首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Analyses are presented of137Cs,238Pu, and239,240Pu, in relation to depth in sediment, in 21 gravity cores. These cores span the ranges of times 1964–1975, and of water depths 12–2000 m; they come from three distinct sedimentation areas off the northeast coast of the United States. Although the ranges of total sediment inventories of239,240Pu and of137Cs from the various areas hardly overlap, the range of ratios of the inventories of these two nuclides is probably the same in all the areas. In the shallow-water cores the239,240Pu/137Cs ratio regularly diminishes with depth in the core, and a tendency is seen for curves of this function to have similar slopes in each area; ratios of238Pu/239,240Pu show no change with depth in these shallow-water cores. In the deeper-water cores, the239,240Pu/137Cs ratio shows no systematic change with depth, but sometimes the238Pu/239,240Pu ratio shows a minimum at the sediment surface, and is much higher deeper in the cores. We believe that these phenomena can be explained in terms of a complicated bioturbational process moving the nuclides, together, down into the sediments, of chemical resolubilization, at depth, of plutonium only, and of its subsequent upward translocation in the interstitial solution. Some re-immobilization of plutonium near the sediment surface is implied, and a mechanism is suggested for this, based on displacement of plutonium from organic complexes by the increasing concentrations, in upper layers of the sediment, of re-oxidized dissolved iron.  相似文献   

2.
A model that predicts the flux of222Rn out of deep-sea sediment is presented. The radon is ultimately generated by230Th which is stripped from the overlying water into the sediment. Data from many authors are compared with the model predictions. It is shown that the continental contribution of ionium is not significant, and that at low sedimentation rates, biological mixing and erosional processes strongly affect the surface concentration of the ionium. Two cores from areas of slow sediment accumulation, one from a manganese nodule region of the central Pacific and one from the Rio Grande Rise in the Atlantic were analyzed at closely spaced intervals for230Th,226Ra, and210Pb. The Pacific core displayed evidence of biological mixing down to 12 cm and had a sedimentation rate of only 0.04 cm/kyr. The Atlantic core seemed to be mixed to 8 cm and had a sedimentation rate of 0.07 cm/kyr. Both cores had less total excess230Th than predicted.Radium sediment profiles are generated from the230Th model. Adsorbed, dissolved, and solid-phase radium is considered. According to the model, diffusional losses of radium are especially important at low sedimentation rates. Any particulate, or excess radium input is ignored in this model. The model fits the two analyzed cores if the fraction of total radium available for adsorption-desorption is about 0.5–0.7, and ifK, the distribution coefficient, is about 1000.Finally, the flux of radon out of the sediments is derived from the model-generated radium profiles. It is shown that the resulting standing crop of222Rn in the overlying water may be considered as an added constraint in budgeting230Th and226Ra in deep-sea sediments.  相似文献   

3.
The concentration profiles of 9Be, 10Be, 230Th, 232Th, 231Pa (via 227Th) and 238U have been measured in three manganese nodules, one each from the North Pacific (A47-16(4)), the South Pacific (TF-5) and the Indian Ocean (R/V Vitiaz). In addition the 10Be concentration in deep water from the GEOSECS reoccupation station 500 of the North Pacific, and in ? cores raised from the manganese nodule field in the North Pacific have been measured. The 10Be concentration in nodule and seawater samples was measured by the accelerator masss spectrometric technique employing the Yale Tandem Van de Graaff accelerator.The concentrations of 10Be, 230Thexc and 231Paexc and ratios of 10Be/9Be and 230Thexc/232Th all decrease with depth in the nodules. This decrease, interpreted in terms of nodule growth, yields “average” growth rates of a few millimeters per million years for the nodules. The growth rates of the nodules exhibit temporal variations, both on short time (~ 50,000 years) and long time (several million years) scales. Of the three nodules studied, only in TF-5 is the short-term average growth rate based on 230Thexc in the top 0–0.5 mm the same as the long-term average rate based on Be isotope data for the 0.5–17 mm interval. For the other two nodules, the recent average growth rates based on230Thexc data differ significantly from the long-term average growth rates based on Be isotopes. In A47-16(4) the 10Be based rate is less than the 230Thexc rate and in R/V Vitiaz the 10Be based rate is greater than the 230Thexc rate. This observation, coupled with measurable changes in growth rates even during the past few hundred thousand years, suggests, but does not prove, that the discordant growth rates deduced from 230Thexc and 10Be profiles document changes in nodule growth rate with time rather than mixing effects on 230Thexc profiles.The 10Be concentration in the GEOSECS North Pacific deep water is 6100±1200 atoms/g. This value coupled with the average surface 10Be/9Be ratio of North Pacific nodules predicts a 9Be concentration within the limits of measured values. The inventory of 10Be and 230Thexc in the nodules is only ~ 10% of the total, the remaining being in sediments. The 10Be concentrations in the upper portions of two adjacent cores studied are nearly the same, but the deposition fluxes of both 10Be and 230Th based on 230Th dating vary by a factor of two. This difference is attributable to local redistribution of sediment at the time of deposition prior to accumulation.  相似文献   

