首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Results of simple model calculations that integrate cumulate compositions from the Kohistan arc terrain are presented in order to develop a consistent petrogenetic model to explain the Kohistan island arc granitoids. The model allows a quantitative approximation of the possible relative roles of fractional crystallization and assimilation to explain the silica-rich upper crust composition of oceanic arcs. Depending in detail on the parental magma composition hydrous moderate-to-high pressure fractional crystallization in the lower crust/upper mantle is an adequate upper continental crust forming mechanism in terms of volume and compositions. Accordingly, assimilation and partial melting in the lower crust is not per se a necessary process to explain island arc granitoids. However, deriving few percent of melts using low degree of dehydration melting is a crucial process to produce volumetrically important amounts of upper continental crust from silica-poorer parental magmas. Even though the model can explain the silica-rich upper crustal composition of the Kohistan, the fractionation model does not predict the accepted composition of the bulk continental crust. This finding supports the idea that additional crustal refining mechanism (e.g., delamination of lower crustal rocks) and/or non-cogenetic magmatic process were critical to create the bulk continental crust composition.  相似文献   

2.
《Gondwana Research》2013,24(4):1554-1566
The paradox of the Earth's continental crust is that although this reservoir is generally regarded as having differentiated from the mantle, it has an andesitic bulk composition that contrasts with the intrinsic basaltic composition of mantle-derived melts. Classical models for new crust generation from the mantle in two-stage processes fail to account for two fundamental facts: the absence of ultramafic residues in the lower crust and the hot temperature of batholith magma generation. Other models based on the arrival of already-fractionated silicic magmas to the crust have not received the necessary attention. Addition of new crust by relamination from below of subducted materials has been formulated as a process complementary to delamination of mafic residues. Here we show important support to relamination from below the lithosphere as an important mechanism for new crust generation in magmatic arcs of active continental margins and mature intraoceanic arcs. The new support is based on three independent lines: (1) thermo-mechanical modeling of subduction zones, (2) experimental phase relations and melt compositions of subducted materials and (3) geochemical relations between mafic granulites (lower crust) and batholiths (upper crust). The mineral assemblage and bulk geochemistry of lower crust rocks are compared with solid residues left after granite melt segregation. The implication is that an andesite magma precursor is responsible for the generation of new continental crust at active continental margins and mature oceanic arcs. According to our numerical and laboratory experiments, melting and eventual reaction with the mantle of subducted oceanic crust and sediments produce the andesite magmas. These ascend in the form of mantle wedge diapirs and are finally attached (relaminated) to the continental crust, where they crystallize partially and produce the separation of the solid fraction to form mafic granulites (lower crust) and granitic (sl) liquids to form the batholiths (upper crust).  相似文献   

3.
Mafic and intermediate granulite xenoliths, collected from Cenozoic alkali basalts, provide samples of the lower crust in western Saudi Arabia. The xenoliths are metaigneous two-pyroxene and garnet granulites. Mineral and whole rock compositions are inconsistent with origin from Red Sea rift-related basalts, and are compatible with origin from island arc calc-alkaline and low-potassium tholeiitic basalts. Most of the samples are either cumulates from mafic magmas or are restites remaining after partial melting of intermediate rocks and extraction of a felsic liquid. Initial87Sr/86Sr ratios are less than 0.7032, except for two samples at 0.7049. The Sm-Nd data yield TDM model ages of 0.64 to 1.02 Ga, similar to typical Arabian-Nubian Shield upper continental crust. The isotopic data indicate that the granulites formed from mantle-derived magmas with little or no contamination by older continent crust. Calculated temperatures and pressures of last reequilibration of the xenoliths show that they are derived from the lower crust. Calculated depths of origin and calculated seismic velocities for the xenoliths are in excellent agreement with the crustal structure model of Gettings et al. (1986) based on geophysical data from western Saudi Arabia. Estimation of mean lower crustal composition, using the granulite xenoliths and the Gettings et al. (1986) crustal model, suggests a remarkably homogeneous mafic lower crust, and an andesite or basaltic andesite bulk composition for Pan-African juvenile continental crust.  相似文献   

