首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Dredged rocks from an area of about 15 km2 within the inner floor and on the adjacent walls of the Rift Valley were collected. Based on petrographic and chemical data, four types of basaltic rocks were recognized: (1) picritic basalts with olivine xenocrysts, TiO2 < 0.6%, K2O < 0.1%, (2) olivine basalts with olivine megacrysts, TiO2 = 0.8–1.5%,K2O = 0.1–0.2%, (3) highly phyric and moderately phyric plagioclase basalts with megacrystic plagioclase, TiO2 < 1.3%, K2O < 0.3%, and (4) pyroxene basalts with pyroxene > plagioclase, TiO2 = 0.8–1%,K2O = 0.2–0.4%. The Cr and Ni having high partition coefficients show different variation trends for each type of rock and their values decrease continuously as crystallization proceeds within each type of basalt. It is speculated that two different magmas have given rise to the above-mentioned rocks. One has yielded the picritic basalts and subsequently the olivine basalts after a separation of the olivine cumulates; the other gave rise to the plagioclase basalts.  相似文献   

2.
 Gabbroic xenoliths that represent cumulate environments within Mauna Kea Volcano are, in rare examples, penetrated by small-scale (<7 cm) dikes. We examined four dike/host composite xenoliths to establish how this evidence for magma seemingly injected into cumulate gabbro fits into the evolution of igneous processes in shield volcano magma reservoirs. Olivine, clinopyroxene, and plagioclase compositions in both host gabbros and dikes are characteristically tholeiitic and evolved (Fo71–66, cpx-Mg # 79–77, An72–51) with respect to Hawaiian magmatism. Dikes, however, when compared with their host gabbros, have slightly greater abundances of some incompatible elements and slightly more evolved olivine compositions (e.g., Fo68 vs Fo71). Compared with Mauna Kea lava compositions, both host gabbros and dikes have lower incompatible-element abundances, positive Eu anomalies, and, notable for dikes, major-element compositions unlike those of lavas (e.g., SiO2<46 wt.%). The small-scale dikes, therefore, also have cumulate characteristics. We interpret them as representing late-stage liquids (e.g., <5 wt.% MgO, based on <Fo70) "squeezed" from solidifying cumulus piles of evolved (e.g., ∼Fo70) gabbroic assemblages. The compositions of the dikes, however, do not match those of the most evolved liquids expected in reservoirs because they appear to have lost interstitial liquids (e.g., positive Eu anomalies, low abundances of some trace elements). Because minerals in the dikes were in equilibrium with highly evolved liquids, conditions for small-scale dike formation in cumulate environments apparently occur only at the last stages of reservoir magma differentiation and solidification. Received: 25 February 1997 / Accepted: 14 June 1997  相似文献   

3.
The troctolites and olivine‐gabbros from the Dive 6 K‐1147 represent the most primitive gabbroic rocks collected at the Godzilla Megamullion, a giant oceanic core complex formed at an extinct spreading segment of the Parece Vela back‐arc basin (Philippine Sea). Previous investigations have shown that these rocks have textural and major elements mineral compositions consistent with a formation through multistage interaction between mantle‐derived melts and a pre‐existing ultramafic matrix. New investigations on trace element mineral compositions basically agree with this hypothesis. Clinopyroxenes and plagioclase have incompatible element signatures similar to that of typical‐MORB. However, the clinopyroxenes show very high Cr contents (similar to those of mantle clinopyroxene) and rim having sharply higher Zr/REE ratios with respect to the core. These features are in contrast with an evolution constrained by fractional crystallization processes, and suggest that the clinopyroxene compositions are controlled by melt‐rock interaction processes. The plagioclase anorthite versus clinopyroxene Mg#[Mg/(Mg + FeTot)] correlation of the Dive 6 K‐1147 rocks shows a trend much steeper than those depicted by other oceanic gabbroic sections. Using a thermodynamic model, we show that this trend is reproducible by fractionation of melts assimilating 1 g of mantle peridotite per 1 °C of cooling. This model predicts the early crystallization of high Mg# clinopyroxene, consistent with our petrological observation. The melt‐peridotite interaction process produces Na‐rich melts causing the crystallization of plagioclase with low anorthite component, typically characterizing the evolved gabbros from Godzilla Megamullion.  相似文献   