4.
We have used in-situ pumps which filter large volumes of sea water through a 1 μm cartridge prefilter and two MnO2-coated cartridges to obtain information on dissolved and particulate radionuclide distributions in the oceans. Two sites in the northwest Atlantic show subsurface maxima of the fallout radionuclides137Cs,239,240Pu and241Am. Although the processes of scavenging onto sinking particles and release at depth may contribute to the tracer distributions, comparison of predicted and measured water column inventories suggests that at least 35–50% of the Pu and241Am are supplied to the deep water by advection.The depth distributions of the naturally occurring radionuclides232Th,228Th and230Th reflect their sources to the oceans.232Th shows high dissolved concentrations in surface waters, presumably as a result of atmospheric or riverine supply. Activities of232Th decrease with depth to values 0.01 dpm/1000 l.228Th shows high activities in near surface and near bottom water, due to the distribution of its parent,228Ra. Dissolved230Th, produced throughout the water column from234U decay, increases with depth to 3000 m. Values in the deep water (> 3000 m) are nearly constant ( 0.6–0.7 dpm/1000 l), and the distribution of this tracer (and perhaps other long-lived particle-reactive tracers as well) may be affected by the advection inferred from Pu and241Am data.The ratio of particulate to dissolved activity for both230Th and228Th is 0.15–0.20. This similarity precludes the calculation of sorption rate constants using a simple model of reversible sorption equilibrium. Moreover, in mid-depths228Th tends to have a higher particulate/dissolved ratio than230Th, suggesting uptake and release of230Th and228Th by different processes. This could occur if228Th, produced in surface water, were incorporated into biogenic particles formed there and released as those particles dissolved or decomposed during sinking.230Th, produced throughout the water column, may more closely approach a sorption equilibrium at all depths.230Th,241Am and239,240Pu are partitioned onto particles in the sequence Th > Am > Pu with 15% of the230Th on particles compared with 7% for Am and 1% for Pu. Distribution coefficients (Kd) are 1.3–1.6 × 107 for Th, 5–6 × 106 for Am and 7–10 × 105 for Pu. The lower reactivity for Pu is consistent with analyses of Pu oxidation states which show 85% oxidized (V + VI) Pu. However, theKd value for Pu may be an upper limit because Pu, like228Th, may be incorporated into particles in surface waters and released at depth only by destruction of the carrier phase.  相似文献   

5.
From GEOSECS stations, largely, the 1974 distributions of Pu and of137Cs are described in the Pacific Ocean north of about 20°S latitude. Changes in some of these distributions are described from 1978 cruises by the authors.The Pacific exhibited, everywhere, a shallow subsurface layer of Pu-rich water with its concentration maximum at about 465 m in 1974; over a large portion of the central North Pacific a second layer of Pu-labelled water, less concentrated than the shallow layer, lay just above the bottom. Similar features were not observed in the case of137Cs.The inventories of both Pu and137Cs in the water column at most 1974 stations are substantially greater than those to be expected from world-wide fallout alone; these inventory excesses appear to be attributable to close-in fallout, but only if the ratio Pu/137Cs in this source was much higher than in world-wide fallout. The North Pacific mean ratio of the inventories is 2.2 times that observed in world-wide fallout.Resolubilization of Pu both from sinking particles and from sediments explains peculiarities of its depth distributions.There is little evidence for tracer movement by sliding downward along density surfaces;137Cs appears to have moved to depth by downmixing at the edge of the Kuroshio, and then moved horizontally and upward alongσt contours. The shallow Pu-rich layer shows no coordination with density, salinity or O2 isopleths. The deep Pu-rich layer is restricted to a narrow range of O2 concentrations that confirm its origin in the Aleutian Trench and rapid spread southward and laterally. Near-bottom circulation processes have been much more active than here-to-fore described.  相似文献   

