首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
莫霍面地震反射图像揭露出扬子陆块深俯冲过程   总被引:21,自引:0,他引:21  
近垂直深地震反射剖面对莫霍面变化的观测 ,强有力地说明大陆莫霍面的复杂特征记录了岩石圈的构造历史。横过大别山造山带前陆的深地震反射剖面长约 1 4 0km ,记录时间达 3 0s ,探测深度超过莫霍面深达岩石圈地幔。深地震反射剖面揭示出扬子陆块与大别山造山带结合部位的岩石圈精细结构、清晰的莫霍面及其变化特征。作为相关解释的第一步 ,我们将探测到的莫霍面变化特征与其他特殊反映不同地质年代和岩石圈构造历史的深地震反射剖面进行对比 ,以追索扬子陆块与大别山造山带的岩石圈构造过程。总体北倾的莫霍面和同样北倾的下地壳结构记录了中生代扬子陆块的向北俯冲。北倾的莫霍面错断、叠置现象描述出扬子陆块的俯冲过程。大别山前向北和向南倾斜的交叉反射图像 ,反映了扬子陆块与大别山造山带岩石圈尺度的碰撞关系  相似文献   

2.
印度板块与亚洲板块的碰撞使喜马拉雅-青藏高原隆升,地壳增厚并生长扩展。探测青藏高原深部结构,揭露两个大陆如何碰撞以及碰撞如何使大陆变形的过程,是对全球关切的科学奥秘的探索。深地震反射剖面探测是打开这个科学奥秘的最有效途径之一。二十多年来,运用这项高技术探测到青藏高原巨厚地壳的精细结构,攻克了难以得到下地壳和Moho面信息的技术瓶颈,揭露了陆-陆碰撞过程。本文在探测研究成果的基础上,从青藏高原南北-东西对比,再到高原腹地,系统地综述了青藏高原之下印度板块与亚洲板块碰撞-俯冲的深部行为。印度地壳在高原南缘俯冲在喜马拉雅造山带之下,亚洲板块的阿拉善地块岩石圈在北缘向祁连山下俯冲,祁连山地壳向外扩展,塔里木地块与高原西缘的西昆仑发生面对面的碰撞,在高原东缘发现龙日坝断裂(而不是龙门山断裂)是扬子板块的西缘边界,高原腹地Moho面厚度薄而平坦,岩石圈伸展垮塌。多条深反射剖面揭露了在雅鲁藏布江缝合带下印度板块与亚洲板块碰撞的行为,不仅沿雅鲁藏布江缝合带走向印度地壳俯冲行为存在东西变化,而且印度地壳向北行进到拉萨地体内部的位置也不同。在缝合带中部,研究显示印度地壳上地壳与下地壳拆离,上地壳向北仰冲,下地壳向北俯冲,并在俯冲过程中发生物质的回返与构造叠置,这导致印度地壳减薄,喜马拉雅地壳加厚。俯冲印度地壳前缘与亚洲地壳碰撞后沉入地幔,处于亚洲板块前缘的冈底斯岩基与特提斯喜马拉雅近于直立碰撞,冈底斯下地壳呈部分熔融状态,近乎透明的弱反射和局部出现的亮点反射以及近于平的Moho面都反映出亚洲板块南缘处于伸展构造环境。  相似文献   

3.
燕山造山带深地震反射剖面启动探测研究   总被引:6,自引:0,他引:6  
高锐  赵越 《地质通报》2002,21(12):905-907
板块构造本质的刚性定义,认为变形只发生在板块的边缘,板块内部不会也不可能发生与板缘相当的造山带[1].  相似文献   