4.
Xenolithic inclusions in calc-alkaline andesite from Mt. Moffettvolcano, Adak Island, Aleutian arc, reveal a nearly continuousrecord of crystallization of basaltic magmas in the crust, andpossibly upper mantle, of the arc. The record is more detailedand continuous than that obtained from study of calc-alkalinevolcanic rocks in the arc. Cumulate xenoliths form a progressiveseries in modal mineralogy from ultramafic, hornblende-bearingolivine clinopyroxenite to both hornblende-bearing and hornblende-freegabbros. The cumulate hornblende gabbro xenoliths are typicalof those found in island arc andesites worldwide. Xenolithicinclusions without cumulate textures, here termed compositexenoliths, are characterized by forsteritic olivine, zoned Cr-diopsideand hornblende, and are interpreted to have resulted from reactionand chilling upon magma mixing at depth. The olivine and clinopyroxene in both cumulate and compositexenoliths show the largest and the most complete variation trendsfor Ni, Cr, and FeO/MgO ratio yet reported in igneous xenolithsfrom island arc volcanic rocks. Variation of Ni in olivine indicatesthat the parent magmas for the xenoliths had minimum MgO contentsof 9 wt. per cent. Variation of Cr in clinopyroxene indicatesthat the magmas were basaltic rather than picritic, probablyin equilibrium with spinel lherzolite at near Moho depths. Successiveinjections of batches of primary melt into a magma chamber fractionatingolivine and clinopyroxene can reproduce observed compatibleelement depletion trends. A steady-state process of cotecticcrystallization in a magma chamber continually replenished withbasaltic magma is a possible mechanism for producing large accumulationsof olivine and clinopyroxene, suggesting that Alaskan-type ultramaficcomplexes are related to hydrous basaltic magmas in island arcs.This steady-state open-system crystallization process can alsoyield the abundant high-alumina basalt type in the Aleutianarc. Continued crystallization of high-alumina basalt in lowercrustal magma chambers, recorded in a mineralogically coherentseries of pyroxenite to hornblende gabbro xenoliths, can yieldbasaltic to andesitic magmas of the calc-alkaline series. No xenoliths with a sedimentary protolith have been found atMt Moffett, evidence that the arc crust is igneous in origin,with the lower crust formed of gabbro crystallized from mantle-derivedmelts. Ultramafic cumulates may reside in both the lower crustor upper mantle beneath the arc. A model is proposed wherebythe cumulate crystallization products of hydrous, mantle beneaththe arc. A model is define the upper mantle and lower crustof the arc over time.The net composition added to the crustof the arc is that of high-alumina basalt.  相似文献   

5.
Exposed, subduction-related magmatic arcs commonly include sections of ultramafic plutonic rocks that are composed of dunite, wehrlite, and pyroxenite. In this experimental study we examined the effects of variable H2O concentration on the phase proportions and compositions of igneous pyroxenites and related ultramafic plutonic rocks. Igneous crystallization experiments simulated natural, arc magma compositions at 1.2 GPa, corresponding to conditions of the arc lower crust. Increasing H2O concentration in the liquid changes the crystallization sequence. Low H2O concentration in the liquid stabilizes plagioclase earlier than garnet and amphibole while derivative liquids remain quartz normative. Higher H2O contents (>3%) suppress plagioclase and lead to crystallization of amphibole and garnet thereby producing derivative corundum normative andesite liquids. The experiments show that alumina in the liquid correlates positively with Al in pyroxene, as long as no major aluminous phase crystallizes. Extrapolation of this correlation to natural pyroxenites in the Talkeetna and Kohistan arc sections indicates that clinopyroxenes with low Ca-Tschermaks component represent near-liquidus phases of primitive, Si-rich hydrous magmas. Density calculations on the residual solid assemblages indicate that ultramafic plutonic rocks are always denser than upper mantle rocks in the order of 0.05 to 0.20 g/cm3. The combination of high pressure and high H2O concentration in the liquid suppresses plagioclase crystallization, so that ultramafic plutonic rocks form over a significant proportion of the crystallization interval (up to 50% crystallization of ultramafic rocks from initial, mantle-derived liquids). This suggests that in subduction-related magmatic arcs the seismic Moho might be shallower than the petrologic crust/mantle transition. It is therefore possible that calculations based on seismic data have overestimated the normative plagioclase content (e.g., SiO2, Al2O3) of igneous crust in arcs.  相似文献   

6.
Among the Phanerozoic granitoids of East Asia, the most prevailing Cenozoic–Mesozoic rocks are reviewed with respect to gabbro/granite ratio, bulk composition of granitoids, redox state, and O- and Sr-isotopic ratios. Quaternary volcanic rocks, ranging from basalt to rhyolite, but typically felsic andesite in terms of bulk composition in island arcs, are oxidized type, possibly due to oxidants from subducting oceanic crust into the source regions. Miocene plutonic rocks in the back-arc of Japan could be a root zone for such volcanism but are more felsic in composition. Cenozoic–Mesozoic plutonic zones are classified by (1) the redox state (magnetite/ilmenite series), and (2) average bulk composition (granodiorite/granite). The granodioritic magnetite series occur with fairly abundant gabbro and diorite in the back-arc of island arcs (Greentuff Belt) and intercontinental rapture zones (Yangtze Block). These rocks are mostly juvenile in terms of the 87Sr/86SrI and δ18O values.The granitic magnetite series with some gabbroids occur in rapture zones along the continental coast (Gyeongsang Basin, Fujian Coast) and the back-arc of island arc (Sanin Belt). They were generated mostly in felsic continental crust, with the help of heat and magmas from upper mantle. The generated granitic magmas had little interaction with C- and S-bearing reducing materials, due probably to extensional tectonic settings. The δ18O value gives narrow ranges but the 87Sr/86SrI ratio varies greatly depending upon the age and composition of the continental crust. Granitic ilmenite-series are characterized by high δ18O values, implying much contribution of sediments. The 87Sr/86SrI ratios are low in island arcs but very high in continental interior settings. Amount of mafic magmas from the upper mantle seems a key to control the composition of granitoid series in island arc settings, while original composition of the protolith may be the key to control granitoid composition in continental interiors.  相似文献   