4.
Abstract On the island of Mustique, fresh and propylitized olivine–plagioclase–clinopyroxene basalt, plagioclase–clinopyroxene–orthopyroxene and plagioclase–clinopyroxene–amphibole andesite lavas and minor intrusions are interbedded with Oligocene pyroclastic and epiclastic rocks. Chemical data show that two isotopically identical, but chemically different, suites of lava are present: (i) the OPXS (87Sr/86Sr 0.70403–0.70454; 143Nd/144Nd 0.512952–0.512986; δ18Ocpx 5.49 and 5.61), comprising basalts and orthopyroxene‐bearing andesites; and (ii) the AMPHS (87Sr/86Sr 0.70401–0.70457; 143Nd/144Nd 0.512981–0.513037; δ18Ocpx 5.54), made up of basalts and amphibole‐bearing andesites. The OPXS has higher contents of TiO2, P2O5, light rare earth elements, Sm, Pb, Th, U, Zr, Y and Nb, and higher La/Yb ratios than the AMPHS. The isotopic data suggest that both suites formed from melts derived from the same subduction‐modified depleted mantle source as the volcanic rocks of nearby St Vincent and Bequia, and the northern islands of the Lesser Antilles Arc. The immobile trace element contents, and La/Yb ratios, of the OPXS are indicative of ~10% partial melting of the source, whereas those of the AMPHS are indicative of ~25% partial melting. The within‐suite chemical variation of the OPXS is consistent with ~45% fractional crystallization of its intratelluric mineral assemblages, and that of the AMPHS is consistent with the removal of ~65% of its intratelluric assemblages. Experimental evidence suggests that both suites of basalt crystallized at pressures <8 kbar from melts containing 1–2 wt% water. After extensive fractional crystallization, the andesites crystallized at pressures between approximately 5 and 2 kbar. The OPXS magmas appear to have lost more of their water content than the AMPHS magmas. Thus, the OPXS andesites formed from melts with an estimated water content of 2–3 wt%, whereas the AMPHS andesites formed from melts containing at least 4.5 wt% water.  相似文献   

5.
Intrusive and extrusive basaltic rocks have been dredged from the Conrad fracture zone (transecting the slow-spreading America-Antarctica Ridge). The majority of rocks recovered are holocrystalline with the dominant mineral assemblage being plagioclase plus clinopyroxene with or without minor Fe-Ti oxides (olivine occurs in only three samples) and many of the samples show evidence of extensive alteration. Secondary minerals include chlorite, actinolite, K- and Na-feldspar, analcite and epidote. In terms of bulk chemistry the rocks are characterized by their generally evolved and highly variable compositions (e.g.Mg*=0.65?0.35;TiO2=0.7?3.6%;Zr=31?374ppm;Nb=<3?21ppm;Y=17?96ppm;Ni=100?9ppm), but with respect to the immobile incompatible element ratios (e.g. Zr/Nb, Y/Nb, La/Sm) are similar to “normal” or depleted mid-oceanic ridge basalts.Quantitative major and trace element modelling indicate that most of the variation observed can be attributed to low-pressure fractional crystallization of plagioclase plus clinopyroxene in approximately equal proportions with or without minor Fe-Ti oxides. The range in composition can be accounted for by up to 76% fractional crystallization. Although ferrobasalts have not frequently been associated with slow spreading ridges, the extreme differentiation observed in the Conrad fracture zone basalts implies some additional constraint other than spreading rate on the formation of ferrobasalt and reaffirms the importance of extensive crustal differentiation during the production of this basalt type.  相似文献   

