首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Instrumental and historical data on mainshocks for 13 seismogenic sources in western Anatolia have been used to apply a regional time- and magnitude-predictable model. Considering the interevent time between successive mainshocks, the following two predictive relations were computed: log T t = 0.13 M min + 0.21 M p ? 0.15 log M 0 + 2.93 and M f = 0.87 M min ? 0.06 M p + 0.33 log M 0 ? 6.54. Multiple correlation coefficient and standard deviation have been computed as 0.50 and 0.29, respectively, for the first relation, and 0.65 and 0.47, respectively, for the second relation. The positive dependence of T t on M p and the negative dependence of M f on M p indicate the validity of time- and magnitude-predictable model on the area considered in this study. On the basis of these relations and using the occurrence time and magnitude of the last main shocks in each seismogenic source, the probabilities of occurrence Pt) of the next main shocks during the next 50 years with decade interval as well as the magnitude of the expected main shocks were determined. The highest probabilities P 10 = 80 % (M f = 6.8 and T t = 13 years) and P 10 = 32 % (M f = 7.6 and T t = 29 years) were estimated for the seismogenic source 11 (Golhisar-Dalaman-Rhodes) for the occurrence of a strong and a large earthquake during the future decade, respectively.  相似文献   

2.
Instrumental and historical information on strong main-shocks for 13 seismogenic sources along the seismic zone of the Solomon Islands and New Hebrides has been used to show that the interevent time,T t (in years), between two strong earthquakes and the magnitude,M f, of the following mainshock are given by the relations $$\begin{gathered} \log T_t = 0.17M_{\min } + 0.31M_p - 0.33 \log \dot M_O + 6.36, \hfill \\ M_f = 0.51M_{\min } - 0.12M_p + 0.541 \log \dot M_O + 9.44, \hfill \\ \end{gathered} $$ whereM min is the surface wave magnitude of the smallest main-shock considered,M p is the magnitude of the preceding mainshock, andM o is the moment rate per year in each source. On the basis of these relations, the probability for the occurrence of a mainshock during the decade 1993–2002 as well as the magnitude of this expected mainshock in each seismogenic source has been calculated. The highest probability value (P 10 = 0.79) was estimated for the seismogenic sources of Santa Cruz-Ndeni Islands (H 1) and Tana Island (H 5) for the occurrence of a large or great earthquake with expected magnitudesM f = 7.7 and 7.5, respectively.  相似文献   

3.
Repeat times of strong intermediate depth (60 km h 180 km) earthquakes have been determined by the use of instrumental and historical data for six seismogenic sources in the Benioff zone of the southern Aegean area. For four of these sources, at least two interevent times (three mainshocks) are available for each source. By using the repeat times for these four sources, the following relation has been determined: logT t = 0.20M min + 0.19M p +a, whereT t is the repeat time (in years),M min the surface wave magnitude of the smallest earthquake considered,M p the magnitude of the preceding mainshock and a parameter which varies from source to source. A multilinear correlation coefficient equal to 0.91 was determined for this relation, which indicates that the time predictable model holds to a satisfactory degree for the strong mainshocks of intermediate focal depth in the southern Aegean.By assuming that the ratioT/T t, whereT is the observed andT t the calculated repeat time, follows a lognormal distribution, the conditional probabilities for the occurrence of strong (M s 6.5) and very strong (M s 7.5) earthquakes during the period 1991–2001 in these four seismogenic sources have been calculated. These probabilities are very high (P > 0.9) for the strong and high (P > 0.5) for the very strong intermediate depth earthquakes which occur in the three sources of the shallower (h < 100 km) part of the Benioff zone where coupling occurs between the front parts of the Mediterranean lithosphere (downgoing) and the Aegean lithosphere.  相似文献   

4.
North-east India is seismically very active and has experienced many widelydistributed shallow, large earthquakes. Earthquake generation model for the region was studied using seismicity data [(1906–1984) prepared by National Geophysical Data Centre (NGDC), Boulder Colorado, USA]. For establishing statistical relations surface wave magnitudes (M s≥5·5) have been considered. In the region four seismogenic sources have been identified which show the occurrences of atleast three earthquakes of magnitude 5·5≤M s≤7·5 giving two repeat times. It is observed that the time interval between the two consecutive main shock depends on the preceding main shock magnitude (M p) and not on the following main shock magnitude (M f) revealing the validity of time predictable model for the region. Linear relation between logarithm of repeat time (T) and preceding main shock magnitude (M p) is established in the form of logT=cM p+a. The values ofc anda are estimated to be 0–36 and 1–23, respectively. The relation may be used for seismic hazard evaluation in the region.  相似文献   

