear. The objectives of the study are to analyze the characteristics of splash erosion on loess soil, red soil, purple soil and black soil, and to discuss the relationship between splash erosion and soil properties. Soil samples spatially distributed in the abovementioned regions were collected and underwent simulated rainfalls at a high intensity of 1.2mm/min, lasting for 5, 10, 15, and 20min, respectively. Rain splash and soil crust development were analyzed. It shows that black soil sample from Heilongjiang Province corresponds to the minimum splash erosion amount because it has high aggregate content, aggregate stability and organic matter content. Loess soil sample from Inner Mongolia corresponds to the maximum splash erosion amount because it has high content of sand particles. Loess soil sample from Shanxi Province has relatively lower splash erosion amount because it has high silt particle content and low aggregate stability easily to be disrupted under rainfalls with high intensity. Although aggregate contents of red soil and purple soil samples from Hubei and Guangdong provinces are high, the stability is weak and prone to be disrupted, so the splash erosion amount is medium. Splash rate which fluctuates over time is observed because soil crust development follows a cycling processes of formation and disruption. In addition, there are two locations of soil crust development, one appears at the surface, and the other occurs at the subsurface.  相似文献   

8.
The bank slopes in hydro-fluctuation areas of reservoirs or lakes suffer from severe erosion due to an absence of protection. Waves are one of the important external forces that cause bank erosion and slope failures. However, the processes and quantified impacts of wave-induced erosion on slopes remain unclear under different water level-fluctuation conditions. This paper focuses on the characteristics of wave-induced slope erosion under three conditions: water level dropping(WLD), fixed(WLF) and rising(WLR). A steel tank with glass pane was used to simulate the wave-induced slope erosion in the three treatments. The slope elevation data were collected by using the method of the pin meter for every 15 minutes from the beginning to the end, a total of 5 times during all treatments. These data were processed by using software(SURFER 9.0) to get the slope micro-topography and the erosion volume. Then the temporal and spatial change of slope erosion was analysed according to the erosion amount or erosion rate calculated based on bulk density of slope soil. The results demonstrated that the soil erosion rates for different water level changing treatments are in the following order: WLR>WLD>WLF. For the erosion spatial variation, the middle part of the slope was the major source of sediment in the WLD. The upper part of the slope was the major source of the sediment for the other two treatments. Compared with the standard deviation(SD), the coefficient of variation(CV) based on the SD is more representative of variations in the soil surface roughness(SSR). Furthermore, the good fit between the SSR and soil erosion rate have the potential to be used to predict soil erosion. Above all, the injection angle of the wave determined the rate of erosion to some extent, and the fall-back flow of the wave could also influence the extent of erosion, deposition, and bank morphology. It is vital to choose the appropriate index(SD or CV) in the three water levels to improve the prediction accuracy. This paper could provide scientific knowledge to manage reservoirs or river banks.  相似文献   

9.
Soil degradation caused by soil erosion is one of the world’s most critical environmental issues. Soil erosion in the Tianshan Mountains has caused various environmental problems in the surrounding areas. This study used remote sensing data to analyze the distribution of the factors influencing soil erosion, and the revised universal soil loss equation(RUSLE) to calculate the total amount and distribution characteristics of soil erosion in the Tianshan Mountains in 2019. Due to the large error o...  相似文献   

10.
Assessment of soil erosion by compensatory hoeing tillage in a purple soil   总被引:2,自引:0,他引:2  
This study explores the role of a traditional tillage method,i.e.,compensatory hoeing,for sustainable agro-ecosystem management in the hilly areas of the Chongqing municipality,south-western China.To validate the effects of compensatory tillage on the terraced slopes,the tillage method of noncompensatory hoeing was conducted on a linear slope.To acquire information about 137 Cs inventories and soil texture,soil samples were collected by a core sampler with a 6.8-cm diameter at 5.0-m intervals along the toposequence and the linear slope in the dry season(March) of 2007.Meanwhile,a tillage erosion model was used for evaluating the spatial pattern of tillage erosion.The 137 Cs data showed that on the terraced slope,soil was lost from the upper slope,and soil deposition occurred at the toe slope positions on each terrace.As a result,abrupt changes in the 137 Cs inventories of soil were found over short distances between two sides of terrace boundaries.Results obtained from the tillage erosion model and the 137 Cs data indicate that soil redistribution mainly results from tillage erosion in the terraced landscape.Consecutive non-compensatory tillage caused soil redistribution on the linear slope,resulting in thin soil profile disappearing at the top and soil accumulating at the bottom positions of the linear slope.This result further validates that compensatory tillage could avoid the complete erosion of the thin soil layer at the summit position.Therefore,this traditional tillage.method,i.e.,compensatory tillage,has maintained the soil quality at the summit of the slope in the past decades.  相似文献   

