首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An analytical theory is presented for determining the motion described by a Hamiltonian of two degrees of freedom. Hamiltonians of this type are representative of the problem of an artificial Earth satellite in a near-circular orbit or a near-equatorial orbit and in resonance with a longitudinal dependent part of the geopotential. Using the classical Bohlin-von Zeipel procedure the variation of the elements is developed through a generating function expressed as a trigonometrical series. The coefficients of this series, determined in ascending powers of an auxiliary parameter, are the solutions of paired sets of ordinary differential equations and involve elliptic functions and quadrature. The first order solution accounts for the full variation of the resonance terms with the second coordinate.  相似文献   

2.
The second-order solution of the Ideal Resonance Problem, obtained by Henrard and Wauthier (1988), is developed further to fourth order applying the same method. The solutions for the critical argument and the momentum are expressed in terms of elementary functions depending on the time variable of the pendulum as independent variable. This variable is related to the original time variable through a Kepler-equation. An explicit solution is given for this equation in terms of elliptic integrals and functions. The fourth-order formal solution is compared with numerical solutions obtained from direct numerical integrations of the equations of motion for two specific Hamiltonians.  相似文献   

3.
Poincaré's procedure for the construction of a global solution for a particular class of resonance problem is investigated, with particular emphasis placed on those motions corresponding to circulation in the phase space. It is demonstrated that an error on Poincaré's part leads to an impractical, yet formally acceptable, procedure.The merits of alternative methods are discussed, with particular reference to the studies of Garfinkel and the author.Presented at the Conference on Celestial Mechanics, Oberwolfach, Germany, August 27–September 2, 1972.  相似文献   

4.
The stability of the equilibrium points and the behavior near the equilibrium points of an Ideal Double Resonance Problem are studied. In the case where the characteristic roots are purely imaginary and such that the stability cannot be decided with linear terms, the nonlinear terms are considered and some theorems of Arnold and of Khazin are used.  相似文献   

5.
The Ideal Resonance Problem, as formulated in 1966 (Paper I), is defined by the Hamiltonian Following the procedure adopted in the construction of a first-orderglobal solution (Papers II, III, and V), we derive a second-order solution from the von Zeipel-Bohlin recursive algorithm of Paper II. The singularities inherent in the Bohlin expansion in powers of μ have been suppressed by means of theregularizing function of Paper III, and the singularities in the coefficients atAB″=0 have been removed by thenormalization technique of Paper V. As a check, it is shown that the global solution includes asymptotically theclassical solution, expanded in powers ofμ 2, and carrying thecritical divisor B′.  相似文献   

6.
The author's previous studies concerning the Ideal Resonance Problem are enlarged upon in this article. The one-degree-of-freedom Hamiltonian system investigated here has the form $$\begin{array}{*{20}c} { - F = B(x) + 2\mu ^2 A(x)\sin ^2 y + \mu ^2 f(x,y),} \\ {\dot x = - F_y ,\dot y = F_x .} \\ \end{array}$$ The canonically conjugate variablesx andy are respectively the momentum and the coordinate, andμ 2 is a small positive constant parameter. The perturbationf is o (A) and is represented by a Fourier series iny. The vanishing of ?B/?xB (1) atx=x 0 characterizes the resonant nature of the problem. With a suitable choice of variables, it is shown how a formal solution to this perturbed form of the Ideal Resonance Problem can be constructed, using the method of ‘parallel’ perturbations. Explicit formulae forx andy are obtained, as functions of time, which include the complete first-order contributions from the perturbing functionf. The solution is restricted to the region of deep resonance, but those motions in the neighbourhood of the separatrix are excluded.  相似文献   

7.
8.
If a dynamical system ofN degrees of freedom is reduced to the Ideal Resonance Problem, the Hamiltonian takes the form $$F = B(y) + 2\mu ^2 A(y)\sin ^2 x_1 , \mu<< 1.$$ Herey is the momentum-vectory k withk=1, 2,...,N, andx 1 is thecritical argument. A first-orderglobal solution,x 1(t) andy 1(t), for theactive variables of the problem, has been given in Garfinkelet al. (1971). Sincex k fork>1 are ignorable coordinates, it follows that $$y_\kappa = const., k > 1.$$ The solution is completed here by the construction of the functionsx k(t) fork>1, derivable from the new HamiltonianF′(y′) and the generatorS(x, y′) of the von Zeipel canonical transformation used in the cited paper. The solution is subject to thenormality condition, derived in a previous paper fork=1, and extended here to 2≤kN. It is shown that the condition is satisfied in the problem of the critical inclination provided it is satisfied fork=1.  相似文献   

