首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 57 毫秒
1.
This article discusses the historical tectonic development of the portion of Siberia lying within the Arctic Circle. The exposed rocks are referred to seven tectonic or geotectonic stages: Archean, Proterozoic, Sinian, lower to middle Paleozoic, upper Paleozoic to lower Mesozoic, and Mesozoic-Cenozoic. Locally on the Shorikka and Kamennaya, the nearly horizontal Lower Cambrian beds overlie the Sinian with angular unconformity. In contrast, isolated areas on the west side of the Yenisey show a gradational relationship between the Late Sinian and Early Cambrian beds in a dominantly carbonate succession. The present tectonic elements of the Siberian platform were developed in Mesozoic-Cenozoic time, and differential movements in the basement have continued into Neogene time. The sedimentary platform cover was enlarged by sedimentary overlap from Sinian to mid-Paleozoic time. The sediment came from the older fold systems. The major structures are measured in terms of variations in stratigraphic thickness, but details are unfortunately omitted. The main features are delineated on a geotectonic map embracing 42 map units and symbols. The map lacks basic reference data, geographic designations, scale, and other essential information. — B. N. Cooper.  相似文献   

2.
The study area lies to the south of El-Dakhla Oasis in the central part of the western desert, Egypt. It is limited by the latitudes 24–25°?N and the longitudes 28–30°?E. The main purpose of this work is the investigation of the subsurface structure and the delineation of the main structural elements at different subsurface levels. This study aims also to estimate the basement depth, the basement relief, and consequently, the thickness of the sedimentary cover. The study is based on acquired aeromagnetic data prepared by "La Compagnie General De Géophysique" for the Egyptian General Petroleum Company and Conoco (1977), geological information and results of previous studies in the region. The study involves the analysis for the aeromagnetic data and generating of reduced to pole magnetic map from which different magnetic maps are calculated. The calculated maps are first vertical derivative map and downward continuation map at depth level 400 m. Trend analysis technique is used to define the fault pattern affecting the studied area at different subsurface levels. It is applied to the reduced to pole magnetic map, the first vertical derivative map, and the downward continuation map at depth level 400 m of the study area. All results obtained from the interpretation process were combined together to draw the general view of the subsurface structures of the area. The NE–SW, E–W, and N–S trends are important surface and subsurface (basement) structural trends. This is attributed to the rejuvenation of movements on these old (basement) tectonic trends after the deposition of the sedimentary cover. Basement depth calculation from the aeromagnetic data is achieved using different techniques. The applied techniques included natural spectral analysis and Euler deconvolution. The depth values obtained vary from 400 to 1,700 m.  相似文献   

3.
《Geodinamica Acta》2013,26(2):153-161
The Quaternary tectonic activity in the Gulf of Cadiz has considerably influenced the depositional regime and distribution of Holocene marine deposits. The aim of this work is to determine the nature of the recent sedimentary filling in the Bay of Cadiz sea bottom and adjacent continental shelf and to establish the main controlling factors on the Holocene marine sedimentation.

The sedimentary record indicates siliciclastic sedimentation supplied from the continent, with alternating episodes of high and low sedimentation rates. The recent sedimentary evolution of this marine area was controlled by the Late Quaternary eustatic fluctuations. Bathymetric, geophysical and drilling data have been employed to prepare a detailed isopach map of the non-consolidated recent sedimentary cover. Thickness distribution shows significant variations related to the infilling of former fluvial palaeochannels incised during the Late Pleistocene lowstand, and highly controlled by the structural neotectonic trends of faults and joints: NNW-SSE, NNE-SSW and ENE-WSW. The general distribution of isopachs in this area is clearly influenced by these morphostructural lines, which controlled the sedimentary processes during the Holocene. These results are coherent with the main regional neotectonic structures previously described in the nearby continental area, and confirm their prolongation towards the marine domain.  相似文献   