6.
For any given volcanic field the compositions of primary melts provide important constraints on models of magmatic processes and volcanic eruptions. In this paper, based on petrography, olivine and bulk rock compositions, two tholeiitic picrites (samples C122 and C123) from Haleakala Volcano, east Maui are evaluated as possible primary melts. Sample C122 (bulk rock MgO = 16.6%) has a high apparent Mg-Fe exchange coefficient, KD, between olivine phenocrysts and bulk rock (0.6). However, major-elements and Ni mass-balance calculations show that the olivines in C122 are in equilibrium with the residual melt (matrix) after closed-system equilibrium fractionation of 25 wt.% olivine. Therefore, the Mg/Fe ratio, Ca content, and Ni content of C122 are consistent with the hypothesis that the bulk composition of C122 is close to a primary melt formed by partial melting of a mantle containing olivine with composition around Fo89 to Fo91. The uniform composition and small size (mostly 0.2–0.3 mm) of the olivine, and the glass patches in the matrix suggest fast ascent, and rapid cooling at shallow depth for C122. On the contrary, sample C123, which has an apparent KD (between the most mafic olivine megacrysts and the bulk rock) close to the equilibrium value (0.27), the multiple planar subgrain boundaries in most of the olivine crystals indicate that it may not be a primary melt unless the deformed olivines are generated at magmatic condition as phenocrysts. If the deformed subgrain boundary texture in olivine could indeed be generated at magmatic condition, then the wide compositional range of olivine crystals in C123 (Fo74 to Fo91) suggests multi-stage crystallization over a wide range of cooling temperatures.The compositions of the two picrites, and a differentiated basalt which does not contain xenocrysts suggest that the Haleakala tholeiites are derived from primary melts with at least 16–17 wt.% MgO. Lavas with such high MgO content are rare in Haleakala and other Hawaiian volcanoes; therefore, most Hawaiian tholeiites must have undergone extensive fractionation histories.  相似文献   

7.
Carriacou is small volcanic island located near the southern end of the Lesser Antillean chain. Field relationships, petrography and geochemistry of the Tertiary lavas, outcropping in the southern half of the island, are used to identify the rocks present and to determine their petrogenesis and assess their significance within the island arc.Six main volcanic units are present. From oldest to youngest, these are the clinopyroxene-phyric basalt (CPB) sequence, the amphibole-phyric andesite (APA) sequence, the clinopyroxene-megaphyric basalt (CMB) sequence, the olivine-microphyric basalt (OMB) sequence, the clinopyroxene phyric andesite (CPA) sequence, and the amphibole-megaphyric andesite (AMA) sequence. Volcaniclastic deposits are associated with the APA, CMB, and AMA sequences. The APA sequence is calcalkaline, whereas the other five sequences are tholeiitic.Sr isotope and rare earth element (REE) data suggest that these volcanic rocks were derived from partial melts of garnet-peridotite generated deep within the mantle. The OMB lavas have the highest temperature assemblages of intratelluric minerals and the least evolved chemical characteristics, and are considered to be closest in composition to a parental melt. Phenocryst assemblages and chemical variation suggest that the andesite sequences have been derived from the mafic melts by low pressure fractional crystallization of approximately 20% clinopyroxene and 20% olivine, plus smaller amounts of plagioclase and amphibole. The high concentrations of incompatible and compatible elements and the high87Sr/86Sr ratios may indicate that subduction is slower in the southern part of the arc, and fluids released during slab dehydration rich in Incompatible trace elements, in Radiogenic strontium, and in Silica (IRS), have modified the parental melts.  相似文献   