6.
We present data on the average sedimentation rates (ranging from 1.6 cm/kyr to 3 cm/kyr) for the last 300.000 years based on δ18O analyses of foraminifera in a core from the Norwegian Sea and 230Thex measurements in cores from the Norwegian Sea and the Fram Strait (Arctic Ocean). Furthermore, we relate 230Thex variations downcore to the various oxygen isotope stages. This correlation is tentatively interpreted as being a result of the paleoceanographic and paleoclimatic control of bioproductivity. It is shown that based on the average sedimentation rates and characteristic 230Thex variations carbonate-poor sediment cores from northern latitudes can be correlated.  相似文献   

7.
Three ferromanganese nodules handpicked from the tops of 2500 cm2 area box cores taken from the north equatorial Pacific have been analysed for their U-Th series nuclides.230Thexc concentrations in the surface 1–2 mm of the top side of the nodules indicate growth rates of 1.8–4.6 mm/106 yr. In two of the nodules a significant discontinuity in the230Thexc depth profile has been observed at ~0.3 m.y. ago, suggesting that the nodule growth has been episodic. The concentration profiles of231Paexc (measured via227Th) yield growth rates similar to the230Thexc data. The bottom sides of the nodules display exponential decrease of230Thexc/232Th activity ratio with depth, yielding growth rates of 1.5–3.3 mm/106 yr.The230Thexc and231Paexc concentrations in the outermost layer of the bottom face are significantly lower than in the outermost layer of the top face. Comparison of the extrapolated230Thexc/232Th and230Thexc/231Paexc activity ratios for the top and bottom surfaces yields an “age” of (5?15) × 104 yr for the bottom relative to the top. This “age” most probably represents the time elapsed since the nodules have attained the present orientation.The210Pb concentration in the surface ~0.1 mm of the top side is in large excess over its parent226Ra. Elsewhere in the nodule, up to ~1 mm depth in both top and bottom sides,210Pb is deficient relative to226Ra, probably due to222Rn loss. The absence of210Pbexc below the outermost layer of the top face rules out the possibility of a sampling artifact as the cause of the observed exponentially decreasing230Thexc and231Paexc concentration profiles. The flux of210Pbexc to the nodules ranges between 0.31 and 0.58 dpm/cm2 yr. The exhalation rate of222Rn, estimated from the226Ra-210Pb disequilibrium is ~570 dpm/cm2 yr from the top side and >2000 dpm/cm2 yr from the bottom side.226Ra is deficient in the top side relative to230Th up to ~0.5–1 mm and is in large excess throughout the bottom. The data indicate a net gain of226Ra into the nodule, corresponding to a flux of (24?46) × 10?3 dpm/cm2 yr. On a total area basis the gain of226Ra into the nodules is <20% of the226Ra escaping from the sediments. A similar gain of228Ra into the bottom side of the nodules is reflected by the high228Th/232Th activity ratios observed in the outermost layer in contact with sediments.  相似文献   

8.
Anthropogenic radionuclides have reached the Hudson estuary as global fallout from nuclear weapons testing and through local releases from commercial nuclear reactors. Significant activities of238Pu and239,240Pu (fallout-derived),134Cs and60Co (reactor-released), and137Cs (derived from both sources), have accumulated in the sediments throughout the estuary, with the primary zone of accumulation near the downstream end of the system in New York harbor. The estuary appears to have trapped nearly all of the239,240Pu delivered as fallout, and consequently, ocean dumping of dredged harbor sediment is currently the primary means for the net transport of these nuclides to coastal waters. In contrast, only 10–30% of the137Cs,134Cs and60Co delivered to the estuary have been retained on the fine particles which accumulate at a rapid rate in the harbor.The primary factors which have governed the distribution of anthropogenic radionuclides in Hudson sediments are: (1) spread of fine particles labeled with both fallout and reactor nuclides throughout the axis of the estuary, (2) differences in timing of the peak fallout years (1962–1964) and years of maximum reactor releases (1971–1972), (3) large variations in sediment accumulation rates, ranging from a few millimeters per year or less to many tens of centimeters per year, (4) appreciable desorption of137Cs and134Cs from particles at higher salinities, and (5) possible enhanced desorption of60Co at higher salinities (relative to134Cs and137Cs) which may be associated with the release of reduced manganese from the harbor sediments.  相似文献   