4.
印度板块与亚洲板块的碰撞使喜马拉雅-青藏高原隆升,地壳增厚和生长扩展。探测青藏高原深部结构,揭露两个大陆如何碰撞,碰撞如何使大陆变形的过程,是全球关切的科学奥秘。深地震反射剖面探测是打开这个科学奥秘的最有效途径之一。20多年来,运用这项高技术探测到青藏高原巨厚地壳的精细结构,攻克了难以得到下地壳和Moho清晰结构的技术瓶颈,揭露了陆陆碰撞过程。本文在探测研究成果基础上,从青藏高原南北-东西对比,再到高原腹地,系统地综述了青藏高原之下印度板块与亚洲板块碰撞-俯冲的深部行为。印度地壳在高原南缘俯冲在喜马拉雅造山带之下,亚洲板块的阿拉善地块岩石圈在北缘向祁连山下俯冲,祁连山地壳向外扩展,塔里木地块与高原西缘的西昆仑发生面对面的碰撞,在高原东缘发现龙日坝断裂而不是龙门山断裂是扬子板块的西缘边界,高原腹地Moho 薄而平坦,岩石圈伸展垮塌。多条深反射剖面揭露了在雅鲁藏布江缝合带下印度板块与亚洲板块碰撞的行为,印度地壳不仅沿雅鲁藏布江缝合带存在由西向东的俯冲角度变化,而且其向北行进到拉萨地体内部的位置也不同。在缝合带中部,显示印度地壳上地壳与下地壳拆离,上地壳向北仰冲,下地壳向北俯冲,并在俯冲过程发生物质的回返与构造叠置,使印度地壳减薄,喜马拉雅地壳加厚。俯冲印度地壳前缘与亚洲地壳碰撞后沉入地幔,处于亚洲板块前缘的冈底斯岩基与特提斯喜马拉雅近于直立碰撞,冈底斯下地壳呈部分熔融状态,近乎透明的弱反射和局部出现的亮点反射,以及近于平的Moho都反映出亚洲板块南缘的伸展构造环境。  相似文献   

5.
松潘地块位于青藏高原的东缘,处于中国大陆东西向构造与南北向构造的结合部位,特殊的构造环境使其长期控制并影响着中国大陆的形成与演化。探测松潘地块的岩石圈细结构,揭示其与东昆仑-西秦岭造山带的关系,既可为研究青藏高原东北缘板块碰撞的深部过程奠定基础,同时又关联着松潘地块的油气远景评价。2004年完成了第一条横过松潘地块北缘若尔盖盆地和西秦岭造山带的长约257km的深地震反射剖面,首次揭露出若尔盖盆地和西秦岭造山带岩石圈的细结构。发现若尔盖盆地和西秦岭造山带同属统一的稳定的大陆地块,并且下地壳均以北倾的强反射为主要特征。这种北倾的反射为松潘地块向西秦岭下地壳俯冲提供了地震学证据。近于平坦的Moho反射特征反映出西秦岭造山带在造山后又经历了强烈的伸展作用。  相似文献   

6.
为揭示中亚造山带浅表结构,对地壳演化与深部过程提供浅部精准约束,利用横过中亚造山带东段(奈曼旗—东乌珠穆沁旗)长达400 km的深地震反射剖面共2 186炮的初至波走时数据,运用初至波层析成像方法获得了自地表向下约3 km厚度的浅表速度结构精细模型。通过模型计算了沉积厚度变化与基岩起伏特征,并在贺根山和西拉木伦缝合带附近获得了呈低速特征的弧前沉积盆地规模与沉积厚度变化特征;在此基础上,综合速度模型与深地震反射剖面的强振幅反射信息,建立了符合剖面南北两侧的古亚洲洋双向俯冲并与中部的残存微陆块发生拼合的构造模型。结果表明:研究区的沉积厚度在0.3~3.0 km范围内变化,区内存在多期岩浆活动及活动构造,林西地区隐伏连续分布的高速结构多为造山花岗岩所导致;古亚洲洋消亡过程在经数亿年演变后仍能在大陆边缘的浅表构造中有迹可循。  相似文献   

7.
大别山陆—陆点碰撞和构造超压的形成   总被引:5,自引:0,他引:5  
武红岭  董树文 《地球科学》2001,26(5):457-463
依据大别造山带的地质特征及古地磁证据, 提出大陆动力学非规则边界陆-陆点碰撞模型, 采用数值模拟方法, 分析点碰撞所引起的构造应力集中及其影响因素, 探讨构造压力在大别山超高压变质岩形成过程中所起的作用, 推测可能形成的深度范围.研究表明: 在本文的模拟条件下, (1) 大陆碰撞初期产生的构造应力场中的平均压力在碰撞点附近增大了约5~9倍.在边界力为100 MPa的情况下, 构造压力在超高压中所占的比例约为20 %~35 %; (2) 由于有构造压力的作用和影响, 超高压变质岩的形成深度有可能被提升20~35 km; (3) 仅考虑碰撞方式, 不计岩石物性差异和其他因素的影响, 构造应力的影响有限, 静岩压力在超高压变质岩形成过程中仍占据主导地位.   相似文献   