8.
The Chilas Complex is a major lower crustal component of the Cretaceous Kohistan island arc and one of the largest exposed slices of arc magma chamber in the world. Covering more than 8000 km2, it reaches a current tectonic width of around 40 km. It was emplaced at 85 Ma during rifting of the arc soon after the collision of the arc with the Karakoram plate. Over 85% of the Complex comprises homogeneous, olivine‐free gabbronorite and subordinate orthopyroxene–quartz diorite association (MGNA), which contains bodies of up to 30 km2 of ultramafic–mafic–anorthositic association (UMAA) rocks. Primary cumulate textures, igneous layering, and sedimentary structures are well preserved in layered parts of the UMAA in spite of pervasive granulite facies metamorphism. Mineral analyses show that the UMAA is characterized by more magnesian and more aluminous pyroxene and more calcic plagioclase than those in the MGNA. High modal abundances of orthopyroxene, magnetite and ilmenite (in MGNA), general Mg–Fe–Al spatial variations, and an MFA plot of whole‐rock analyses suggest a calc‐alkaline origin for the Complex. Projection of the pyroxene compositions on the Wo–En–Fs face is akin to those of pyroxenes from island arcs gabbros. The presence of highly calcic plagioclase and hornblende in UMAA is indicative of hydrous parental arc magma. The complex may be a product of two‐stage partial melting of a rising mantle diaper. The MGNA rocks represent the earlier phase melting, whereas the UMAA magma resulted from the melting of the same source depleted by the extraction of the earlier melt phase. Some of the massive peridotites in the UMAA may either be cumulates or represent metasomatized and remobilized upper mantle. The Chilas Complex shows similarities with many other (supra)subduction‐related mafic–ultramafic complexes worldwide.  相似文献   

9.
Shirouma-Oike volcano, a Quaternary composite volcano in central Japan, consists mostly of calc-alkaline andesitic lavas and pyroclastic rocks. Products of the earlier stage of the volcano (older group) are augite-hypersthene andesite. Hornblende crystallized during the later stage of this older group, whereas biotite and quartz crystallized in the younger group.Assemblages of phenocrysts in disequilibrium, such as magnesian olivine(Fo30)/quartz, iron-rich hypersthene(En55)/iron-poor augite(Wo43.5, En42.5, Fs14.0), and two different types of zoning on the rim of clinopyroxene are found in a number of rocks. Detailed microprobe analyses of coexisting minerals reveal that phenocrysts belong to two distinctly different groups; one group includes magnesian olivine + augite which crystallized from a relatively high-temperature (above 1000°C) basaltic magma; the second group, which crystallized from relatively low temperature (about 800°C) dacitic to andesitic magma, includes hypersthene + hornblende + biotite + quartz + plagioclase + titanomagnetite ± ilmenite (in the younger group) and hypersthene + augite + plagioclase + titanomagnetite ± hornblende (in the older group). The temperature difference between the two magmas is clarified by Mg/Fe partition between clinopyroxene and olivine, and Fe-Ti oxides geothermometer. The compositional zoning of minerals, such as normal zoning of olivine and magnesian clinopyroxene, and reverse zoning of orthopyroxene, indicate that the basaltic and dacitic-andesitic magmas were probably mixed in a magma reservoir immediately before eruption. It is suggested that the basaltic magma was supplied intermittently from a deeper part to the shallower magma reservoir, in in which dacitic-andesitic magma had been fractionating.  相似文献   