5.
Global observations show that strong mainshocks are preceded by decelerating preshocks which occur in the focal (seismogenic) region of the ensuing mainshock and by accelerating preshocks which occur in a broader (critical) region of the mainshock. Predictive properties of these preshocks have been expressed by empirical relations supported by theory and form the Decelerating–Accelerating Seismic Strain (D–AS) model. A respective algorithm has been developed which is used to identify the critical and seismogenic region and estimate (predict) the corresponding ensuing mainshock. In the present work a forward test of this model is performed by attempting intermediate-term prediction of future big (M ≥ 7.7) mainshocks along the western coast of south and central America. Three regions of decelerating shocks and three corresponding regions of accelerating shocks have been identified. The parameters (origin time, magnitude, epicenter coordinates) as well as their uncertainties have been estimated (predicted) for the corresponding probably ensuing three mainshocks. This forward test allows an objective evaluation of the model's ability for an intermediate-term prediction of strong shallow mainshocks.  相似文献   

6.
The regional time- and magnitude-predictable model has been applied successfully in diverse regions of the world to describe the occurrence of main shocks. In the current study, the model has been calibrated against the historical and instrumental catalog of Iranian earthquakes. The Iranian plateau is divided into 15 seismogenic provinces; then, the interevent times for strong main shocks have been determined for each one. The empirical relations reported by Papazachos et al. (Tectonophysics 271:295–323, 1997a) for the Alpine–Himalayan belt (including Iran) were adopted except for the constant terms that were calculated separately for every seismotectonic area. By using the calibrated equations developed for the study area and taking into account the occurrence time and magnitude of the last main shocks in each seismogenic source, the time-dependent conditional probabilities of occurrence P(?t) of the next main shocks during next 10, 20, 30, 40 and 50 years as well as the magnitude of the expected main shocks (M f) have been estimated. The immediate probability (within next 10 years) of a large main shock is estimated to be high and moderate (>35 %) in all regions except zones 9 (M f = 5.8) and 15 (M f = 6.1). However, it should be noted that the probabilities have been estimated for different M f values in 15 regions. Comparing the model predictions with the actual earthquake occurrence rates shows the good performance of the model for Iranian plateau.  相似文献   

7.
Recent reliable data are used to study the behavior of seismic activity before 46 strong shallow earthquakes (M ≥ 6.0), which correspond to five complete samples of mainshocks. These samples include 6 mainshocks (M = 6.0–7.1) that occurred in western Mediterranean since 1980, 17 mainshocks (M = 6.0–7.2) which occurred in the Aegean (Greece and surrounding area) since 1980, 5 mainshocks (M = 6.4–7.5) that occurred in Anatolia since 1980, 12 mainshocks (M = 6.0–7.3) that occurred in California since 1980 and 6 mainshocks (M = 7.0–8.3) that occurred in Japan since 1990. In all 46 cases, a similar precursory seismicity pattern is observed. Specifically, it is observed that accelerating Benioff strain (square root of seismic energy) release caused by preshocks occurs in a broad circular region (critical region), with a radius about eight times larger than the fault length of the mainshock, in agreement with results obtained by various research groups during the last two decades. However, in a much smaller circular region (seismogenic region), with a radius about four times the fault length, the corresponding preshock strain decelerates with the time to the mainshock. The time variation of the strain follows in both cases a power law but the exponent power is smaller than unit (m ¯ = 0.3) in the case of the accelerating preshock strain and larger than unit (m ¯ = 3.0) in the case of the decelerating preshock strain. Predictive properties of this “Decelerating In–Accelerating Out Strain” model are expressed by empirical relations. The possibility of using this model for intermediate-term earthquake prediction is discussed and the relative model uncertainties are estimated.  相似文献   