7.
Lavas and pyroclastic products of Nisyros volcano (Aegean arc, Greece) host a wide variety of phenocryst and cumulate assemblages that offer a unique window into the earliest stages of magma differentiation. This study presents a detailed petrographic study of lavas, enclaves and cumulates spanning the entire volcanic history of Nisyros to elucidate at which levels in the crust magmas stall and differentiate. We present a new division for the volcanic products into two suites based on field occurrence and petrographic features: a low-porphyricity andesite and a high-porphyricity (rhyo)dacite (HPRD) suite. Cumulate fragments are exclusively found in the HPRD suite and are predominantly derived from upper crustal reservoirs where they crystallised under hydrous conditions from melts that underwent prior differentiation. Rarer cumulate fragments range from (amphibole-)wehrlites to plagioclase-hornblendites and these appear to be derived from the lower crust (0.5–0.8 GPa). The suppressed stability of plagioclase and early saturation of amphibole in these cumulates are indicative of high-pressure crystallisation from primitive hydrous melts (≥ 3 wt% H2O). Clinopyroxene in these cumulates has Al2O3 contents up to 9 wt% due to the absence of crystallising plagioclase, and is subsequently consumed in a peritectic reaction to form primitive, Al-rich amphibole (Mg# > 73, 12–15 wt% Al2O3). The composition of these peritectic amphiboles is distinct from trace element-enriched interstitial amphibole in shallower cumulates. Phenocryst compositions and assemblages in both suites differ markedly from the cumulates. Phenocrysts, therefore, reflect shallow crystallisation and do not record magma differentiation in the deep arc crust.  相似文献   

8.
A mafic–ultramafic intrusive belt comprising Silurian arc gabbroic rocks and Early Permian mafic–ultramafic intrusions was recently identified in the western part of the East Tianshan, NW China. This paper discusses the petrogenesis of the mafic–ultramafic rocks in this belt and intends to understand Phanerozoic crust growth through basaltic magmatism occurring in an island arc and intraplate extensional tectonic setting in the Chinese Tianshan Orogenic Belt (CTOB). The Silurian gabbroic rocks comprise troctolite, olivine gabbro, and leucogabbro enclosed by Early Permian diorites. SHRIMP II U-Pb zircon dating yields a 427 ± 7.3 Ma age for the Silurian gabbroic rocks and a 280.9 ± 3.1 Ma age for the surrounding diorite. These gabbroic rocks are direct products of mantle basaltic magmas generated by flux melting of the hydrous mantle wedge over subduction zone during Silurian subduction in the CTOB. The arc signature of the basaltic magmas receives support from incompatible trace elements in olivine gabbro and leucogabbro, which display enrichment in large ion lithophile elements and prominent depletion in Nb and Ta with higher U/Th and lower Ce/Pb and Nb/Ta ratios than MORBs and OIBs. The hydrous nature of the arc magmas are corroborated by the Silurian gabbroic rocks with a cumulate texture comprising hornblende cumulates and extremely calcic plagioclase (An up to 99 mol%). Troctolite is a hybrid rock, and its formation is related to the reaction of the hydrous basaltic magmas with a former arc olivine-diallage matrix which suggests multiple arc basaltic magmatism in the Early Paleozoic. The Early Permian mafic–ultramafic intrusions in this belt comprise ultramafic rocks and evolved hornblende gabbro resulting from differentiation of a basaltic magma underplated in an intraplate extensional tectonic setting, and this model would apply to coeval mafic–ultramafic intrusions in the CTOB. Presence of Silurian gabbroic rocks as well as pervasively distributed arc felsic plutons in the CTOB suggest active crust-mantle magmatism in the Silurian, which has contributed to crustal growth by (1) serving as heat sources that remelted former arc crust to generate arc plutons, (2) addition of a mantle component to the arc plutons by magma mixing, and (3) transport of mantle materials to form new lower or middle crust. Mafic–ultramafic intrusions and their spatiotemporal A-type granites during Early Permian to Triassic intraplate extension are intrusive counterparts of the contemporaneous bimodal volcanic rocks in the CTOB. Basaltic underplating in this temporal interval contributed to crustal growth in a vertical form, including adding mantle materials to lower or middle crust by intracrustal differentiation and remelting Early-Paleozoic formed arc crust in the CTOB.  相似文献   