9.
238Pu,239Pu and137Cs in rain and dry fallout and90Sr in rain samples were measured at Woods Hole, Massachusetts, from June 1976 through December 1977. The dry fallout was estimated to be about 7.8% of the total deposition of239Pu and137Cs.239Pu/137Cs ratios, almost constant at about 0.011 in rain or dry fallout, February through December 1977, suggested that fractionation between the refractory and volatile radionuclides is insignificant in stratospheric fallout. This supports the idea of regional homogeneity of radionuclide ratios in fallout.  相似文献   

10.
Sediment cores from central Lake Constance were dated with210Pb and137Cs. A sedimentation rate of (0.11±0.02) g·cm−2·y−1 was determined with the210Pb method.137Cs measurements revealed sedimentation rates of (0.11±0.01) g·cm−2·y−1 and (0.08±0.01) g·cm−2·y−1 respectively for two different cores sampled at the same location. The lower Cs-dated value indicates incomplete core recovery and demonstrates the sensitivity of this simple dating method to small losses of material at the water/sediment interface. An unambiguous application of the137Cs method is, therefore, only possible if complete core recovery is ensured. Sedimentation rates based on particulate matter, collected in sediment traps at various water depths, agree with the results of the radioisotope methods. Estimates of 30–125 days residence times for suspended particulate matter were calculated from7Be measurements.  相似文献   

11.
Four vertical profiles of230Th and228Th were determined using large volume water samples in the western North Pacific. An almost linear increase of230Th with depth was observed for all of the profiles for which the unidirectional first order scavenging model was difficult to explain. We developed a model which included a dissolved-particulate transformation as well as parameters of the scavenging model. Application of the model to the vertical distributions of total and the GEOSECS particulate Th isotopes (230Th and234Th) yielded the residence time of dissolved Th with respect to adsorption to particles and the turnover time of particulate Th to be 235 days and 57 days, respectively. The Th isotopes appeared to be carried down the water column by fine particles with a mean settling velocity of 1 m/day which continually release Th into sea water as well as pick up Th from the water along their journey to the bottom.For228Th, a large excess over232Th was observed throughout the water column with pronounced high concentrations in surface and bottom waters, suggesting that the228Th was derived from228Ra diffused out of sediments. The vertical distributions of228Th seemed to be significantly influenced by lateral mixing along isopycnals.  相似文献   

12.
Particulates amounting to 0.1–2.0 g efficiently collected from large volumes of Atlantic and Pacific surface waters have been analyzed for carbonate, opal, quartz and several natural and man-made radioisotopes.The concentrations of particles range between 10 and 600 μg/kg. In the equatorial regions particle concentrations are low and similar in both the oceans. At higher latitudes (>30°N or S), the Atlantic waters, however, have higher concentrations of particles compared to those in the Pacific. The latitudinal distribution exhibits a north-south symmetry with higher concentrations in the 30°–60° belt. Based on the particulate abundance for CaCO3 and opal and their sedimentation, we have estimated their production and in-situ integrated dissolution rates for a few regions.Radioisotopes having different source functions, namely14C and239Pu injected due to nuclear weapon tests,234Th,230Th and228Th produced in-situ in seawater,232Th which derives primarily from land,210Pb introduced via wet precipitations and226Ra introduced through diffusion from deep-sea sediments have been measured in the particulates. The relative enrichment factors for these nuclides in particles vary as Th ? Pu > Pb > Ra. The atmospheric bomb fallout pattern is discernible in the surface particulates; the239Pu concentration increases with latitude in both the hemispheres; however, the values are about a factor of two lower in the southern hemisphere.The distribution pattern of radioisotopes is found to be complex, even for234Th whose source function in the oceans is uniform. In view of the differences in the source functions it becomes possible to delineate the principal geochemical/geophysical processes which determine the concentrations of these nuclides in surface waters.  相似文献   

