首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过简化原始运动方程,得到南海北部季风逆风流诊断方程,对季风逆风流诊断方程进行必要的数学处理后,导出南海北部产生季风产风流和必要条件和诊断判据;指出南海北部季风逆风流由风生直接逆风流与风生间接逆风流叠加而成,风生间接逆风流由风生间接正压地转逆风流与风生间斜压地转逆风流组成,还导出风致巴士海峡以东的黑潮水影响季风逆风流的判据,在合适的风向及适当的摩擦系数情况下,黑潮水可成为间接逆风流的热源,并首次提  相似文献   

2.
通过简化原始运动方程,得到南海北部季风逆风流诊断方程,对季风逆风流诊断方程进行必要的数学处理后,导出南海北部产生季风逆风流的必要条件和诊断判据;指出南海北部季风逆风流由风生直接逆风流与风生间接逆风流叠加而成,风生间接过风流由风生间接正压地转逆风流与风生间接斜压地转逆风流组成,还导出风致巴士海峡以东的黑潮水影响季风逆风流的判据,在合适的风向及适当的摩擦系数情况下,黑潮水可成为间接逆风流的热源。并首次提出风生直接逆风流、风生间接逆风流、正压逆风流、斜压逆风流、风生间接正压地转逆风流和风生间接斜压地转逆风流概念。  相似文献   

3.
用11种假定情况对南海东北部冬季逆风流(简称冬季逆风流)是否产生进行数值试验。结果表明,除平底、静风假定外,南海东北部大陆坡上均有表层海水辐合带形成;该带是产生冬季逆风流的必要条件。经巴士海峡流入的黑潮水加强大陆坡区辐合带,加速冬季逆风流的形成。风应力、大陆坡是冬季逆风流产生的决定因素。冬季逆风流对风应力曳力系数(CD)及水平涡动系数(AH)的取值相当敏感。  相似文献   

4.
用11种假定情况对南海东北部冬季逆风流(简称冬季逆风流)是否产生进行数值试验。结果表明,除平底,静风假定外,南海东北部大陆坡上有表层海水辐合带形成,该带是产生冬季逆风流的必要条件,经巴士海峡流入的黑潮水加强大陆坡区辐合带,加速冬季逆风流的形成,风应力,大陆坡是冬季逆风流产生的决定因素,冬季逆风流对风应力曳力系数(CD)及水平涡动系数(AH)的取值相当敏感。  相似文献   

5.
南海东北部夏季逆风流数值模拟   总被引:5,自引:1,他引:5  
以1939-1978年7月平均风场代表夏季风,数值求解南海流场对风应力输入的响应。结果表明,即使盛夏仍有黑潮水经巴土海峡流入南海;风应力与陆坡地形相互作用的影响。在116E以西陆坡上占优势,形成辐射上升,生成低水位带及冷水带,其北侧生成夏了逆风流;116E以东陆坡上,黑潮水占优势,具有向北分量流速的黑潮水在那里辐聚下沉形成高水位带及暖水带,其北侧生成东北向顺风流。  相似文献   

6.
南海风生正压环流动力机制的数值研究   总被引:5,自引:0,他引:5  
翟丽  方国洪  王凯 《海洋与湖沼》2004,35(4):289-298
利用ECOM si模式 ,1 0′× 1 0′水平分辨率 ,垂向 2 0个σ层 ,由H/R( 1 983)气候学月平均风应力场和开边界流量驱动 ,模拟了南海风生环流的季节变化 ,并针对南海冬夏季风生正压环流的动力机制进行了数值实验。实验中考虑以下动力因子对南海冬夏季环流的影响 :1 )开边界入流和出流 ;2 )风应力旋度 ;3)地形 ;4)惯性效应 ;5 ) β效应。数值实验表明 ,通过开边界进入南海的流量与风应力在南海内部引起的流量量值相当 ,特别是冬季两者对北部陆坡边界流和南海西边界流均有重要贡献 ;冬季南海海盆尺度气旋式流圈主要是由风应力旋度引起的 ,但平均风应力可以加强卡里马塔海峡的出流 ,而北部反气旋风应力旋度可引起南海暖流 ;陆坡地形使得海盆尺度冬季气旋式流圈中心限制在深海区 ,南海北部陆架的存在大大削弱了南海暖流的强度 ;惯性效应对南海环流的整体结构无明显影响 ,但使得黑潮入侵和台湾西南的流套变弱 ;深海海盆环流中 β项是与风应力旋度平衡的基本项 ,且 β效应对环流的西向强化和吕宋海峡入侵作用至关重要  相似文献   