9.
Many studies have documented hydrous fractionation of calc-alkaline basalts producing tonalitic, granodioritic, and granitic melts, but the origin of more alkaline arc sequences dominated by high-K monzonitic suites has not been thoroughly investigated. This study presents results from a combined field, petrologic, and whole-rock geochemical study of a paleo-arc alkaline fractionation sequence from the Dariv Range of the Mongolian Altaids. The Dariv Igneous Complex of Western Mongolia is composed of a complete, moderately hydrous, alkaline fractionation sequence ranging from phlogopite-bearing ultramafic and mafic cumulates to quartz–monzonites to late-stage felsic (63–75 wt% SiO2) dikes. A volumetrically subordinate more hydrous, amphibole-dominated fractionation sequence is also present and comprises amphibole (±phlogopite) clinopyroxenites, gabbros, and diorites. We present 168 whole-rock analyses for the biotite- and amphibole-dominated series. First, we constrain the liquid line of descent (LLD) of a primitive, alkaline arc melt characterized by biotite as the dominant hydrous phase through a fractionation model that incorporates the stepwise subtraction of cumulates of a fixed composition. The modeled LLD reproduces the geochemical trends observed in the “liquid-like” intrusives of the biotite series (quartz–monzonites and felsic dikes) and follows the water-undersaturated albite–orthoclase cotectic (at 0.2–0.5 GPa). Second, as distinct biotite- and amphibole-dominated fractionation series are observed, we investigate the controls on high-temperature biotite versus amphibole crystallization from hydrous arc melts. Analysis of a compilation of hydrous experimental starting materials and high-Mg basalts saturated in biotite and/or amphibole suggests that the degree of K enrichment controls whether biotite will crystallize as an early high-T phase, whereas the degree of water saturation is the dominant control of amphibole crystallization. Therefore, if a melt has the appropriate major-element composition for early biotite and amphibole crystallization, as is true of the high-Mg basalts from the Dariv Igneous Complex, the relative proximity of these two phases to the liquidus depends on the H2O concentration in the melt. Third, we compare the modeled high-K LLD and whole-rock geochemistry of the Dariv Igneous Complex to the more common calc-alkaline trend. Biotite and K-feldspar fractionation in the alkaline arc series results in the moderation of K2O/Na2O values and LILE concentrations with increasing SiO2 as compared to the more common calc-alkaline series characterized by amphibole and plagioclase crystallization and strong increases in K2O/Na2O values. Lastly, we suggest that common calc-alkaline parental melts involve addition of a moderate pressure, sodic, fluid-dominated slab component while more alkaline primitive melts characterized by early biotite saturation involve the addition of a high-pressure potassic sediment melt.  相似文献   

10.
The Neoproterozoic Wadi Ranga metavolcanic rocks, South Eastern Desert of Egypt, constitute a slightly metamorphosed bimodal sequence of low-K submarine tholeiitic mafic and felsic volcanic rocks. The mafic volcanic rocks are represented by massive and pillow flows and agglomerates, composed of porphyritic and aphyric basalts and basaltic andesites that are mostly amygdaloidal. The felsic volcanic rocks embrace porphyritic dacites and rhyolites and tuffs, which overlie the mafic volcanic rocks. The geochemical characteristics of Wadi Ranga volcanic rocks, especially a strong Nb depletion, indicate that they were formed from subduction-related melts. The clinopyroxene phenocrysts of basalts are more akin to those crystallizing from island-arc tholeiitic magmas. The tholeiitic nature of the Wadi Ranga volcanics as well as their LREE-depleted or nearly flat REE patterns and their low K2O contents suggest that they were developed in an immature island arc setting. The subchondritic Nb/Ta ratios (with the lowest ratio reported for any arc rocks) and low Nb/Yb ratios indicate that the mantle source of the Wadi Ranga mafic volcanic rocks was more depleted than N-MORB-source mantle. Subduction signature was dominated by aqueous fluids derived from slab dehydration, whereas the role of subducted sediments in mantle-wedge metasomatization was subordinate, implying that the subduction system was sediment-starved and far from continental clastic input. The amount of slab-derived fluids was enough to produce hydrous magmas that follow the tholeiitic but not the calc-alkaline differentiation trend. With Mg# > 64, few samples of Wadi Ranga mafic volcanic rocks are similar to primitive arc magmas, whereas the other samples have clearly experienced considerable fractional crystallization.The low abundances of trace elements, together with low K2O contents of the felsic metavolcanic rocks indicate that they were erupted in a primitive island arc setting. The felsic volcanic rocks are characterized by lower K/Rb ratios compared to the mafic volcanic rocks, higher trace element abundances (~ 2 to ~ 9 times basalt) on primitive arc basalt-normalized pattern and nearly flat chondrite-normalized REE patterns, which display a negative Eu anomaly. These features are largely consistent with fractional crystallization model for the origin of the felsic volcanic rocks. Moreover, SiO2-REE variations for the Wadi Ranga volcanic rocks display steadily increasing LREE over the entire mafic to felsic range and enriched La abundances in the felsic lavas relative to the most mafic lavas, features which are consistent with production of the felsic volcanic rocks through fractional crystallization of basaltic melts. The relatively large volume of Wadi Ranga silicic volcanic rocks implies that significant volume of silicic magmas can be generated in immature island arcs by fractional crystallization and indicates the significant role of intra-oceanic arcs in the production of Neoproterozoic continental crust. We emphasize that the geochemical characteristics of these rocks such as their low LILE and nearly flat REE patterns can successfully discriminate them from other Egyptian Neoproterozoic felsic volcanic rocks, which have higher LILE, Zr and Nb and fractionated REE patterns.  相似文献   