13.
In locations of rapid sediment accumulation receiving substantial amounts of laterally transported material the timescales of transport and accurate quantification of the transported material are at the focus of intense research. Here we present radiocarbon data obtained on co-occurring planktic foraminifera, marine haptophyte biomarkers (alkenones) and total organic carbon (TOC) coupled with excess Thorium-230 (230Thxs) measurements on four sediment cores retrieved in 1649–2879 m water depth from two such high accumulation drift deposits in the Northeast Atlantic, Björn and Gardar Drifts. While 230Thxs inventories imply strong sediment focussing, no age offsets are observed between planktic foraminifera and alkenones, suggesting that redistribution of sediments is rapid and occurs soon after formation of marine organic matter, or that transported material contains negligible amounts of alkenones. An isotopic mass balance calculation based on radiocarbon concentrations of co-occurring sediment components leads us to estimate that transported sediment components contain up to 12% of fossil organic matter that is free of or very poor in alkenones, but nevertheless appears to consist of a mixture of fresh and eroded fossil material. Considering all available constraints to characterize transported material, our results show that although focussing factors calculated from bulk sediment 230Thxs inventories may allow useful approximations of bulk redeposition, they do not provide a unique estimate of the amount of each laterally transported sediment component. Furthermore, our findings provide evidence that the occurrence of lateral sediment redistribution alone does not always hinder the use of multiple proxies but that individual sediment fractions are affected to variable extents by sediment focussing.  相似文献   

14.
The purpose of this study was to examine the historical change in sedimentation rates in lakes that have been impacted by river regulation and agricultural activities in the Ishikari River floodplain. We dated sediment cores using caesium‐137 (137Cs) dating and tephrochronology, and we estimated sediment sources from 137Cs concentrations in the topsoil of representative land covers. We found that, between 1739 and 1963, the distance between the lake and the main river channel and whether or not the lake was connected to the river affected the sedimentation rates. After 1963, agricultural drainage systems were established in the Ishikari River floodplain. The average sedimentation rate before and after the construction of drainage ditches varied between 1–66 and 87–301 mg cm–2 a–1, respectively. The increase in the sedimentation rate after 1963 was caused by the construction of a number of drainage networks, as well as extensive cultivation activity and/or fragmentation of the swamp buffers surrounding the lakes. The 137Cs activities at the surfaces of the lake as well as the catchment‐derived 137Cs contributions and 137Cs inventory in the lake profiles were used to examine the sediment influx from the various drainage areas after the establishment of the drainage system. Our results indicate that the majority of the lake sediments were derived from cultivated areas, and therefore the catchment‐derived 137Cs contribution in the lakes was strongly correlated with the sedimentation rate. The 137Cs inventory across all of the lake profiles was also significantly greater than the atmospheric fallout. We identified a negative correlation between the 137Cs lake profile inventory and the sedimentation rate. This is because the sediment originating from the drainage areas contained low 137Cs concentrations, which diluted the overall concentration of 137Cs in the lake sediment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Several sediment cores were collected from two proglacial lakes in the vicinity of Mittivakkat Glacier, south‐east Greenland, in order to determine sedimentation rates, estimate sediment yields and identify the dominant sources of the lacustrine sediment. The presence of varves in the ice‐dammed Icefall Lake enabled sedimentation rates to be estimated using a combination of X‐ray photography and down‐core variations in 137Cs activity. Sedimentation rates for individual cores ranged between 0·52 and 1·06 g cm−2 year−1, and the average sedimentation rate was estimated to be 0·79 g cm−2 year−1. Despite considerable down‐core variability in annual sedimentation rates, there is no significant trend over the period 1970 to 1994. After correcting for autochthonous organic matter content and trap efficiency, the mean fine‐grained minerogenic sediment yield from the 3·8 km2 basin contributing to the lake was estimated to be 327 t km−2 year−1. Cores were also collected from the topset beds of two small deltas in Icefall Lake. The deposition of coarse‐grained sediment on the delta surface was estimated to total in excess of 15 cm over the last c. 40 years. In the larger Lake Kuutuaq, which is located about 5 km from the glacier front and for which the glacier represents a smaller proportion of the contributing catchment, sedimentation rates determined for six cores collected from the centre of the lake, based on their 137Cs depth profiles, were estimated to range between 0·05 and 0·11 g cm−2 year−1, and the average was 0·08 g cm−2 year−1. The longer‐term (c. 100–150 years) average sedimentation rate for one of the cores, estimated from its unsupported 210Pb profile, was 0·10–0·13 g cm−2 year−1, suggesting that sedimentation rates in this lake have been essentially constant over the last c. 100–150 years. The average fine‐grained sediment yield from the 32·4 km2 catchment contributing to the lake was estimated to be 13 t km−2 year−1. The 137Cs depth profiles for cores collected from the topset beds of the delta of Lake Kuutuaq indicate that in excess of 27 cm of coarse‐grained sediment had accumulated on the delta surface over the last approximately 40 years. Caesium‐137 concentrations associated with the most recently deposited (uppermost) fine‐grained sediment in both Icefall Lake and Lake Kuutuaq were similar to those measured in fine‐grained sediment collected from steep slopes in the immediate proglacial zone, suggesting that this material, rather than contemporary glacial debris, is the most likely source of the sediment deposited in the lakes. This finding is confirmed by the 137Cs concentrations associated with suspended sediment collected from the Mittivakkat stream, which are very similar to those for proglacial material. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