8.
据中国地震台网测定,2021年5月21日21时48分在云南省大理州漾濞县发生MS6.4地震,及时查明此次地震的发震构造及震源破裂特征,可为认识该区孕震条件和判别未来强震危险性提供关键依据。采用双差定位方法对漾濞地震序列进行重新定位,得到3863次地震事件的精确震源位置。结果显示:漾濞地震序列整体呈北西—南东向分布,长约25 km;整体走向135°;MS6.4主震震中位置为25.688°N,99.877°E;震源深度约9.6 km。综合地震序列深度剖面和震源机制解结果可知,发震断层应为北西走向、整体向西南方向陡倾的右旋走滑断层,倾角具有自北西向南东逐渐变缓的趋势。进一步分析地震序列的时空演化过程发现,该地震具有典型的"前震-主震-余震型"地震序列活动特点,其破裂过程主要包括3个阶段。破裂成核阶段:首先在发震断层10~12 km深度处相对脆弱部位产生小尺度破裂,之后失稳加速破裂,发生MS5.6地震;主震破裂阶段:在构造应力场持续加载和周围小尺度破裂的共同影响下,促使浅部较高强度断层闭锁区破裂,形成MS6.4主震;尾端拉张破裂阶段:主震破裂向东南扩展过程中,在东南端形成与之呈马尾状斜交的、具有正断性质的次级破裂,并产生MS5.2余震。而且此次地震还在源区北东侧触发了北北东向的左旋走滑破裂。综合分析认为,漾濞地震是兰坪-思茅地块内部北西向草坪断裂在近南北向区域应力挤压作用下发生右旋走滑运动的结果,具有明显的新生断裂特征。近年来兰坪-思茅地块内部一系列中强地震的发生表明,青藏高原物质向东南持续挤出的过程中,遇到该地块的阻挡,正在导致地块内部早期断层贯通形成新的活动断裂。因此,川滇地块西南边界带上或相邻地块内部老断层的复活和新生断裂的产生是区域中强地震危险性分析评价中值得关注的重要课题,同时建议需重视未来该区中强地震进一步向东南和向北的迁移或扩展的可能性。   相似文献   

9.
Two main goals are considered in this paper: (1) modification and computation of the local coefficients of the space-time windows in the well-known declustering algorithm introduced by Gardner and Knopoff (1974) and (2) checking the independence of the Iranian mainshocks obtained from applying the new modified model. First, 21 of the well-documented earthquake sequences of Iran in the time period of 1972 to 2008 with the mainshock magnitude ranged from M w = 5.4–7.1 were used to define the new local space-time windows of declustering. Generally, using these Iranian earthquake sequences led to introduce bigger space-time windows for the new model in comparison to the Gardner and Knopoff’s (1974) windows. In the next step, to control the independence of Iranian mainshocks, the events of the Iranian earthquake catalog in the time span of 1964–2010 with moment magnitude of M w = 3.5–7.4 were used. In this respect, dependent events corresponding to the seven seismotectonic zones of Iran were removed using the new modified space-time windows. After declustering, the mainshock catalog was examined by the Kolmogorov–Smirnov goodness-of-fit test, and it was found to follow a Poisson distribution in all the studied seismotectonic zones of Iran. The same test on times between successive declustered events shows that the inter-event times of all catalogs follow an exponential distribution.  相似文献   

10.
F. Di Luccio  E. Fukuyama  N.A. Pino   《Tectonophysics》2005,405(1-4):141-154
On October 31, 2002 a ML = 5.4 earthquake occurred in southern Italy, at the margin between the Apenninic thrust belt (to the west) and the Adriatic plate (to the east). In this area, neither historical event nor seismogenic fault is reported in the literature. In spite of its moderate magnitude, the earthquake caused severe damage in cities close to the epicenter and 27 people, out of a total of 29 casualties, were killed by the collapse of a primary school in S. Giuliano di Puglia. By inverting broadband regional waveforms, we computed moment tensor solutions for 15 events, as small as ML = 3.5 (Mw = 3.7). The obtained focal mechanisms show pure strike-slip geometry, mainly with focal planes oriented to NS (sinistral) and EW (dextral). In several solutions focal planes are rotated counterclockwise, in particular for later events, occurring west of the mainshock. From the relocated aftershock distribution, we found that the mainshock ruptured along an EW plane, and the fault mechanisms of some aftershocks were not consistent with the mainshock fault plane. The observed stress field, resulting from the stress tensor inversion, shows a maximum principal stress axis with an east–west trend (N83°W), whereas the minimum stress direction is almost N–S. Considering both the aftershock distribution and moment tensor solutions, it appears that several pre-existing faults were activated rather than a single planar fault associated with the mainshock. The finite fault analysis shows a very simple slip distribution with a slow rupture velocity of 1.1 km/s, that could explain the occurrence of a second mainshock about 30 h after. Finally, we attempt to interpret how the Molise sequence is related to the normal faulting system to the west (along the Apennines) and the dextral strike-slip Mattinata fault to the east.  相似文献   