11.
We present the geochemistry and intrusion pressures of granitoids from the Kohistan batholith, which represents, together with the intruded volcanic and sedimentary units, the middle and upper arc crust of the Kohistan paleo-island arc. Based on Al-in-hornblende barometry, the batholith records intrusion pressures from ~0.2 GPa in the north (where the volcano-sedimentary cover is intruded) to max. ~0.9 GPa in the southeast. The Al-in-hornblende barometry demonstrates that the Kohistan batholith represents a complete cross section across an arc batholith, reaching from the top at ~8–9 km depth (north) to its bottom at 25–35 km (south-central to southeast). Despite the complete outcropping and accessibility of the entire batholith, there is no observable compositional stratification across the batholith. The geochemical characteristics of the granitoids define three groups. Group 1 is characterized by strongly enriched incompatible elements and unfractionated middle rare earth elements (MREE)/heavy rare earth element patterns (HREE); Group 2 has enriched incompatible element concentrations similar to Group 1 but strongly fractionated MREE/HREE. Group 3 is characterized by only a limited incompatible element enrichment and unfractionated MREE/HREE. The origin of the different groups can be modeled through a relatively hydrous (Group 1 and 2) and of a less hydrous (Group 3) fractional crystallization line from a primitive basaltic parent at different pressures. Appropriate mafic/ultramafic cumulates that explain the chemical characteristics of each group are preserved at the base of the arc. The Kohistan batholith strengthens the conclusion that hydrous fractionation is the most important mechanism to form volumetrically significant amounts of granitoids in arcs. The Kohistan Group 2 granitoids have essentially identical trace element characteristics as Archean tonalite–trondhjemite–granodiorite (TTG) suites. Based on these observations, it is most likely that similar to the Group 2 rocks in the Kohistan arc, TTG gneisses were to a large part formed by hydrous high-pressure differentiation of primitive arc magmas in subduction zones.  相似文献   

12.
High-Mg diorites that have similar whole rock composition to high-Mg andesites (HMAs) should not be simply interpreted as rocks solidified from the HMA magmas, because the high-Mg diorites may be mafic cumulates derived from a different magma from the HMAs.

The HMAs contain unique clinopyroxenes with higher Mg# and Si than those of other sub-alkaline series igneous rocks. The Mg# and Si are controlled by the source magma composition rather than its crystallized conditions such as pressure and temperature. The chemical composition of clinopyroxenes would present important information for the investigation of the source of high-Mg diorites.

We considered the source of Early Cretaceous high-Mg diorites on Kyushu Island, southwest Japan arc, based on their clinopyroxene and whole rock compositions. The clinopyroxenes have similar chemical characteristics to those in HMAs rather than those in other sub-alkaline rocks. Moreover, the whole rock compositions are equivalent to the sanukitic HMA and do not show features of mafic cumulates. This indicates that the high-Mg diorites solidified from sanukitic HMA magmas. It is generally believed that the sanukitic HMA magmas involve the subduction of a young and/or hot oceanic slab was situated in their genesis. Therefore, the occurrence of the high-Mg diorites suggests that Kyushu was situated in the tectonic setting of young and/or hot slab subduction in the Early Cretaceous.  相似文献   


13.
To understand the generation and evolution of mafic magmas from Klyuchevskoy volcano in the Kamchatka arc, which is one of the most active arc volcanoes on Earth, a petrological and geochemical study was carried out on time-series samples from the volcano. The eruptive products show significant variations in their whole-rock compositions (52.0–55.5 wt.% SiO2), and they have been divided into high-Mg basalts and high-Al andesites. In the high-Mg basalts, lower-K and higher-K primitive samples (>9 wt.% MgO) are present, and their petrological features indicate that they may represent primary or near-primary magmas. Slab-derived fluids that induced generation of the lower-K basaltic magmas were less enriched in melt component than those associated with the higher-K basaltic magmas, and the fluids are likely to have been released from the subducting slab at shallower levels for the lower-K basaltic magmas than for higher-K basaltic magmas. Analyses using multicomponent thermodynamics indicates that the lower-K primary magma was generated by ~13% melting of a source mantle with ~0.7 wt.% H2O at 1245–1260?°C and ~1.9 GPa. During most of the evolution of the volcano, the lower-K basaltic magmas were dominant; the higher-K primitive magma first appeared in AD 1932. In AD 1937–1938, both the lower-K and higher-K primitive magmas erupted, which implies that the two types of primary magmas were present simultaneously and independently beneath the volcano. The higher-K basaltic magmas evolved progressively into high-Al andesite magmas in a magma chamber in the middle crust from AD 1932 to ~AD 1960. Since then, relatively primitive magma has been injected continuously into the magma chamber, which has resulted in the systematic increase of the MgO contents of erupted materials with ages from ~AD 1960 to present.  相似文献   