10.
An Aleutian high-alumina basalt from the island of Atka at one atmosphere crystallizes plagioclase (1275°C) followed by olivine (1170°C) and clinopyroxene (1115°C). At oxygen fugacities along NNO, magnetite crystallizes below 1070°C, but its liquidus increases to at least 1175°C at an oxygen fugacity two log units above NNO. Phase relations at two kilobars pressure of melts containing small amounts of water are similar, although orthopyroxene and magnetite are observed to follow clinopyroxene. Amphibole crystallizes at near-liquidus temperatures only at water contents of melts approaching 4.5%. Amphibole assumes the liquidus in melts containing 5% water.Anhydrous melts crystallize plagioclase to 19 kbar, where garnet and clinopyroxene assume the liquidus. Olivine yields to clinopyroxene as the highest-temperature subliquidus phase at about 9 kbar.The array of compositions of basaltic Atka rocks, as displayed on appropriate pseudoternary projections, can be interpreted as a crystal fractionation path at moderate pressure (8 kbar) and small melt-water contents. The interpreted fractionating minerals are olivine, clinopyroxene, plagioclase, and (probably) magnetite. (The actual phenocrysts in Atka basalts like AT-1, which lacks phenocrystic clinopyroxene, must have crystallized at pressure less than 8 kbar, however.) The compositions of two-pyroxene andesites from Atka can be interpreted to lie on a lower-pressure fractionation trend at melt water contents of 2–3%. Such water contents are consistent with the complete absence of amphibole in any Atka rocks and are suggestive that water contents of the basaltic magmas, if the basalts are parental to the andesites, were 1–2%.  相似文献   

11.
Small euhedral chromite crystals are found in olivine macrophenocrysts (Fo80–84) from the basaltic andesites (150 ppm Cr) erupted in 1943–1947, and in orthopyroxene macrophenocrysts of the andesites (75 ppm Cr) erupted in 1947–1952. The majority of the chromite octahedra are 5–20 μm in diameter, and some are found in clusters and linear chains of three or more oriented chromite crystals. The composition of the majority of the chromite grains within olivine and orthopyroxene macrophenocrysts is Fe2+/(Fe2++Mg)=0.5–0.6, Cr/(Cr+Al)=0.5–0.6 and Fe3+/(Fe3++Al+Cr)=0.2–0.3. The chromite crystals in contact with the groundmass are larger, subhedral, and grade in composition from chromite cores to magnetite rims. Comparison of the composition of chromite with those of other volcanic rocks shows that the most primitive Paricutin chromite is richer in total iron and higher in Fe3+/(Fe3++Al+Cr) than primary chromite in most lavas. The linear chains of oriented chromite octahedra are found in olivine and orthopyroxene macrophenocrysts, and in the groundmass. These chromite chains are thought to result from diffusion-controlled crystallization because of the very high partition coefficient (1000) of Cr between chromite and melt. We conclude that chromite was a primary phase in the lavas at the time of extrusion and that magnetite only crystallized after extrusion during cooling of the lava flows. The presence of chromite microphenocrysts in andesitic lavas containing as little as 70 ppm Cr can be explained by dissolved H2O in the melt depressing the liquidus temperature for orthopyroxene such that chromite becomes a liquidus phase. The influence of dissolved H2O can also explain the lack of plagioclase macrophenocrysts in most of the lavas and the relatively high partition coefficient (20) of Ni between olivine and melt and the high partition coefficient (40) of Cr between orthopyroxene and melt. The liquidus temperature of the basaltic andesite is estimated to have been less than 1140°C, assuming H2O>1 wt.%, and the log fO2 to have been above that of the QFM buffer. The chromite and orthopyroxene liquidus temperature of the andesites, assuming H2O>1 wt.%, is estimated to have been 1100°C or less. The derivation of the later andesites from the earlier basaltic andesites has been explained by a combination of fractional crystallization of olivine, orthopyroxene and plagioclase, and assimilation of xenoliths. The significantly lower Cr, Ni and Mg of the andesites may have been in part due to the separation of olivine macrophenocrysts plus enclosed chromite crystals from the earlier basaltic andesites.  相似文献   

12.
1–15 μm diameter ultramafic inclusions in anorthitic plagioclase megacrysts from Skye were analyzed by electron microprobe and tentatively identified as sub-calcic augite, or sub-calcic augite submicroscopically intergrown with amphibole. The inclusions nucleated in Ca-Al-depleted, Fe-Mg-H2O-enriched magma adjacent to the interface between plagioclase crystals and basalt and were rapidly enveloped by the growing plagioclase. The inclusions may be important in the fractional crystallization of the Skye alkali olivine basalt suite.  相似文献   