11.
The Latur earthquake (Mw 6.1) of 29 September 1993 is a rare stable continental region (SCR) earthquake that occurred on a previously unknown blind fault. In this study, we determined detailed three-dimensional (3-D) P- and S-wave velocity (Vp, Vs) and Poisson's ratio (σ) structures by inverting the first P- and S-wave high-quality arrival time data from 142 aftershocks that were recorded by a network of temporary seismic stations. The source zone of the Latur earthquake shows strong lateral heterogeneities in Vp, Vs and σ structures, extending in a volume of about 90 × 90 × 15 km3. The mainshock occurred within, but near the boundary, of a low-Vp, high-Vs and low-σ zone. This suggests that the structural asperities at the mainshock hypocenter are associated with a partially fluid-saturated fractured rock in a previously unknown source zone with intersecting fault surfaces. This might have triggered the 1993 Latur mainshock and its aftershock sequence. Our results are in good agreement with other geophysical studies that suggest high conductivity and high concentration of radiogenic helium gas beneath the source zone of the Latur earthquake. Our study provides an additional evidence for the presence of fluid related anomaly at the hidden source zone of the Latur earthquake in the SCR and helps us understand the genesis of damaging earthquakes in the SCR of the world.  相似文献   

12.
Following a large-sized Bhuj earthquake (M s = 7.6) of January 26th, 2001, a small aperture 4-station temporary local network was deployed, in the epicentral area, for a period of about three weeks and resulted in the recording of more than 1800 aftershocks (-0.07 ≤M L <5.0). Preliminary locations of epicenters of 297 aftershocks (2.0 ≤M L <5.0) have brought out a dense cluster of aftershock activity, the center of which falls 20 km NW of Bhachau. Epicentral locations of after-shocks encompass a surface area of about 50 × 40 km2 that seems to indicate the surface projection of the rupture area associated with the earthquake. The distribution of aftershock activity above magnitude 3, shows that aftershocks are nonuniformly distributed and are aligned in the north, northwest and northeast directions. The epicenter of the mainshock falls on the southern edge of the delineated zone of aftershock activity and the maximum clustering of activity occurs in close proximity of the mainshock. Well-constrained focal depths of 122 aftershocks show that 89% of the aftershocks occurred at depths ranging between 6 and 25 km and only 7% and 4% aftershocks occur at depths less than 5 and more than 25 km respectively. The Gutenberg-Richter (GR) relationship, logN = 4.52 - 0.89ML, is fitted to the aftershock data (1.0<-M L<5.0) and theb-value of 0.89 has been estimated for the aftershock activity.  相似文献   

13.
We analyse the seismicity pattern including b-value in the north Sumatra-Great Nicobar region from 1976 to 2004. The analysis suggests that there were a number of significant, intermediate and short-term precursors before the magnitude 7.6 earthquake of 2 November 2002. However, they were not found to be so prominent prior to the magnitude 9.0 earthquake of 26 December 2004 though downward migration of activity and a 50-day short-term quiescence was observed before the event. The various precursors identified include post-seismic and intermediate-term quiescence of 13 and 10 years respectively, between the 1976 (magnitude 6.3) and 2002 earthquakes with two years (1990–1991) of increase in background seismicity; renewed seismicity, downward migration of seismic activity and foreshocks in 2002, just before the mainshock. Spatial variation in b-value with time indicates precursory changes in the form of high b-value zone near the epicenter preceding the mainshocks of 2004 and 2002 and temporal rise in b-value in the epicentral area before the 2002 earthquake.  相似文献   

14.
The Bayesian extreme-value distribution of earthquake occurrences has been used to estimate the seismic hazard in 12 seismogenic zones of the North-East Indian peninsula. The Bayesian approach has been used very efficiently to combine the prior information on seismicity obtained from geological data with historical observations in many seismogenic zones of the world. The basic parameters to obtain the prior estimate of seismicity are the seismic moment, slip rate, earthquake recurrence rate and magnitude. These estimates are then updated in terms of Bayes’ theorem and historical evaluations of seismicity associated with each zone. From the Bayesian analysis of extreme earthquake occurrences for North-East Indian peninsula, it is found that for T = 5 years, the probability of occurrences of magnitude (M w = 5.0–5.5) is greater than 0.9 for all zones. For M w = 6.0, four zones namely Z1 (Central Himalayas), Z5 (Indo-Burma border), Z7 (Burmese arc) and Z8 (Burma region) exhibit high probabilities. Lower probability is shown by some zones namely␣Z4, Z12, and rest of the zones Z2, Z3, Z6, Z9, Z10 and Z11 show moderate probabilities.  相似文献   