14.
Magmatic arcs are thought to be the primary sites of modern-day continental crustal growth, and arc crustal sections provide an exceptional opportunity to directly observe the geological processes that occur there, yet few deeply exposed arc sections are available for direct study. The Gangdese magmatic arc, southern Tibet, formed during the Mesozoic subduction of Neo-Tethyan oceanic lithosphere and Cenozoic collision between the Indian and Asian continents, and represent juvenile continental crust. However, the petrological components and compositions of the lower crust of the Gangdese arc remain unknown. Based on detailed geological mapping, we conducted a systemic geochemical, geochronological and zircon Hf isotopic study of well-exposed high-grade metamorphic and migmatitic rocks from the lower crust of the eastern Gangdese arc. The results obtained show that Late Cretaceous garnet amphibolites, dioritic and granitic gneisses, and Paleocene–Eocene garnet amphibolites and granitic gneisses are the main components of the Gangdese lower arc crust. These meta-intrusive rocks witnessed a long period of magmatic, and metamorphic and anatectic processes from the Middle Jurassic to the Late Eocene, and have chemical compositions that range from ultramafic to felsic, with an average SiO2 content of 57.61 wt% and Mg# value of 0.49. These new data indicate firstly that the Gangdese lower arc crust has an overall intermediate composition and typical feature of juvenile crusts, and therefore supports the recent proposition that continental lower crusts are relatively felsic in composition, instead of mafic. We consider that the downward transport of felsic intrusives and associated sedimentary rocks into the deep crustal levels and subsequent partial melting resulted in componential and compositional changes of the Gangdese arc lower crust over time. This is a potential key mechanism in transforming primary lower arc crust to mature continental lower crust for the magmatic arcs with a complete growth history.  相似文献   

15.
Amphibole, while uncommon as a phenocryst in arc lavas, is increasingly recognized as a key constituent in the petrogenesis of arc magmas. Fractional crystallization of water-saturated arc magmas in the lower crust can yield substantial volumes of amphibole cumulates that, depending on the pressure of crystallization, may also contain garnet. Fractionation of this higher pressure assemblage has been invoked as a possible mechanism in the production of magmas that contain an adakitic signature. This study examines newly dated Late-Oligocene (25.37 ± 0.13 Ma) hypabyssal amphibole-rich andesites from Cerro Patacon in the Panama Canal region. These andesites contain nodules of amphibole cumulates that are ~4–6 cm in diameter and are almost entirely composed of 5–10-mm amphibole crystals (dominantly ferri-tschermakite). Geochemical variations, optical and chemical zoning of the Cerro Patacon amphiboles are consistent with their evolution in a crystal mush environment that had at least one recharge event prior to entrainment in the host andesite. Amphiboles hosted within the cumulate nodules differ from those hosted in the Cerro Patacon andesite and contain consistently higher values of Ti. We suggest these nodules represent the early stages of fractionation from a water-saturated magma. Cerro Patacon andesites have REE concentrations that plot at the most depleted end of Central American Arc magmas and exhibit a distinctive depletion in the middle REE. These geochemical and petrographic observations strongly support significant amphibole fractionation during formation of the Cerro Patacon andesite, consistent with the petrographic evidence. Fractionation of water-saturated magmas is a mechanism by which adakitic compositions may be produced, and the Cerro Patacon andesites do exhibit adakite-like geochemical characteristics (e.g., elevated Sr/Y; 28–34). However, the relatively elevated concentrations of Y and HREE indicate garnet was not stable in the fractionating assemblage during this early stage of arc development.  相似文献   

16.
Subduction erosion, which occurs at all convergent plate boundaries associated with magmatic arcs formed on crystalline forearc basement, is an important process for chemical recycling, responsible globally for the transport of ~1.7 Armstrong Units (1 AU = 1 km3/yr) of continental crust back into the mantle. Along the central Andean convergent plate margin, where there is very little terrigenous sediment being supplied to the trench as a result of the arid conditions, the occurrence of mantle-derived olivine basalts with distinctive crustal isotopic characteristics (87Sr/86Sr ≥ 0.7050; εNd ≤ −2; εHf ≤ +2) correlates spatially and/or temporally with regions and/or episodes of high rates of subduction erosion, and a strong case can be made for the formation of these basalts to be due to incorporation into the subarc mantle wedge of tectonically eroded and subducted forearc continental crust. In other convergent plate boundary magmatic arcs, such as the South Sandwich and Aleutian Islands intra-oceanic arcs and the Central American and Trans-Mexican continental margin volcanic arcs, similar correlations have been demonstrated between regions and/or episodes of relatively rapid subduction erosion and the genesis of mafic arc magmas containing enhanced proportions of tectonically eroded and subducted crustal components that are chemically distinct from pelagic and/or terrigenous trench sediments. It has also been suggested that larger amounts of melts derived from tectonically eroded and subducted continental crust, rising as diapirs of buoyant low density subduction mélanges, react with mantle peridotite to form pyroxenite metasomatites that than melt to form andesites. The process of subduction erosion and mantle source region contamination with crustal components, which is supported by both isotopic and U-Pb zircon age data implying a fast and efficient connectivity between subduction inputs and magmatic outputs, is a powerful alternative to intra-crustal assimilation in the generation of andesites, and it negates the need for large amounts of mafic cumulates to form within and then be delaminated from the lower crust, as required by the basalt-input model of continental crustal growth. However, overall, some significant amount of subducted crust and sediment is neither underplated below the forearc wedge nor incorporated into convergent plate boundary arc magmas, but instead transported deeper into the mantle where it plays a role in the formation of isotopically enriched mantle reservoirs. To ignore or underestimate the significance of the recycling of tectonically eroded and subducted continental crust in the genesis of convergent plate boundary arc magmas, including andesites, and for the evolution of both the continental crust and mantle, is to be on the wrong side of history in the understanding of these topics.  相似文献   