11.
《山地科学学报》2020,17(6):1410-1422
An understanding of how different land covers affect soil erosion caused by rainfall is necessary in mountainous areas. The land cover usually plays an important role in controlling landslide hazards associated with these terrains. This paper presents the results of a field experiment where several types of land covers were placed on a full-scale embankment as erosion control. An 8 m wide, 21 m long, and 3 m high embankment with a 45° side-slope was built with lateric soil. The soil was compacted under a relative compaction of 70% to simulate a natural soil slope. Two sides of the embankment were divided into six land cover areas, with three different areas of bare soil, and one each of a geosynthetic cementitious composite mat(GCCM), vetiver grass,and a combination of GCCM and vegetation. Soil erosion and moisture levels were monitored for each land cover area during six natural rainfall events encountered over the experimental period. Field results were compared with a numerical simulation and empirical soil loss equation. The results revealed that the GCCM gave the best erosion control immediately after installation, but vetiver grass also exhibited good erosion control six months postconstruction.  相似文献   

12.
为揭示东喜马拉雅构造结演化过程,也为未来可能重大工程建设提供基础地质资料,对帕隆藏布江中游9块基岩样品进行了黑云母40Ar/39Ar测年,并利用“Pecube”软件对该地区的地壳剥露速率进行半定量计算。样品黑云母40Ar/39Ar年龄范围为103~12.5 Ma,对应地壳剥露速率范围为0.068~0.50 km/Ma。帕隆藏布江流域地壳剥露速率具有明显的东西差异特征,下游(西段)地壳剥露速率显著高于中游(东段)。年龄数据及其模拟计算结果表明,相对于东喜马拉雅构造结内部,帕隆藏布江中游流域地壳剥露活动较弱且较稳定。雅鲁藏布江对帕隆藏布江的袭夺,使得帕隆藏布下游(西段)重新进入河流演化幼年阶段,河流快速下切剥蚀可能是导致该地区地壳剥露速率东西差异的原因。  相似文献   

13.
Suitable vineyard soils enhance soil stability and biodiversity which in turn protects roots against erosion and nutrient losses. There is a lack of information related to inexpensive and suitable methods and tools to protect the soil in Mediterranean sloping vineyards(25° of slope inclination). In the vineyards of the Montes de Málaga(southern Spain), a sustainable land management practice that controls soil erosion is actually achieved by tilling rills in the down-slope direction to canalize water and sediments. Because of their design and use, we call them agri-spillways. In this research, we assessed two agri-spillways(between 10 m and 15 m length, and slopes between 25.8° and 35°) by performing runoff experiments under extreme conditions(a motor driven pump that discharged water flows up to 1.33 l s~(-1) for 12 to 15 minutes: ≈1000 l). The final results showed: i) a great capacity by these rills to canalize large amounts of water and sediments; and, ii) higher water flow speeds(between 0.16 m s-1 and 0.28 m s~(-1)) and sediment concentrationrates(up to 1538.6 g l~(-1)) than typically found in other Mediterranean areas and land uses(such as badlands, rangelands or extensive crops of olives and almonds). The speed of water flow and the sediment concentration were much higher in the shorter and steeper rill. We concluded that agri-spillways, given correct planning and maintenance, can be a potential solution as an inexpensive method to protect the soil in sloping Mediterranean vineyards.  相似文献   

14.
Under the condition of different precipitation intensities, different gradients, different land-use types and different vegetation coverage, the soil erosion and transference of element (or pollutant) are studied by simulating and analyzing the surface run-off of experimental plots in the catchment area of Songhua Lake, with an area of about 43 370.8km^2. And the influencing factors that produce the spatial difference are analyzed and assessed. It is put for-ward that the irrational land utilization is the reason of soil erosion and pollutant run-off. The gradient of farmland,the growing season of vegetation and the vegetation coverage are chiefly restricting factors that lead to the soil ero-sion and pollutant run-off. This study can provide the fundamental data for comprehensive planning and harnessing of the non-noint source t3ollution in the valley.  相似文献   

15.
Research on the effects of soil erosion on soil productivity has attracted increasing attention.Purple soil is one of the main soil types in China and plays an important role in the national economy.However,the relationship between erosion and the productivity of purple soils has not been well studied.The purpose of this research was to determine if soil depth,which is dependent on the rate of erosion,has an influence on crop yield and growth.Plot and pot experiments at different soil depths were performed.Results indicate that soils from different parental materials had different growth features and crop yields due to the differential fertility of the derived soils.The yield reduction rate increases exponentially with the depth of eroded soil(level of erosion).The yield reduction rate per unit eroded soil horizon(10 cm) is approximately 10.5% for maize and wheat.  相似文献   

16.
Two types of pisha-sandstones of purple sandstones and gray sandstones, widely distributing in the wind-water erosion crisscross region of China, were selected and used in laboratory experiments for a better understanding of the drying-wetting-freezing weathering process resulting from the apportionment of water or salt solution to rock samples. Weathering experiments were carried out under the conditions of environment control (including temperature, moisture and salt solution). All rock samples were frequently subjected to 140 drying-wetting-freezing cycles. The influences of weathering process were evaluated. It was found that the different treatments of moisture and salt solution applications could affect the nature of the weathering products resulting from drying-wetting-freezing. It was also observed that salt solution could effectively alleviate the weathering of pisha-sandstones. Although not all the observations could be explained, it was apparent that simulated environmental factors had both direct and indirect effects on the weathering of rocks.  相似文献   