13.
The petrological and geochemical aspects of the ultramafic and basic plutonic rocks of Betancuria Massif are examined. The rocks consist of gradational varieties of wehrlite, pyroxenite, olivine-gabbro and gabbro formed mainly by magnesium-rich olivine, clinopyroxene and plagioclase. The Complex exhibits structures and textures characteristic of layered igneous rocks;i.e., banding, layering, lamination, etc...; rocks are therefore considered as cumulates or magmatic sediments. The Complex has undergone a deep process of alkalinisation produced by the syenite and trachyte ring-dykes intrusion and by the existence of carbonatite veins. Rocks close to the syenite-trachyte intrusions show an increase in alkali feldspars. The presence of amphibole (kaersutite) is the first steep in the alkalinisation process and it is related to the disappearence of pyroxene. Extreme transformations of the gabbroidic rocks are found when they come in contact with the carbonatites. The age of the Complex is unknown but field evidence lead us to conclude that it is older than any other visible formation of the Island.  相似文献   

14.
Lamellar inclusions of chromian spinel (Cr/Cr + Al> 0.7), clinopyroxene and chromian spinel-clinopyroxene symplectite occur in olivines from alpine-type peridotites which have equilibrated at relatively low temperature (<700°C). They occur most commonly in dunite with very magnesian olivine (Fo93 to Fo95) and discrete grains of Cr-rich spinel. Olivine which initially equilibrated with magnesian and Cr-rich liquid had contained small amounts of calcium and trivalent chromium in the octahedral site, and lamellar chromian spinel and diopsidic clinopyroxene exsolved during the annealing process. The ordinary depletion of chromium or absence of chromian spinel lamellae in olivines in igneous rocks may be partly due to the effective exclusion of chromium from olivine upon cooling.  相似文献   

15.
The Pleistocene volcanic rocks from northern Taiwan include the Tatun volcano group and the Chilung volcano group. Three rock types occur in this area: Tatun volcano group yield high-alumina basalt and andesites, whereas the chilung volcano group mainly consists of dacites. In addition, amphibole-rich nodules have also been found in different cruptive units of the former volcano group. Around seventy sample of various rock types have been conducted for geochemical studies, including analyses of major elements and trace elements such as Co, Cr, Cu, Li, Ni, Zn, Zr, V, Rb and Sr. Results of Al2O3, MnO, TiO2 total alkali content, MgO/ΣFeO and K2O/Na2O ratios and AMF diagram indicate that these Pleistocene volcanic rocks belong to typical calalkaline rock series. Detailed study of the trace elements reveals that these volcanic rocks are closely correlated with rocks of continental margin type with respect to Rb, Cu, Co, Ni, V and Cr contents, and K/Rb and Ni/Co ratios. These rocks are most probably derived from the fractionation of basaltic magma controlled mainly by the crystallization of amphibole and plagioclase with magnetite playing a minor role.  相似文献   