7.
利用1个正压的数值模式研究风应力、黑潮对南海东北部及台湾海峡环流的影响,结果为:(1)以风应力为驱动机制时其流态特别是在台湾海峡的流动具有季节性,但未反映南海黑潮分支的存在;在冬季也未见有南海暖流出现,但在东沙群岛附近海域终年存在着1个气旋涡;(2)以黑潮为驱动机制时,黑潮通过巴士海峡侵入南海海域,并导致东沙群岛附近气旋性涡旋的形成。另外,模式体现黑潮南海分支、南海暖流及台湾暖流的存在,并表明广东沿岸大陆架坡折区底形效应的重要性;(3)以风应力及黑潮入流作为联合驱动机制时,模式的结果似为第1,2种情形结果的叠加。  相似文献   

8.
冬季中国海涡旋和逆风海流的数值实验   总被引:2,自引:0,他引:2  
用一个正压太平洋区域模式做了些数值实验,考察了黑潮、海底地形和岛屿对中国海海流,特别是对南海暖流的影响。计算结果表明:在南海暖流和一些涡旋的形成机制当中,中国海的大陆架地形起着主要的作用。黑潮在巴士海峡的分支或入侵对南海暖流有着重要的影响,但并不是南海暖流得以形成的根本原因。另外,关于冬季南海暖流的驱动机制和水的来源问题,根据数值试验得到的一些结果也做了一些初步分析。  相似文献   

9.
南海夏季环流机制的数值试验研究   总被引:2,自引:0,他引:2  
用一个三维、自由表面、斜压海洋模式,通过数值试验的方法对南海夏季的环流特征及其形成机制进行探讨。结果表明,产生南海南部反气旋式环流的主要机制是西南季风的驱动,斜压效应起到了增强环流强度的作用;海底地形和黑潮的强迫是形成“南海暖流”和台湾海峡中东北向流的主要原因,而斜压效应和海底地形是形成夏季“南海暖流”右侧偏西向流的主要原因;南海北部的气旋式涡旋是在黑潮、海底地形和斜压效应等因素共同作用下形成的。  相似文献   

10.
南海北部海面高度季节变化的机制   总被引:2,自引:1,他引:2  
利用POM模式对南海环流进行了数值模拟和数值试验 ,结果表明 :南海北部SSH的变化主要应归于南海局地的动力、热力强迫和黑潮的影响 ;黑潮对南海北部SSH平均态的影响要大于对SSH异常场的影响 ;对于南海北部深水区冬季局地风应力与浮力通量的作用相反量级相同 ,黑潮对南海北部SSH的控制作用在冬季显得最重要 ,约占 50 %~ 80 % ;春季 ,夏季和秋季 ,局地风应力、浮力通量和黑潮三者都使深水区SSH上升 ,局地风应力使深水海盆SSH上升的作用约占 4 0 %~ 6 0 % ,浮力通量的作用约占 2 0 % ,黑潮的影响约占 2 0 %~ 30 % .在夏季 ,尽管南海北部深水海盆SSH达到全年最高 ,但黑潮对南海北部深水海盆SSH的贡献最小 .在广东沿岸陆架海域 ,SSH季节变化的机制与深水海盆SSH季节变化的机制不同 :春、夏季 ,局地风应力使SSH上升的作用几乎与浮力通量使SSH下降的作用相当 ;秋、冬季 ,东北季风使SSH上升的作用大于浮力通量和黑潮使SSH下降的作用 ,陆架区SSH为正 ,且在海南岛附近达到最大值  相似文献   