17.
Silty sand can be prone to erosion because it is short of stability cementation materials. In recent years, various emerging soil stabilizers, especially natural organic substance and polymer, have been used to improve soil strength, water stability and ability of erosion resistance. In this study, a new type of soil stabilization additive modified carboxymethyl cellulose(M-CMC), consisting of carboxymethyl cellulose(CMC) and polyacrylamide(PAM), was developed for stabilization treatment of silty sand. A series of laboratory tests were conducted to evaluate the performance of M-CMC application on shear strength, permeability, water susceptibility and microstructure of the silty sand soil treated with additive concentration range of 0%-1.3%. Moreover, rainfall simulation experiments were conducted to evaluate the effect of M-CMC on the erosion control of silty sand which compacted soil in a large-sized runoff(1 m~2) plots. Test plot which treated with 1.1% concentration of soil stabilizer and control plot which treated with same amount of water were cured outdoor for 50 days before rainfall simulation test. Rainfall intensity was applied at 120 mm·h-1 for 60 min. Finally, a field test is performed in order to assess the practical application effect of silty sand with 1.1% M-CMC. In general, the results showed that an increase of the concentration of M-CMC resulted in an improvement in water susceptibility and shear strength but a decrease in the infiltration rate. Internal friction angle of the treated soil remarkably increased under a low M-CMC concentration(less than 0.7%), while cohesion of them sharply increased under a relatively high M-CMC concentration(larger than 0.7%). Water susceptibility of the treated samples was improved remarkably under a relatively high M-CMC concentration(larger than 0.7%). Permeability coefficient of them decreased significantly when the M-CMC concentration was increased from 0 to 0.5% and, then, from 0.9% to 1.3%. Based on the images obtained from a scanning electron microscopy(SEM), the "coating" and "netting" effects were attributable to the observed improvement of the treated soil. When a plot was protected by a thin layer of soil treated with 1.1% MCMC, its erosion resistance was greatly improved, infiltration rate of water and soil loss yield of plot decreased greatly and even though under a rainfall intensity of 120 mm·h-1. The field test with long-term monitoring(three years) confirmed the M-CMC can effectively control erosion of silty sand slopes for a prolonged period of time.  相似文献   

18.
Soil erosion on sloping field has led to a lot of environmental problems. In order to reveal the seriousnessof the damage of soil erosion on sloping fields 137^Cs tracer method was used to estimate soil erosion rate. 137^Cs referenceinventory of 2200Bq/m^2 in Yixing, southern Jiangsu Province, was estimated and a model for estimating erosion of cultivat-od soil was established in order to avoid overestimating soil erosion rates. Then based on the soil erosion rates and mea-sured soil physical and chemical properties, direct and indirect impacts of soil erosion on environment were further dis-cussed. Direct impacts of erosion on environment included on-site and off-site impacts. The on-site impacts were thatsoil layer became thin, soil structure was deteriorated and soil nutrients decreased. The off-site impacts were that waterbodies were polluted. The indirect impacts of soil erosion on environment were the increase of fertilizer application andenergy consumption, and change of adaptability of land uses. Although erosion intensity was not serious in the studyarea, its environmental impacts should not be ignored because of great soil nutrient loss and coazseness of soil particles.  相似文献   

19.
Using Geographic Information System(GIS), based on wind speed, precipitation, topographic, soil, vegetation coverage and land use data of Inner Mongolia between 2001 and 2010, we applied the revised wind erosion equation(RWEQ) model to simulate wind erosion intensity. The results showed that an area of approximately 47.8 × 10~4 km~2 experienced wind erosion in 2010, 23.2% of this erosion could be rated as severe, and 46.0% as moderate. Both the area and the intensity of wind erosion had decreased from 2001 to 2010, the wind erosion area reduced 10.1%, and wind erosion intensity decreased by 29.4%. Precipitation, wind speed, population size and urbanization in rural areas, and gross domestic product of primary industry(GDP1) were the main factors influencing wind erosion. Overall, these factors accounted for 88.8% of the wind erosion. These results indicated that the decrease in wind erosion over the past decade related to the increase in precipitation and the decrease in the number of windy days, while modest urban development and optimization of the economic structure might partially reduced the level of ecological pressure, highlighting the importance of human activities in controlling wind erosion.  相似文献   

20.
1 THEANALYSISOFSOILEROSIONFACTORSTheintensityofsoilerosioninaridareavarieswithaltitude,moistureandheatconditionandsurfacelayer(Chen,1995).Inmiddleandhighmountainsections,thereisalittlemoreprecipitation(450-796.90mm),richervegetationcovermorethan60pe…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号