17.
Within the Vourinos ophiolite evidence of two magmatic series has been preserved in cognate cumulates and in effusive and hypabyssal rocks, which constitute the earlier Krapa sequence and the younger Asprokambo sequence. The Asprokambo dyke basic magmas which are poor in incompatible elements and relatively Ni and Cr rich, bear some resemblance to very low Ti basalts (transitional to boninites) found in subduction related arcs or interarc basins. Krapa series magmas from sills, massive and pillow lavas are best equated with low-K tholeiites of island arc suites. Compositions of Al- and Ti- poor Cpx in lavas from both series are comparable to those in island arc basalts, the Asprokambo Cpx being richer in Ca and Cr than those from Krapa.The large volume of cumulates from the Krapa sequence displays the following crystallization order: Ol±Sp, Cpx, Pl±Opx, Mt. Periodic influx of fresh magma batches into the magma chamber occurred mainly during the formation of the lower cumulates (wehrlite, Ol-clinopyroxenite and melagabbro). The upper cumulates, gabbronorite and leucogabbronorite with minor Mt-bearing gabbronorite, crystallized in the upper levels of a magma chamber which became progressively smaller with time. In the Asprokambo sequence, Ol+Sp, Opx, Cpx, PI and Amph are the successively crystallizing phases. The ortho to heteradcumulates consist of websterite, Pl-websterite, gabbronorite, amphibole bearing leuconorite, diorite and granophyre. In cumulates, especially in the lower Krapa sequence, significant subsolidus reaction was probably induced by the persistence of high geothermal gradients linked to continuous magmatism. Petrological features indicate that the evolution of the Krapa series is more compatible with an intermediate fractional/equilibrium crystallization history in an initially open system, whereas nearly perfect fractional crystallization in closed system may have occurred in the small Asprokambo magma chambers. Chemical variations in the lavas of both series can be explained in terms of crystallization of the observed cumulates. Significantly, the Asprokambo intrusives have igneous Mg-hornblende and vanadium bearing, chromian, aluminous titaniferous magnetite, crystallization of which is responsible for the calcalkaline evolutionary trend of these rocks. Major and trace element modelling necessitates a two stage model for the petrogenesis of the Vourinos parental melts, involving high-degree remelting of previously depleted mantle sources favoured by the influx of subduction derived hydrous fluids. The primary magmas parental to the Krapa and Asprokambo series could have been derived respectively by 20 and 30% equilibrium partial fusion of variably depleted lherzolitic sources, leaving residua having a harzburgitic to dunitic composition.  相似文献   

18.
《International Geology Review》2012,54(15):1922-1940
Our aim is to determine the mean compositions of modern island and continental arcs, along with dispersion estimates, and use them to evaluate their similarities and differences in such subduction settings. First, following the conventional approach, the statistical parameters of mean, median, and standard deviation were simply calculated from the available combined data from all island or continental arcs. However, it is mandatory to ascertain from significance tests that all island or continental arcs used for these estimates are statistically similar in their compositions before combining the data from different arcs and calculating the mean values and their uncertainties for the chemical parameters of interest. A new computer program, Univariate Data Analysis System (UDASYS), was developed for this purpose because the available programs are not efficient for applying the significance test of analysis of variance (ANOVA) to large numbers of sample groups, as in the present work. Compositional data for 16 island and 12 continental arcs around the world were compiled and processed in UDASYS. The best compositional estimates for all three types of magmas (basic, intermediate, and acid) from island and continental arcs were statistically evaluated to document, for the first time, significant differences for 64–94% of the geochemical parameters under study. These differences in large-ion lithophile elements, light rare earth elements, high-field strength elements, and numerous log-ratios are likely caused by different types of underlying crust beneath island and continental arcs. More specifically, the examination of two nearby arcs, Izu-Bonin (island) arc and Japan (continental) arc, confirmed that about 65–77% of the parameters showed significant differences, which may be related to the different types of crusts beneath these spatially close areas. The differences between the log-ratios of island and continental arc basic magmas further indicate that new multi-dimensional discrimination diagrams can certainly be proposed in future to discriminate such basic magmas from these two very similar tectonic settings, which at present is possible only from diagrams for intermediate and acid magmas.  相似文献   