11.
在前期工作的基础上,结合近年来国外的研究结果,对南海环流提出一些看法,南海经是半封闭的边缘海,与太平洋和印度洋相通,必然有海水交换,黑潮入侵不过是其中的一种形式;黑潮入侵的流量主要是由温度和工的差异引志的斜压造成的,因季风应力的正压作用调制而有季节变化;南海北部的黑潮南海分支和南海暖流构成反平行环流系统,分别是冬季的“热力驱动”和夏季的“淡水驱动”所造成,黑潮入侵进到南海。经过一些通道穿过印度尼西  相似文献   

12.
南海东北部及台湾海峡环流机制的数值研究   总被引:2,自引:1,他引:2  
利用1个正压的数值模式研究风应力、黑潮对南海东北及台湾海峡环流的影响。结果为:(1)以风应力为驱动机制时其流态特别是在台湾海峡的流动具有季节性,但未反映南海黑潮分支的存在,在冬季也未见有南海暖流出现,但在东沙群岛附近海域终年存在着1个气旋涡;(2)以黑潮为驱同制时,黑潮通过巴士海峡侵入南海海域,并导致东沙群岛附近气旋性涡旋的形成,另外,模式体现黑潮东海分支,南海暖流及台湾暖流的存在,并表明广东沿岸  相似文献   

13.
分析讨论了南海北部水温垂直连续分布特征,得到一些令人感兴趣的结果。断面年均水温分布受年均风应力与在大陆架/斜坡地形相互作用制约,南海北部年均风为东北风、大陆架/斜坡区上基本是暖水带。除台湾浅雀同部大陆架/斜坡外,暖水中度与在陆坡坡度成正比。断面上的温踵怪,春季强度开始加强,温跃层上界深度变浅,夏季强度最强,上界深度最浅;秋季强度开始变弱,上界深度深;冬季强度最弱,上界深度最深。  相似文献   

14.
常锑  王铮  袁东亮 《海洋科学》2021,45(10):1-10
为研究风急流对吕宋海峡处黑潮路径的影响,本文使用1.5层约化重力浅水模式,设置了与吕宋海峡跨度相接近的缺口宽度,考虑西边界流在西边界缺口处当处于迟滞过程的临界状态时,其路径受风急流影响的动力机制,并初步探讨了在实际海陆边界条件下,实际风急流对黑潮路径的影响。结果显示,理想情况下,当西边界流处在由入侵流态到跨隙流态转变的临界状态时,西风、南风以及西南风风急流可以激发西边界流由入侵流态转变为跨隙流态。当西边界流处在由跨隙流态向入侵流态转变的临界状态时,北风、东风以及东北风风急流可以激发西边界流由跨隙流态转变为入侵流态,并且在风急流消失后西边界流不能再恢复到初始流态。实际情况下,冬季风急流有利于黑潮入侵南海,夏季风急流有利于黑潮跨越吕宋海峡,这和理想情况下的模拟结果以及实际观测结果相一致,这对进一步研究南海北部的上层环流以及南海的质量、能量输送有重要意义。  相似文献   

15.
通过对Argos浮标资料的分析,针对黑潮能否在吕宋海峡入侵南海的问题进行了研究,结果表明:黑潮由吕宋海峡入侵南海主要发生在秋、冬两季,春、夏季基本上不发生。而入侵主要是以流的形式传入,秋季少量的入侵水会有分支沿台湾海峡北上,冬季黑潮自吕宋海峡入侵南海后向西进入南海腹部。并对其季节变化原因作了初步讨论,该区域风应力和黑潮流量的季节性变化可能是重要原因。  相似文献   

16.
南海上层环流对季风转变的响应   总被引:6,自引:0,他引:6  
通过利用一个分区性的正压、斜压衔接模式,重点考察了南海环流对于以不同方式变化的季风转变时的响应。结果表明:(1)个别数值试验结果基本上反映了实测得到的南海流态;(2)对于不同方式变化的季风转变,在季风过渡时期的南海流场的调整有较大的差别,但在过渡之后最终的流场基本结构则是一致的;(3)当冬季风向夏季风转变时,在南海南部经常会产生一些涡旋群,向夏季流场转化尚需较长的一段时间来调节;而当夏季风向冬季风转变时,在南海南部的流场迅速向冬季流场转变。  相似文献   