16.
Chemical studies of two ophiolite suites and of selected mid-oceanic rift (MOR) regions indicate the presence of certain magmatic compositions: basalt, Fe-enriched basalt, and sodium granite (plagiogranite). There is a notable lack of evidence for melts of intermediate composition (i.e. 50–60 wt.% SiO2). To determine possible relationships between basic rocks (basalts and gabbros) and acidic rocks (plagiogranites) a primitive basalt was fractionated at low pressure, under anhydrous conditions, and at different oxygen fugacities near the iron-wustite buffer and slightly above the quartz-fayalite-magnetite buffer. Samples of this basalt were taken to slightly above liquidus temperatures and then cooled at rates ranging from 1 to 2°C/hr. A liquid line of descent characterized by an Fe enrichment was delineated by quenching these experiments from a final temperature in the range of 1200 to 1000°C and analyzing the residual liquid (glass). After 95% crystallization of olivine, plagioclase, calcium pyroxene, and ilmenite, the residual liquid was an Fe-enriched basalt. This Fe-enriched basalt became immiscible at a temperature of about 1010°C. The immiscible phases produced were a more Fe-enriched basaltic liquid and a granitic liquid. The granitic liquid is similar in composition to the naturally occurring plagiogranites found in small volumes in ophiolites and in certain MOR regions. It is therefore concluded that silicate liquid immiscibility could be the petrogenetic process responsible for producing plagiogranite in some MOR regions and in some ophiolites. On the other hand, plagiogranites in ophiolites and MOR rock suites having andesitic and dacitic composition rocks may have evolved under conditions more closely approximating equilibrium crystallization and/or they may have evolved at high water pressures. The available experimental data suggest that amphibole would crystallize early and yield SiO2-enriched liquids at depths greater than 4.5 km for PH2O's in the range 0.6–1.0 Ptotal.The major problem in interpreting any of the natural plagiogranites as products of silicate liquid immiscibility is the fact that neither the Fe-enriched conjugate liquid or its crystalline equivalent has been described in the ophiolite or MOR literature. The identification of this Fe-rich conjugate magma is essential in any rock suite if a completely convincing case for silicate liquid immiscibility is to be made.  相似文献   

17.
The extinct Pleistocene volcano Muriah, situated behind the main Pleistocene—Recent Sunda magmatic arc in north-central Java, has erupted at least two contrasted groups of lavas. One group forms a well-defined compositional series (Anhydrous Series) from leucite basanite to tephritic phonolite, with olivine and tschermakitic clinopyroxene the main phenocrysts. The other group, the “Hydrous Series”, includes compositionally variable tephrites and high-K andesites with common plagioclase, biotite and amphibole. Lavas of the Anhydrous Series are much richer in LIL trace elements than the most potassic lavas of neighbouring active volcanoes, but relative HFS element enrichment is less pronounced. REE patterns have almost constant slopes from La (250–600 times chondrites) to Yb (5–10 times chondrites), while those of lavas of active centres are less light-enriched, and show flattening in the heavy REE. Anhydrous Series initial 87Sr/86Sr ratios (0.7043–0.7046) are lower than those of active centres (0.7047–0.7053). Hydrous Series lavas are intermediate in all these geochemical characteristics.The most mafic A-series leucite basanite, with Mg/(Mg + Fe2+) 0.69, 140 ppm Ni and 620 ppm Cr was probably derived from the primary magma for the series by fractionation of only 5 wt.% olivine. Its REE pattern suggests derivation from a garnet-bearing source. Experiments on this basanite, with up to 10% olivine and 20% orthopyroxene added, and in the presence of H2O and H2O/CO2 mixtures, have shown that for all but very high magma water contents, the olivine and garnet liquidus fields are widely separated by fields of phlogopite and clinopyroxene. There is no liquidus field of orthopyroxene. Hence, if magma production involved an equilibrium melting process alone, the most probable sources are of garnet-bearing phlogopite clinopyroxenite type. Alternatively, this magma may represent the end-product of interaction between a low-K basanite magma from a garnet lherzolite source in the asthenosphere and a phlogopite-bearing lherzolite zone in the lower lithosphere. Its production was probably related to crustal doming and extension superimposed on the dominant subduction regime. Hydrous Series magmas may have resulted from mixing between Anhydrous Series magmas and high-K calc-alkaline basaltic to andesitic magmas more directly related to subduction processes.  相似文献   