8.
若尔盖盆地和西秦岭造山带作为青藏高原东北缘典型的新生代盆山构造,其接合部位的岩石圈结构及其深部构造关系为青藏高原东北缘板块碰撞的深部过程等研究奠定基础。横过盆山结合部位的深地震反射剖面长约63km,记录时间30s(TWT),探测深度超过莫霍面深达岩石圈地幔。该剖面首次揭露出青藏高原东北缘的盆山结合部位地壳和上地幔盖层的结构,发现了若尔盖盆地和西秦岭造山带下地壳以北倾为主的强反射特征,这种北倾的反射特征提供了若尔盖盆地俯冲到西秦岭造山带之下,而西秦岭造山带逆冲推覆到若尔盖盆地之上的地震学证据,初步揭示出若尔盖盆地和西秦岭造山带在挤压构造体系下形成的岩石圈尺度的构造关系,近于平坦的Moho反射特征反映两者在造山后期又经历了强烈的伸展作用。  相似文献   

9.
10.
东昆仑造山带前陆盆地的叠加褶皱及其变形机制   总被引:3,自引:1,他引:3       下载免费PDF全文
在东昆仑造山带的三叠纪洪水川群复理石岩系中,发育着两组斜歪-倒转褶皱:一组轴迹方向为北西向,与造山带主体构造线近一致;另一组为新发现的北东向,与造山带主体构造线近垂直,形成叠加褶皱.每一组褶皱均是压扁、纯剪切、纯剪切+简单剪切三种变形机制的产物.北西向褶皱轴面的南西倒和北东向褶皱轴面的北西倒,与国内外典型的前陆盆地中的褶皱形态不尽相同,反映了动力基础是板块碰撞之后的近于垂直的北东及北西方向挤压应力相继作用下形成的叠加褶皱.北东向褶皱的发现,揭示了造山带中构造应力场的转换.  相似文献   

11.
喜马拉雅山的崛起和青藏高原的隆升被认作是印度板块和亚洲板块中、新生代以来汇聚、碰撞、挤压的结果,是典型的陆-陆碰撞地带。此文介绍了在喜马拉雅山区进行的第一次深反射地震试验的结果。试验剖面布置在北喜马拉雅地区内,从喜马拉雅山山脊南的帕里到康马南的萨马达共中15点(CMP)叠加剖面上表现出如下特点:①显示了在地壳中部有一强反射带,向北缓倾斜下去,延长达100km以上。它可能代表了一个活动的道冲断裂或是一条巨大的拆离带,印度地壳整体或下地壳沿此拆离层俯冲到藏南之下;②上部地壳的反射,显示了上地壳存在着大规模的叠瓦状结构;③下地壳的反射显示了塑性流变特征;④在测线南部莫霍反射明显,深度达72─75km,发现了南部有双莫霍层的存在;⑤试验中还取得莫霍层下面32s、38s、48s等双程走时的多条反射,均向北倾斜,反射同相轴延续较长,信息丰富,反映了上地幔的成层结构。这些结果对印度大陆地壳整体或其下地壳俯冲到藏南特提斯喜马拉雅地壳之下并导致西藏南端地壳增厚的观点给予了实质性的支持。  相似文献   

12.
大别山黄石-六安反射地震剖面新的地质解释   总被引:3,自引:0,他引:3  
在大别山黄石至六安反射地震剖面上有很多近水平的反射体,表明大别山中心部位的中、下地壳内也有近水平的分层性。反映有流变性和动力学方面的差异,与大型薄皮构造理论对岩石圈性质的认识一致,因而在其运动过程中应服从薄皮构造的运动规律。结合以往对大别山区划分的岩石一构造组合,在前人对此反射地震剖面所作的地质解释的基础上,对反射地震剖面作了较为详细的地质解释,并建立了大别山造山带在此剖面上的两维几何结构。剖面南部为造山过程中形成的背斜构造。地表15km深度内为由碰撞混杂岩组成的扬子与中一朝大陆之间的主滑脱带。剖面中部为造山期后的侵入体。剖面北部为主滑脱带的根带(通常认为的缝合带),根带被中生代形成的晓天磨子潭断裂带切割。剖面最北端为变质复理石中略晚于主滑脱带的反向冲断带。推溺l下地壳的断开距离在扬子大陆俯冲时(三叠纪前)规模较大,然后逐渐缩小,直至保留到今天的规模。  相似文献   

13.
造山带挤出构造阐述了被边界断裂所围限的造山带深变质块体,在造山带内部垂向和(或)侧向应力的作用下折返变形的过程。研究主要集中在挤出块体的几何形态及其内部变形样式、边界断裂特征、挤出路径以及挤出动力来源等4个方面,其研究目的主要是为了解决造山带深变质岩石折返剥露的机制问题。依据挤出块体的挤出方向与造山带主体走向之间的关系,在三维球形坐标系Lx-Ly-Lz中,将造山带挤出构造大致分为7个端员类型(Ⅰ型~Ⅶ型)。其中Lx为造山带或俯冲带的主体走向;Ly呈水平方向并与Lx相垂直;Lz垂直于Lx和Ly所构成的平面。这些基本端员类型的组合及其之间的过渡类型可以详尽地诠释大别山印支期高压-超高压岩石的挤出过程。其中榴辉岩相挤出阶段介于Ⅳ型与Ⅶ型挤出构造之间,角闪岩相挤出阶段介于Ⅱ型与Ⅵ型挤出构造之间并可能具有渠道流挤出模式,而绿片岩相挤出阶段类似于Ⅴ型挤出构造。  相似文献   