16.
Vertical profiles of the activities of 137Cs and 210Pb were measured on floodplain sediment cores and upland soil cores along the Soda Butte Creek and the Yellowstone River to determine floodplain sedimentation rates. The position of mine tailings from a 1950 impoundment failure was used as a stratigraphic marker to estimate the sedimentation rates and to make comparisons with rates provided by radionuclide‐based methods. Mass accumulation (sedimentation) rates calculated from the position of the mine tailings ranged from 0·00 to 0·17 g cm?2 yr?1 and were in good agreement with sedimentation rates calculated from the inventories of 137Cs and 210Pb. Sedimentation rates calculated from the position of the 137Cs peak generally overestimated the sedimentation rates, probably because of increased downward migration of 137Cs caused by the low pH of water moving through the mine tailings or the high permeability of floodplain sediments relative to upland reference soils. This study demonstrates that the 137Cs and 210Pb inventory methods for determining sedimentation rates can be applied to an alpine floodplain where sedimentation events are episodic and where orographic effects on precipitation generate strong downstream gradients in the delivery of atmospheric radionuclides. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
A large number of sediment cores collected during 2005-2010 from the Taiwan Strait were analyzed for radionuclides (210Pb, 137Cs and 7Be) to elucidate sedimentation dynamics in this all-important gateway linking two largest marginal seas in the western Pacific (namely, the South China Sea and the East China Sea). Apparent sediment accumulation rates derived from 210Pb and 137Cs profiles vary from <0.1 to >2 cm/yr, averaging ∼0.4 cm/yr and showing a spatial pattern closely related to hydrodynamics and sediment source-to-sink pathways. Spatial-temporal variation of 7Be activity in surface sediments off Taiwan’s west coast indicates episodic deposition of flood layers and their mobility from river estuaries toward the north. In conjunction with particle size distribution in surface sediments and the structure of sediment strata revealed by sub-bottom echo images; the radionuclide data can be used to outline three different sediment source-to-sink dispersal systems. Based on sediment loads of surrounding rivers and the distribution of sediment accumulation rates, lateral transport is required to account for the budget and size distribution of sediments in the strait.  相似文献   

18.
Unsupported226Ra (t12 = 1620years) in marine sediments can provide a basis for measuring rates of accumulation of the order of centimeters per thousand years. The excess radium apparently enters the sediments incorporated in phytoplankton. The sensitivity of the method depends upon the initial value of the unsupported226Ra and of the value of230Th, a parent of226Ra, in the sedimentary components.226Ra dating was applied to a sediment taken from the slope of the San Clemente Basin in the Southern California coastal region. Rates of sedimentation over two half-lives of the nuclide were found to be either 5.2 or 5.3 cm/1000 years depending upon which of two models for the geochronology is used. One model assumes that the230Th brings to the deposit an amount of226Ra in equilibrium with it. The other is based upon the growth of the226Ra from the230Th in the sedimentary components.238+239Pu and210Pb levels in the upper strata indicated sedimentation rates of the order of 100–500 cm/1000 years, i.e. much faster accumulations. We suggest these derived rates are spurious and reflect bioturbative activities of surface-living organisms.  相似文献   

19.
A formulation for the effects of a time-dependent input flux to a sedimentation system consisting of a diffusive layer underlain by a non-diffusive medium has been developed. The intent is to provide interpretation procedures for the determination of sedimentation rate, diffusion coefficient and mixed layer thickness from observed tracer concentrations. They have been applied, for illustrative purposes, to published137Cs and239,240Pu measurements.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号