15.
We investigate spatial clustering of 2414 aftershocks along the Izmit Mw = 7.4 August 17, 1999 earthquake rupture zone. 25 days prior to the Düzce earthquake Mw = 7.2 (November 12, 1999), we analyze two spatial clusters, namely Sakarya (SC) and Karadere–Düzce (KDC). We determine the earthquake frequency–magnitude distribution (b-value) for both clusters. We find two high b-value zones in SC and one high b-value zone in KDC which are in agreement with large coseismic surface displacements along the Izmit rupture. The b-values are significantly lower at the eastern end of the Izmit rupture where the Düzce mainshock occurred. These low b-values at depth are correlated with low postseismic slip rate and positive Coloumb stress change along KDC. Since low b-values are hypothesized with high stress levels, we propose that at the depth of the Düzce hypocenter (12.5 km), earthquakes are triggered at higher stresses compared to shallower crustal earthquake. The decrease in b-value from the Karadere segment towards the Düzce Basin supports this low b-value high stress hypothesis at the eastern end of the Izmit rupture. Consequently, we detect three asperity regions which are correlated with high b-value zones along the Izmit rupture. According to aftershock distribution the half of the Düzce fault segment was active before the 12 November 1999 Düzce mainshock. This part is correlated with low b-values which mean high stress concentration in the Düzce Basin. This high density aftershock activity presumably helped to trigger the Düzce event (Mw = 7.2) after the Izmit Mw 7.4 mainshock.  相似文献   

16.
The 2nd century AD earthquake in central Italy is only known by an epigraph that mentions restorations to a damaged weighing-house at the ancient locality of Pagus Interpromium. The available seismic catalogues report this event with the conventional date of 101 AD, a magnitude M aw of 6.3, and an epicentral location at the village of San Valentino in Abruzzo Citeriore, in the province of Pescara. In order to improve the knowledge of the damage pattern, we gathered all the archaeological data collected during modern excavations at sites located in the area, which were presumably struck by the earthquake. This information is mainly represented by (1) stratigraphic units due to the sudden collapse of buildings over still frequented floors; (2) stratigraphic units demonstrating restoration or re-building of edifices; (3) stratigraphic units formed as the result of the abandonment of sites or of their lack of frequentation for decades or centuries. Only stratigraphic evidence consistent with an earthquake occurrence during the 2nd century AD has been considered. The most recent archaeological material found in a collapsed unit is a coin of Antoninus Pius, dated at 147–148 AD. This may represent a post quem date very close to the occurrence of the earthquake. The gathered information, plus the stratigraphic data that excluded the earthquake occurrence at some sites, has allowed us to roughly delineate an area of possible damage, including the Sulmona Plain and surrounding areas. Comparisons between the possible 2nd century damage distribution and (i) the damage patterns of more recent historical events that have struck the investigated area, (ii) the distribution of virtual intensities obtained by simulating an earthquake having an epicenter in the Sulmona Plain and applying an intensity attenuation relationship and (iii) a shaking scenario obtained by modelling the activation of the major active fault of the Sulmona Plain area (the Mt. Morrone fault) have revealed consistency between the ancient earthquake and the activation of this fault. Since no other historical events can be attributed to this active fault, we conclude that the time that has elapsed since the last fault activation should be in the order of 1,850 years, i.e. a time span that is very close to the recurrence interval of Apennine seismogenic sources. Moreover, considering the fault length, the causative source may be responsible for earthquakes with M up to 6.6–6.7. The comparison between the presumed 2nd century damage and the shaking scenario suggests that the magnitude mentioned is consistent with the presumed effects of the ancient earthquake. Finally, considering that Sulmona (the most important town in the region investigated) is located in the middle of the Mt. Morrone fault hanging wall, we consider it as the probable epicentral area. Therefore, to summarise the information on the 2nd century AD earthquake, we can conclude that (i) it occurred shortly after 147–148 AD; (ii) a magnitude M w 6.6–6.7 can be attributed to it and (iii) the probable macroseismic epicentral area was Sulmona.  相似文献   