19.
This study focuses on the production of convergent margin calc-alkaline andesites by crystallization–differentiation of basaltic magmas in the lower to middle crust. Previous experimental studies show that dry, reduced, subalkaline basalts differentiate to tholeiitic (high Fe/Mg) daughter liquids, but the influences of H2O and oxidation on differentiation are less well established. Accordingly, we performed crystallization experiments at controlled oxidized fO2 (Re–ReO2 ≈ ΔNi–NiO + 2) on a relatively magnesian basalt (8.7 wt% MgO) typical of mafic magmas erupted in the Cascades near Mount Rainier, Washington. The basalt was synthesized with 2 wt% H2O and run at 900, 700, and 400 MPa and 1,200 to 950 °C. A broadly clinopyroxenitic crystallization interval dominates near the liquidus at 900 and 700 MPa, consisting of augite + olivine + orthopyroxene + Cr-spinel (in decreasing abundance). With decreasing temperature, plagioclase crystallizes, Fe–Ti-oxide replaces spinel, olivine dissolves, and finally amphibole appears, producing gabbroic and then amphibole gabbroic crystallization stages. Enhanced plagioclase stability at lower pressure narrows the clinopyroxenitic interval and brings the gabbroic interval toward the liquidus. Liquids at 900 MPa track along Miyashiro’s (Am J Sci 274(4):321–355, 1974) tholeiitic versus calc-alkaline boundary, whereas those at 700 and 400 MPa become calc-alkaline at silica contents ≥56 wt%. This difference is chiefly due to higher temperature appearance of magnetite (versus spinel) at lower pressures. Although the evolved liquids are similar in many respects to common calc-alkaline andesites, the 900 and 700 MPa liquids differ in having low CaO concentrations due to early and abundant crystallization of augite, with the result that those liquids become peraluminous (ASI: molar Al/(Na + K + 2Ca) > 1) at ≥61 wt% SiO2, similar to liquids reported in other studies of the high-pressure crystallization of hydrous basalts (Müntener and Ulmer in Geophys Res Lett 33(21):L21308, 2006). The lower-pressure liquids (400 MPa) have this same trait, but to a lesser extent due to more abundant near-liquidus plagioclase crystallization. A compilation of >6,500 analyses of igneous rocks from the Cascades and the Sierra Nevada batholith, representative of convergent margin (arc) magmas, shows that ASI increases continuously and linearly with SiO2 from basalts to rhyolites or granites and that arc magmas are not commonly peraluminous until SiO2 exceeds 69 wt%. These relations are consistent with plagioclase accompanying mafic silicates over nearly all the range of crystallization (or remelting). The scarcity of natural peraluminous andesites shows that progressive crystallization–differentiation of primitive basalts in the deep crust, producing early clinopyroxenitic cumulates and evolved liquids, does not dominate the creation of intermediate arc magmas or of the continental crust. Instead, mid- to upper-crustal differentiation and/or open-system processes are critical to the production of intermediate arc magmas. Primary among the open-system processes may be extraction of highly evolved (granitic, rhyolitic) liquids at advanced degrees of basalt solidification (or incipient partial melting of predecessor gabbroic intrusions) and mixing of such liquids into replenishing basalts. Furthermore, if the andesitic-composition continents derived from basaltic sources, the arc ASI–SiO2 relation shows that the mafic component returned to the mantle was gabbroic in composition, not pyroxenitic.  相似文献   

20.
This work presents the field setting, petrography, mineralogy and geochemistry of a gabbroic and peridotitic layered body that is lens-shaped and surrounded by gabbronorites, diorites, and metasedimentary migmatites. This body exposed at Jaboncillo Valley is one among several examples of mafic and ultramafic layered sequences in the Sierras Valle Fértil and La Huerta, which formed as part of the lower crust of the Ordovician Famatinian magmatic arc in central-western Argentina. The layered sequence grew at deep crustal levels (20–25 km) within a mafic lower crust. The base of the layered body was detached during the tectonic uplift of the Famatinian lower crust, whereas the roof of the layered body is exposed in the eastern zone. In the inferred roof, olivine-bearing rocks vanish, cumulate textures are less frequent, and the igneous sequence becomes dominated by massive or thinly banded gabbronorites. Mainly based on the petrographic relationships, the inferred order of crystallization in the gabbroic and peridotitic layered sequence is: (1) Cr–Al-spinel + olivine, (2) Cr–Al-spinel + olivine + clinopyroxene + magnetite, (3) Cr–Al-spinel + olivine + plagioclase + magnetite ± orthopyroxene, and (4) Al-spinel + orthopyroxene + amphibole. A strong linear negative correlation between olivine and plagioclase modal proportions combined with field, petrographic and geochemical observations are used to demonstrate that the physical separation of olivine and plagioclase results in rock diversity at scales of a few centimeters to tens of meters. However, the composition of olivine (Fo  0.81) and plagioclase (An > 94%) remains similar throughout the layered sequence. Spinels are restricted to olivine-bearing assemblages, and display chemical trends characteristic of spinels found in arc-related cumulates. Gabbroic and peridotitic layered rocks have trace element concentrations reflecting cumulates of early crystallizing minerals. The trace element patterns still retain the typical features of subduction-related arc magmatism, showing that the process of cumulate formation did not obscure the trace element signature of the parental magma. Using the composition of cumulus minerals and whole-rock chemical trends, we show that the parental magma was mafic (SiO2  48 wt.%) with Mg-number around 0.6, and hydrous. The oxygen fugacity (fO2) of the parental magma estimated between +0.8 and ?0.6 log fO2 units around the fayalite–magnetite–quartz (FMQ) buffer is also characteristic of primitive hydrous arc magmas. The initially high water content of the parental magma allowed amphibole to crystallize as an interstitial phase all over the crystallization evolution of the layered sequence. Amphibole crystallization in the inter-cumulus assemblage gives rise to the retention of many trace elements which would otherwise be incompatible with the mineral assemblage of mafic–ultramafic cumulates. This study shows that there exist strongly mafic and primitive magmas that are both generated and emplaced within the lower crustal levels of subduction-related magmatic arc. Our findings together with previous studies suggest that the Early Ordovician magmatic paleo-arc from central-northwestern Argentina cannot be regarded as a typical Andean-type tectono-magmatic setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号