18.
Crystallization paths of basaltic (1763 eruption) and hawaiitic (1865 and 1329 eruptions) scoria from Etna were deduced from mineralogy and melt inclusion chemistry. The volatile behaviour was investigated through the study of melt inclusions trapped in the phenocrysts and those of the whole rocks and the matrix glasses. The results from the 1763 eruption point to the early crystallization of olivine Fo 81.7 from a water-rich alkaline basalt, with high Cl (1750–2000 ppm) and S (2100–2400 ppm) concentrations. The hawaiitic melt inclusions trapped in olivine Fo 74, salite and plagioclase are characterized by a decrease in Cl/K2O and S/K2O ratios. In each investigated system there is good correlation between K2O and P2O5. In the whole rocks, Cl ranges from 980 to 1680 ppm, from basaltic to hawaiitic lavas, whereas S (110–136 ppm) remains low. Cl and S behaviour in the 1763 magma suggests an early degassing stage of Cl and S, with CO2 and a water-rich gaseous phase for a pressure close to 100 MPa, consistent with a permanent outgassing at the summit craters of Etna. During the eruption, the sulphur remaining in the hawaiitic liquid is lost, and the degassing of chlorine is limited. Such a degassing model can be extended to the 1865 and 1329a.d. eruptions.  相似文献   

19.
Cenozoic capping volcanic rocks in the Nevada portion of the Basin and Range Province of the western United States belong to the high alumina calcalkaline igneous series. Varying proportions of plagioclase (An=85 to 45 percent), pyroxene (augite, pigeonite, and hypersthene), olivine, magnetite, biotite, and oxyhornblende indicate a modal range from olivine basalt to andesite. Major element analyses made on randomly collected samples, as well as on samples from systematically measured stratigraphic sections in localities of minimum erosion show ranges in Al2O3 (from 17.5 to 22.5 percent); SiO2 (from 44.0 to 54.0 percent); MgO (from 3.47 to 8.20 percent) and CaO (from 7.19 to 11.90 percent). Na2O/K2O is always greater than 1.0. Ba++ and Sr++ abundances for some of the rocks are in agreement with those suggested, by workers in the field, for average basalt and andesite derived by melting of mantle or lower crust, but for many of the samples the values found are considerably higher. Although the presence of biotite in the earlier flows and oxyhornblende in the later ones along with the presence of much magnetite in all the rocks examined suggests that in part these rocks were derived by crystallization of a melt under conditions of high partial pressure of oxygen, the available trace element data indicates that contamination of the magma with crustal material was also a factor in their developmental history. The case for a parent magma, subsequently fractionally crystallized and contaminated in part, is strengthened by the occurrence of crystal cumulates and highly altered xenoliths in some of the flows.  相似文献   

20.
Island arc and continental margin (i.e. western Americas) lavas are divided (based on raw data from literature) into basalts (defined by absence of Ca-poor pyroxene, dominated by quartz-normative tholeiites); basaltic andesites and andesites (subdivided on basis of breaks in SiO2 histogram and taken as <56% and 56–63% SiO2; Ca-poor pyroxene present; amphibole and biotite absent); and hornblende (±biotite) lavas, which prove to be mainly relatively silicic andesites. Relative proportions of these types are (576 samples): 23% basalts, 29% basaltic andesites; 30% andesites; 18% hornblende andesites. The compilation emphasizes the dominance of calcic plagioclase (labradorite-anorthite) amongst the phenocryst phases. Pyroxenes are largely augite and hypersthene (En60–75); olivine (Fo65–85) is common through all compositions. There is an overall close similarity in chemistry and mineralogy between continental margin and island arc lavas, although small consistent differences are apparent (e.g. K2O, TiO2, P2O5).Modal data indicate that 70% of lavas are phenocryst-rich (20–60 vol.%), and that phenocryst contents show a bimodal distribution. Statistically and petrologically significant correlations are found between mineralogy and rock chemistry, most notably between total rock Al2O3 and modal phenocrystic plagioclase (found in all data groups, except hornblende andesites). This, and related data and correlations, indicate that the majority of orogenic magmas are modified by crystal fractionation (including crystal accumulation) processes dominated by plagioclase, and interpreted to occur under relatively low pressures. Dominance of plagioclase suggests phenocryst precipitation occurs typically in water-undersaturated magmas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号