9.
The Ideal Resonance Problem, defined by the Hamiltonian $$F = B(y) + 2\mu ^2 A(y)\sin ^2 x,\mu \ll 1,$$ has been solved in Garfinkelet al. (1971). As a perturbed simple pendulum, this solution furnishes a convenient and accurate reference orbit for the study of resonance. In order to preserve the penduloid character of the motion, the solution is subject to thenormality condition, which boundsAB" andB' away from zero indeep and inshallow resonance, respectively. For a first-order solution, the paper derives the normality condition in the form $$pi \leqslant max(|\alpha /\alpha _1 |,|\alpha /\alpha _1 |^{2i} ),i = 1,2.$$ Herep i are known functions of the constant ‘mean element’y', α is the resonance parameter defined by $$\alpha \equiv - {\rm B}'/|4AB\prime \prime |^{1/2} \mu ,$$ and $$\alpha _1 \equiv \mu ^{ - 1/2}$$ defines the conventionaldemarcation point separating the deep and the shallow resonance regions. The results are applied to the problem of the critical inclination of a satellite of an oblate planet. There the normality condition takes the form $$\Lambda _1 (\lambda ) \leqslant e \leqslant \Lambda _2 (\lambda )if|i - tan^{ - 1} 2| \leqslant \lambda e/2(1 + e)$$ withΛ 1, andΛ 2 known functions of λ, defined by $$\begin{gathered} \lambda \equiv |\tfrac{1}{5}(J_2 + J_4 /J_2 )|^{1/4} /q, \hfill \\ q \equiv a(1 - e). \hfill \\ \end{gathered}$$   相似文献   

10.
11.
We continue the investigation of the dynamics of retrograde resonances initiated in Morais and Giuppone (Mon Notices R Astron Soc 424:52–64, doi:10.1111/j.1365-2966.2012.21151.x, 2012). After deriving a procedure to deduce the retrograde resonance terms from the standard expansion of the three-dimensional disturbing function, we concentrate on the planar problem and construct surfaces of section that explore phase-space in the vicinity of the main retrograde resonances (2/ $-$ 1, 1/ $-$ 1 and 1/ $-$ 2). In the case of the 1/ $-$ 1 resonance for which the standard expansion is not adequate to describe the dynamics, we develop a semi-analytic model based on numerical averaging of the unexpanded disturbing function, and show that the predicted libration modes are in agreement with the behavior seen in the surfaces of section.  相似文献   

12.
If a dynamical problem ofN degress of freedom is reduced to the Ideal Resonance Problem, the Hamiltonian takes the form 1 $$\begin{array}{*{20}c} {F = B(y) + 2\mu ^2 A(y)\sin ^2 x_1 ,} & {\mu \ll 1.} \\ \end{array} $$ Herey is the momentum-vectory k withk=1,2?N, x 1 is thecritical argument, andx k fork>1 are theignorable co-ordinates, which have been eliminated from the Hamiltonian. The purpose of this Note is to summarize the first-order solution of the problem defined by (1) as described in a sequence of five recent papers by the author. A basic is the resonance parameter α, defined by 1 $$\alpha \equiv - B'/\left| {4AB''} \right|^{1/2} \mu .$$ The solution isglobal in the sense that it is valid for all values of α2 in the range 1 $$0 \leqslant \alpha ^2 \leqslant \infty ,$$ which embrances thelibration and thecirculation regimes of the co-ordinatex 1, associated with α2 < 1 and α2 > 1, respectively. The solution includes asymptotically the limit α2 → ∞, which corresponds to theclassical solution of the problem, expanded in powers of ε ≡ μ2, and carrying α as a divisor. The classical singularity at α=0, corresponding to an exact commensurability of two frequencies of the motion, has been removed from the global solution by means of the Bohlin expansion in powers of μ = ε1/2. The singularities that commonly arise within the libration region α2 < 1 and on the separatrix α2 = 1 of the phase-plane have been suppressed by means of aregularizing function 1 $$\begin{array}{*{20}c} {\phi \equiv \tfrac{1}{2}(1 + \operatorname{sgn} z)\exp ( - z^{ - 3} ),} & {z \equiv \alpha ^2 } \\ \end{array} - 1,$$ introduced into the new Hamiltonian. The global solution is subject to thenormality condition, which boundsAB″ away from zero indeep resonance, α2 < 1/μ, where the classical solution fails, and which boundsB′ away from zero inshallow resonance, α2 > 1/μ, where the classical solution is valid. Thedemarcation point 1 $$\alpha _ * ^2 \equiv {1 \mathord{\left/ {\vphantom {1 \mu }} \right. \kern-\nulldelimiterspace} \mu }$$ conventionally separates the deep and the shallow resonance regions. The solution appears in parametric form 1 $$\begin{array}{*{20}c} {x_\kappa = x_\kappa (u)} \\ {y_1 = y_1 (u)} \\ {\begin{array}{*{20}c} {y_\kappa = conts,} & {k > 1,} \\ \end{array} } \\ {u = u(t).} \\ \end{array} $$ It involves the standard elliptic integralsu andE((u) of the first and the second kinds, respectively, the Jacobian elliptic functionssn, cn, dn, am, and the Zeta functionZ (u).  相似文献   