4.
Multichannel seismic reflection data acquired by Marine Arctic Geological Expedition (MAGE) of Murmansk, Russia in 1990 provide the first view of the geological structure of the Arctic region between 77–80°N and 115–133°E, where the Eurasia Basin of the Arctic Ocean adjoins the passive-transform continental margin of the Laptev Sea. South of 80°N, the oceanic basement of the Eurasia Basin and continental basement of the Laptev Sea outer margin are covered by 1.5 to 8 km of sediments. Two structural sequences are distinguished in the sedimentary cover within the Laptev Sea outer margin and at the continent/ocean crust transition: the lower rift sequence, including mostly Upper Cretaceous to Lower Paleocene deposits, and the upper post-rift sequence, consisting of Cenozoic sediments. In the adjoining Eurasia Basin of the Arctic Ocean, the Cenozoic post-rift sequence consists of a few sedimentary successions deposited by several submarine fans. Based on the multichannel seismic reflection data, the structural pattern was determined and an isopach map of the sedimentary cover and tectonic zoning map were constructed. A location of the continent/ocean crust transition is tentatively defined. A buried continuation of the mid-ocean Gakkel Ridge is also detected. This study suggests that south of 78.5°N there was the cessation in the tectonic activity of the Gakkel Ridge Rift from 33–30 until 3–1 Ma and there was no sea-floor spreading in the southernmost part of the Eurasia Basin during the last 30–33 m.y. South of 78.5°N all oceanic crust of the Eurasia Basin near the continental margin of the Laptev Sea was formed from 56 to 33–30 Ma.  相似文献   

5.
The line of complete compensation, the ideal value for the ratio of gravity to elevation (?0.11 mGal/m) in Iraq, is obtained using gravity data derived from 477 stations. This line is found to separate the stable shelf from unstable shelf. It is also confirmed with the western limit of the basin as shown on the structural map that is constructed at the base of Al-Fath (L-Fars) formation (M. Miocene). The obtained line coincides with the thinnest crustal line shown on the crustal thickness map of Iraq. It is believed that this line may also define the thinnest sedimentary cover in Iraq. The obtained result can be a useful template for a tectonic view of Iraq.  相似文献   

6.
The published data on the sedimentation conditions, structure, and tectonic evolution of the Anadyr Basin in the Mesozoic and Cenozoic are reviewed. These data are re-examined in the context of modern tectonic concepts concerning the evolution of the northwestern Circum-Pacific Belt. The re-examination allows us not only to specify the regional geology and tectonic history, but also to forecast of the petroleum resource potential of the sedimentary cover based on a new concept. The sedimentary cover formation in the Anadyr Basin is inseparably linked with the regional tectonic evolution. The considered portion of the Chukchi Peninsula developed in the Late Mesozoic at the junction of the ocean-type South Anyui Basin, the Asian continental margin, and convergent zones of various ages extending along the Asia-Pacific interface. Strike-slip faulting and pulses of extension dominated in the Cenozoic largely in connection with oroclinal bending of structural elements pertaining to northeastern Eurasia and northwestern North America against the background of accretion of terranes along the zone of convergence with the Pacific oceanic plates. Three main stages are recognized in the formation of the sedimentary cover in the Anadyr Basin. (1) The lower portion of the cover was formed in the Late Cretaceous-Early Eocene under conditions of alternating settings of passive and active continental margins. The Cenomanian-lower Eocene transitional sedimentary complex is located largely in the southern Anadyr Basin (Main River and Lagoonal troughs). (2) In the middle Eocene and Oligocene, sedimentation proceeded against the background of extension and rifting in the northern part of the paleobasin and compression in its southern part. The compression was caused by northward migration of the foredeep in front of the accretionary Koryak Orogen. The maximum thickness of the Eocene-Oligocene sedimentary complex is noted mainly in the southern part of the basin and in the Central and East Anadyr troughs. (3) The middle Miocene resumption of sedimentation was largely related to strike-slip faulting and rifting. In the Miocene to Quaternary, sedimentation was the most intense in the central and northern parts of the Anadyr Basin, as well as in local strike-slip fault-line depressions of the Central Trough. Geological and geophysical data corroborate thrusting in the southern Anadyr Basin. The amplitude of thrusting over the Main River Trough reaches a few tens of kilometers. The vertical thickness of the tectonically screened Paleogene and Neogene rocks in the southern Main River Trough exceeds 10 km. The quantitative forecast of hydrocarbon emigration from Cretaceous and Paleogene source rocks testifies to the disbalance between hydrocarbons emigrated and accumulated in traps of petroleum fields discovered in the Anadyr Basin. The southern portion of the Anadyr Basin is the most promising for the discovery of new petroleum fields in the Upper Cretaceous, Eocene, and Upper Oligocene-Miocene porous and fracture-porous reservoir rocks in subthrust structural and lithological traps.  相似文献   