17.
渤海风海流的数值计算   总被引:6,自引:3,他引:6  
本文基于浅水方程建立了渤海风海流二维数值模型,并用以模拟了冬季和夏季风形成的平均风海流场和水位场,阐述了渤海风海流的一般性质。冬季风海流系统基本属于气旋型环流,而夏季则同时存在气旋型和反气旋型环流,涡度分析解释了海峡附近大涡旋的产生机制,认为海峡中的涡旋是风应力与底形梯度相互作用的直接结果。  相似文献   

18.
北赤道流分叉点及南海北部环流的研究进展   总被引:6,自引:0,他引:6  
介绍了北赤道流分叉点、南海北部环流的一些研究成果,并就黑潮对南海的影响所作的研究进行了回顾.北赤道流分叉点的位置对于北赤道流系水体疏运变化及在黑潮和MC之间水体、热量、盐度输运的分配中起着重要的作用.北赤道流分叉点位置约在14.6°N上,分叉点位置随深度增加而北移.分叉点有明显的季节变化和年际变化,在春、夏季向南移动,而在秋、冬季则向北移动.年际变化与ENSO现象相关紧密,在El Nio事件NEC分叉纬度处于最北端,在La Nio事件处于最南端.对于分叉点位置的定量化研究,仍然需要更多的观测结果进行研究.季风和黑潮是影响南海北部环流的两种主要因素.南海北部上层流场主要由广东沿岸流、黑潮入侵流套、东沙海流、南海暖流和吕宋海流组成.除海盆、次海盆尺度环流外,受季风、黑潮和地形等因素的影响,南海表现出多涡结构.通过近些年的卫星观测和数值模拟的结果,人们对南海中尺度涡的认识大大加深,但要想模拟出风应力形成涡的机制,还需要提高风场和模式的分辨率.由于观测资料的限制,对南海流场的垂直结构、以及春-秋季季风转相时期的流场结构等还研究得较少.吕宋海峡水交换是西太平洋对南海影响的主要途径.黑潮在吕宋海峡附近的形变一直是有争议的热点问题,目前对于黑潮入侵有3种观点:(1) 认为黑潮经过吕宋海峡形成流套结构,并分离出中尺度涡影响南海流场、水团结构;(2) 认为黑潮有一直接分支分离出来进入南海形成黑潮分支;(3) 认为吕宋海峡水交换不属于以上两种情况,西太平洋对南海的水团输送另有机制.北赤道流分叉点在对黑潮的水体、热量、盐度输运的分配中起着重要的作用,黑潮对南海北部环流的影响可能与NEC的分叉点位置有关,但目前对NEC的分叉点位置与南海北部环流相关性的研究甚少.最后提出了对未来加强该方面研究的一些展望.  相似文献   

19.
黑潮与南海的相互作用是海洋学研究中一个悬而未决的课题。黑潮在离开吕宋岛跨越巴士、巴林塘等海峡(以下依习惯简称吕宋海峡)时作用于南海。虽然以往对黑潮通过日宋海峡侵入南海东北部有过若干研究,但未曾有过黑潮分离涡旋进入南海的观测报道。在1994年9月初,我们在南海东北部人陡坡外首次捕获一反气旋型的黑潮分离流环,本文报道此次观测结果。该流环为中心位于21°N,117.5°,直径约150km,垂直尺度超过1000m的反气旋;其外形沿大陆坡拉长,呈卵圆型。地转计算和ADCP直接测量均表明其近表层流速接近lms-1.流环中水温高于周围海水,密度则偏低,因而该中尺度涡属暖流环类(wormcorering)。T-S特性分析表明流环内海水特性不同于周围,次表层高盐核盐度高出四周,中层低盐核盐度则低于四周,说明该流环应源于黑潮。观测期间在巴士、巴林塘等海峡似有另一流环正在形成过程中。  相似文献   

20.
南海北部年均水温水平分布有如下特征:南高北低,东高西低;等不温线近亿与大陆斜坡等深线平行;大陆架/斜坡区为一暖水带,深海盆是个冷水区。水温随时间的变化特点是:东北季风盛行期间,大陆架/斜坡区产生暖水带;西南季风盛行期间,大陆架斜坡区间成冷水带;暖水带与冬季风同消长,是盛行季风与大陆架/斜坡地形相互作用的结果;南海北就深海盆终年被冷水盘据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号