13.
14.
Poincaré formulated a general problem of resonance in the case of a dynamical system which is reducible to one degree of freedom. He introduced the concept of a global solution; in essence, this means that the domain of the solution(s) covers the entire phase plane, comprising regions of libration and circulation. It is the author's opinion that the technique proposed by Poincaré for the construction of a global solution is impractical. Indeed, in §§201 and 211 ofLes méthodes nouvelles de la méchanique céleste, where he describes the passage from shallow resonance to deep resonance, Poincaré asserts an erroneous conclusion. An alternative procedure, which admits secular terms into the determining function and introduces a regularizing function, is outlined. The latter method has been successfully applied to the Ideal Resonance Problem, which is a special case of the more general problem considered by Poincaré, (Garfinkelet al. (1971); Garfinkel (1972).  相似文献   

15.
In the planar elliptic problem Sun-Jupiter-massless body we consider the resonances of mean motion 3/2, 2/1, 3/1, 7/3 and 1/3. Short-period effects are eliminated by Schubart's averaging method. Applying a minimization technique, stationary solutions can be found in the given resonance cases. Some of these solutions are well-known as periodic solutions in the rigorous (i.e., unaveraged) restricted problem. It is illustrated how one can construct in a numerical way a linearized theory of motion around a stationary solution and results are presented.Proceedings of the Sixth Conference on Mathematical Methods in Celestial Mechanics held at Oberwolfach (West Germany) from 14 to 19 August, 1978.  相似文献   

16.
Four 3 : 1 resonant families of periodic orbits of the planar elliptic restricted three-body problem, in the Sun-Jupiter-asteroid system, have been computed. These families bifurcate from known families of the circular problem, which are also presented. Two of them, I c , II c bifurcate from the unstable region of the family of periodic orbits of the first kind (circular orbits of the asteroid) and are unstable and the other two, I e , II e , from the stable resonant 3 : 1 family of periodic orbits of the second kind (elliptic orbits of the asteroid). One of them is stable and the other is unstable. All the families of periodic orbits of the circular and the elliptic problem are compared with the corresponding fixed points of the averaged model used by several authors. The coincidence is good for the fixed points of the circular averaged model and the two families of the fixed points of the elliptic model corresponding to the families I c , II c , but is poor for the families I e , II e . A simple correction term to the averaged Hamiltonian of the elliptic model is proposed in this latter case, which makes the coincidence good. This, in fact, is equivalent to the construction of a new dynamical system, very close to the original one, which is simple and whose phase space has all the basic features of the elliptic restricted three-body problem.  相似文献   

17.
18.
In this paper, an application of the extended Delaunay methods is made to the ideal resonance problem. We show how the theory of integration proposed in a preceding paper works in a simple problem, and discuss how to proceed in more complicated situations.  相似文献   

19.
Garfinkel's solution of the Ideal Resonance problem derived from a Bohlin-von Zeipel procedure, and Jupp's solution, using Poincaré's action and angle variables and an application of Lie series expansions, are compared. Two specific Hamiltonians are chosen for the comparison and both solutions are compared with the numerical solutions obtained from direct integrations of the equations of motion. It is found that in deep resonance the second-mentioned solution is generally more accurate, while in the classical limit the first solution gives excellent agreement with the numerical integrations.This article represents a summary of a much more extensive programme of research, the complete results of which will be published in a future article.  相似文献   

20.
A new approach to the librational solution of the Ideal Resonance Problem has been devised--one in which a non-canonical transformation is applied to the classical Hamiltonian to bring it to the form of the simple harmonic oscillator. Although the traditional form of the canonical equations of motion no longer holds, a quasi-canonical form is retained in this single-degree-of-freedom system, with the customary equations being multiplied by a non-constant factor. While this makes the resulting system amenable to traditional transformation techniques, it must then be integrated directly. Singularities of the transformation in the circulation region limit application of the method to the librational region of motion.Computer-assisted algebra has been used in all three stages of the solution to fourth order of this problem: using a general-purpose FORTRAN program for the quadratic analytical solution of Hamiltonians in action-angle variables, the initial transformation is carried out by direct substitution and the resulting Hamiltonian transformed to eliminate angular variables. The resulting system of differential equations, requiring the expected elliptic functions as part of their solution, is currently in the process of being integrated using the LISP-based REDUCE software, by programming the required recursive rules for elliptic integration.Basic theory of this approach and the computer implementation of all these techniques is described. Extension to higher order of the solution is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号