7.
The results of CMP seismic data acquisition along regional deep profiles that cross large tectonic elements in the east of the East European Platform are considered. It has been established that the Zhiguli-Pugachev Arch and the Stavropol Depression (southern part of the Melekess Basin), as well as the Volga-Kama Anteclise and Pericaspian Syneclise, conjugate along reverse-thrust faults extending to the lower crust and Moho discontinuity. The position of the southeastern reverse-thrust boundary of the South Tatar Arch has been substantially specified in plan view and illustrated by seismic sections. Based on the results obtained, it is suggested that reverse-thrust faults of different orders are widespread in petroleum provinces in the east of the East European Platform, and this suggestion should be used in geological exploration. The CMP seismic data acquisition is efficient in studying the junction zones of large tectonic elements. It also provides insights into the deep structure of the Earth’s crust and its relationship to the structure and petroleum potential of the sedimentary cover and localization of oilfields. It is expedient to reprocess and integrate earlier seismic data in order to compile tectonic (tectonodynamic) regional maps on a new methodical basis.  相似文献   

8.
四川盆地下寒武统筇竹寺组沉积特征及其对构造的响应   总被引:1,自引:1,他引:1  
随着四川盆地页岩油气的勘探和开发,下寒武统筇竹寺组页岩受到广泛关注,但是由于埋藏深度大、钻井资料有限,该套地层在四川盆地的沉积特征差异尚不清晰.通过露头剖面观测、岩芯描述、主微量元素地球化学分析等,对四川盆地筇竹寺组页岩沉积特征进行综合研究.通过分析了四川盆地不同地区筇竹寺组岩性纵向上的变化及组合关系划分出4种不同岩性...  相似文献   

9.
The large (more than 200000 km2) Uchur-Maya Meso- and Neoproterozoic intracontinental basin is delineated for the first time in the southeastern Siberian Platform, including the territory overlapped by the Ediacaran to Cambrian plate complex. The tectonic elements of higher orders—uplifts, domes, and deeps formed during the Neoproterozoic and Late Mesozoic tectonomagmatic activity—are outlined. The tectonic nappes of Paleoproterozoic rocks from 200 to 400 m thick were established between the Calymmian and Ectasian to Stenian rocks in the southeastern portion of the basin. The thickness of sedimentary rocks increases toward the Yudoma-Maya Aulacogen. The considerable thickness of Meso- and Neoproterozoic rocks and bitumen contents in sedimentary rocks are favorable factors testifying to the petroleum resource potential of the basin. The southern part of the basin is promising for ore deposits (primarily, uranium and gold) in zones of structural and stratigraphic unconformities and within the sedimentary cover itself. This study may serve as a background for further, more detailed tectonic investigations and substantiation of strategic lines of geological exploration.  相似文献   

10.
The implemented deep seismic soundings have provided records of refracted and reflected P-waves up to offsets of 200–250 km, whereas the modern technique of ray-tracing and synthetic modelling enabled the wave fields to be decoded and the direct seismic problem about selection of velocity models of the crust to be solved correctly. The data acquired through the multichannel seismic reflection method have allowed us to identify the Late Paleozoic sedimentary unit on the shelf and trace it to the Mendeleev Rise as an intermediate complex. It has been shown that the principal structural elements of the consolidated crust and sedimentary cover of the East Siberian shelf are continued to the Mendeleev Rise, which has obvious tectonic features of an extended continental crust.  相似文献   