14.
大别山超高压变质带层析地震调查   总被引:5,自引:0,他引:5  
彭聪 Schul.  A 《地质论评》2000,46(3):288-294
1997年3月中德合作进行了大别山科学钻探选址区层析地震调查,研究结果揭示出大别山超高压变质带(UHP)地壳精细结构。郯庐断裂带近垂直延伸至Moho界面(可能更深),在Moho界面以上郯庐断裂带西侧大别山地壳物质没有迁移进入其东侧。在主测线(横中至潜山镇)20km深度发现一个由西向东倾斜的强反射层,推测可能是一个大的滑脱层。超高压变质岩石(或地幔物质)可能由地幔深处通过郯庐断裂带再沿此滑脱层析返到  相似文献   

15.
青藏高原是由印度板块和亚洲板块于50~60 Ma碰撞而形成的全球最高最大的高原,已成为多数国内外学者的共识.然而,关于它的岩石圈变形机制却是长期争论的问题.深地震反射剖面是精细揭示岩石圈结构、分辨变形样式的有效技术.重新处理的松潘地块一西秦岭造山带深地震反射剖面揭示出岩石圈变形的细节,以地壳上部的双重逆冲构造、地壳中部...  相似文献   

16.
深地震反射剖面技术以其探测精度高的优势被作为岩石圈精细结构研究的先锋技术,并在全球典型矿集区结构探测中发挥了重要作用.为深入研究青藏高原碰撞造山成矿系统深部结构与成矿过程,本文系统总结了深地震反射技术发展现状,梳理了该技术在加拿大、澳大利亚、中国、俄罗斯、瑞典等全球多个国家的典型矿集区的应用实例,归纳总结了地壳深部结构对矿集区控矿因素的影响,阐述了地壳、上地幔深部结构与深部成矿过程的关系.从全球实例看,深地震反射剖面探测成果为大型矿集区的形成提供了深部线索,反射透明区可能是地幔流体向上运移通道,形成矿集区的成矿物质与能量来源,表明地幔物质参与了成矿作用;具有很强反射特征的断裂系统,包括大型断层、滑脱面和剪切带,是成矿流体从下地壳向上迁移的通道;矿集区深地震反射剖面中“亮点”反射可能是火山活动的深部岩浆上涌至中地壳后而形成的残余岩浆囊的反映.揭露精细的矿集区深部结构不但对矿集区构造历史演化的重建具有重要作用,还对未来成矿潜力和前景靶区的确定具有重要指导意义.  相似文献   

17.
18.
张泽明  丁慧霞  董昕  田作林 《地球科学》2019,44(5):1602-1619
印度与亚洲大陆新生代碰撞-俯冲形成的喜马拉雅造山带核部由高压和超高压变质岩组成.超高压榴辉岩分布在喜马拉雅造山带西段,由石榴石、绿辉石、柯石英、多硅白云母、帘石、蓝晶石和金红石组成.超高压榴辉岩的峰期变质条件为2.6~2.8GPa和600~620℃,其经历了角闪岩相退变质作用和低程度熔融.超高压榴辉岩的进变质、峰期和退变质年龄分别为~50Ma、45~47Ma和35~40Ma,指示一个快速俯冲与快速折返过程.高压榴辉岩产出在喜马拉雅造山带中-东段,由石榴石、绿辉石、多硅白云母、石英和金红石组成.高压榴辉岩的峰期变质条件为>2.1GPa和>750℃,叠加了高温麻粒岩相退变质作用与强烈部分熔融.高压榴辉岩的峰期和退变质年龄可能分别是~38 Ma和14~17 Ma,很可能经历了一个缓慢俯冲与缓慢折返过程.喜马拉雅造山带两种不同类型榴辉岩的存在表明,印度与亚洲大陆约在51~53Ma碰撞后,印度大陆地壳的西北缘陡俯冲到了地幔深度,导致表壳岩石经历了超高压变质作用,而印度大陆地壳的东北缘平缓俯冲到亚洲大陆之下,导致表壳岩石经历了高压变质作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号