17.
The Vienna Basin Transfer Fault (VBTF) is a slow active fault with moderate seismicity (I max~8–9, M max~5.7) passing through the most vulnerable regions of Austria and Slovakia. We use different data to constrain the seismic potential of the VBTF including slip values computed from the seismic energy release during the 20th century, geological data on fault segmentation and a depth-extrapolated 3-D model of a generalized fault surface, which is used to define potential rupture zones. The seismic slip of the VBTF as a whole is in the range of 0.22–0.31 mm/year for a seismogenic fault thickness of 8 km. Seismic slip rates for individual segments vary from 0.00 to 0.77 mm/year. Comparing these data to geologically and GPS-derived slip velocities (>1 mm/year) proofs that the fault yields a significant seismic slip deficit. Segments of the fault with high seismic slip contrast from segments with no slip representing locked segments. Fault surfaces of segments within the seismogenic zone (4–14 km depth) vary from 55 to 400 km2. Empirical scaling relations show that these segments are sufficiently large to explain both, earthquakes observed in the last centuries, and the 4th century Carnuntum earthquake, for which archeo-seismological data suggest a magnitude of M ≥ 6. Based on the combination of all data (incomplete earthquake catalog, seismic slip deficits, locked segments, potential rupture areas, indications of strong pre-catalog earthquakes) we argue, that the maximum credible earthquake for the VBTF is in the range M max = 6.0–6.8, significantly larger than the magnitude of the strongest recorded events (M = 5.7).  相似文献   

18.

Multifractal behaviour of interevent time sequences is investigated for the earthquake events in the NW Himalaya, which is one of the most seismically active zones of India and experienced moderate to large damaging earthquakes in the past. In the present study, the multifractal detrended fluctuation analysis (MF-DFA) is used to understand the multifractal behaviour of the earthquake data. For this purpose, a complete and homogeneous earthquake catalogue of the period 1965–2013 with a magnitude of completeness M w 4.3 is used. The analysis revealed the presence of multifractal behaviour and sharp changes near the occurrence of three earthquakes of magnitude (M w ) greater than 6.6 including the October 2005, Muzaffarabad–Kashmir earthquake. The multifractal spectrum and related parameters are explored to understand the time dynamics and clustering of the events.

  相似文献   

19.
The aim of the present work is to compile and update a catalogue of the instrumentally recorded earthquakes in Egypt, with uniform and homogeneous source parameters as required for the analysis of seismicity and seismic hazard assessment. This in turn requires a detailed analysis and comparison of the properties of different available sources, including the distribution of events with time, the magnitude completeness, and the scaling relations between different kinds of magnitude reported by different agencies. The observational data cover the time interval 1900–2004 and an area between 22°–33.5° N and 25°–36° E. The linear regressions between various magnitude types have been evaluated for different magnitude ranges. Using the best linear relationship determined for each available pair of magnitudes, as well as those identified between the magnitudes and the seismic moment, we convert the different magnitude types into moment magnitudes M W, through a multi-step conversion process. Analysis of the catalogue completeness, based on the M W thus estimated, allows us to identify two different time intervals with homogeneous properties. The first one (1900–1984) appears to be complete for M W ≥ 4.5, while the second one (1985–2004) can be considered complete for magnitudes M W ≥ 3.  相似文献   

20.
The southernmost sector of the Italian peninsula is crossed by an almost continuous seismogenic belt capable of producing M ∼ 7 earthquakes and extending from the Calabrian Arc, through the Messina Straits, as far as Southeastern Sicily. Though large earthquakes occurring in this region during the last millennium are fairly well known from the historical point of view and seismic catalogues may be considered complete for destructive and badly damaging events (IX ≤ I o ≤ XI MCS), the knowledge and seismic completeness of moderate earthquakes can be improved by investigating other kinds of documentary sources not explored by the classical seismological tradition. In this paper, we present a case study explanatory of the problem, regarding the Ionian coast between the Messina Straits and Mount Etna volcano, an area of North-eastern Sicily lacking evidence of relevant seismic activity in historical times. Now, after a systematic analysis of the 18th century journalistic sources (gazettes), this gap can be partly filled by the rediscovery of a seismic sequence that took place in 1780. According to the available catalogues, the only event on record for this year is a minor shock (I = VI MCS, M w = 4.8) recorded in Messina on March 28, 1780. The newly discovered data allow to reinstate it as the mainshock (I = VII–VIII MCS, M w = 5.6) of a significant seismic period, which went on from March to June 1780, causing severe damage along the Ionian coast of North-eastern Sicily. The source responsible for this event appears located offshore, 40-km south of the previous determination, and is consistent with the Taormina Fault suggested by the geological literature, developing in the low seismic rate zone at the southernmost termination of the 1908 Messina earthquake fault.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号