11.
Structural maps are traditionally produced by mapping features such as faults, folds, fabrics, fractures and joints in the field. However, large map areas and the spatially limited ground perspective of the field geologist can potentially increase the likelihood that not all structural features will be identified within a given area. The ability to recognise and map both local and regional structural features using high-resolution remote sensing data provides an opportunity to complement field-based mapping to help generate more comprehensive structural maps. Nonetheless, vegetation cover can adversely affect the extraction of structural information from remotely sensed data as it can mask the appearance of subtle spectral and geomorphological features that correspond to geological structures. This study investigates the utility of airborne Light Detection And Ranging (LiDAR) data and airborne multispectral imagery for detailed structural mapping in vegetated ophiolitic rocks and sedimentary cover of a section of the northern Troodos ophiolite, Cyprus. Visual enhancement techniques were applied to a 4-m airborne LiDAR digital terrain model and 4-m airborne multispectral imagery to assist the generation of structural lineament maps. Despite widespread vegetation cover, dykes and faults were recognisable as lineaments in both data sets, and the predominant strike trends of lineaments in all resulting maps were found to be in agreement with field-based structural data. Interestingly, prior to fieldwork, most lineaments were assumed to be faults, but were ground-verified as dykes instead, emphasising the importance of ground-truthing. Dyke and fault trends documented in this study define a pervasive structural fabric in the upper Troodos ophiolite that reflects the original sea-floor spreading history in the Larnaca graben. This structural fabric has not previously been observed in such detail and is likely to be continuous in adjacent regions under sedimentary cover. This information may be useful to future exploration efforts in the region focused on identification of structurally controlled mineral and groundwater resources. Overall, our case study highlights the efficacy of airborne LiDAR data and airborne multispectral imagery for extracting detailed and accurate structural information in hard-rock terrain to help complement field-based mapping.  相似文献   

12.
The Ysyk-Köl Basin filled with Lower Jurassic–Quaternary sedimentary rocks is the largest intermontane negative structural unit of the northern Tien Shan. The basement of this basin is composed of Precambrian–Paleozoic rocks, largely of Ordovician and Silurian granitoids exposed in mountain ranges of the basin framework and as separate anticlinal domes situated in areas occupied by the Mesozoic–Cenozoic sedimentary cover. The postmagmatic tectonic internalstructure of the Chonkurchak (Chunkurchak), Kyzyl-Choku, Kyzyl-Bulak, and Prishib massifs emplaced in the basement, as well as their relationships to the sedimentary cover, are described in the paper. The study was carried out using the morphostructural method, detailed geological mapping, structural kinematic analysis, and petrographic examination of rocks. The internalstructure of Paleozoic granites in the basement and indications of their 3D tectonic flow are characterized. It is shown that granites underwent 3D deformation after their emplacement in the consolidated crust, and this process had a substantial influence on tectonic processes at the plate and orogenic stages of regional evolution.  相似文献   

13.
Hiatuses register, on the one hand, stages of continental development and formation of peneplanation surfaces of different types and ranks, to some of which weathering crusts can be related, and on the other hand, unconformity surfaces dividing a sedimentary cover into structural stages reflecting a cyclic recurrence in the development of a tectonic structure. The hierarchy of hiatuses is correlated with the peculiarities of platformal geodynamics.  相似文献   

14.
The tectonic scheme of the Siberian Craton proposed in this paper is compiled on the basis of a geological map of the craton prepared from numerous magnetometric maps and gravity measurements on various scales, the scheme of axes of magnetic anomalies, and the synthesis of geological information on the exposed territories. The shields and platform territories of the ancient Siberian Craton comprises Archean blocks and Paleoproterozoic foldbelts. The granite-greenstone terranes and granulite-gneiss domains were formed in the Meso- and Neoarchean. The granite-greenstone terranes exposed and overlapped by sedimentary cover are identical, although they generally differ in internal structure and rock compositions both at the infra- and supracrustal levels. The Archean granulite-gneiss domains are recognized either as special tectonic units or as deep sections of granite-greenstone terranes. Two groups of the Paleoproterozoic collisional belts that amalgamated separate Archean blocks of the Siberian Craton into a common stable structural unit evolved 2.1–1.9 and 1.9–1.8 Ga ago. Three types of deep faults arose in the Paleoproterozoic: (1) translithospheric fault zones as boundaries of tectonic blocks and collisional belts, (2) intracrustal fault zones that originated as a result of nonuniform uplift of particular segments of the common plate, and (3) transcrustal zones formed in a plate that overrode another, plunging plate.  相似文献   

15.
肯尼亚Anza盆地东南部地处东非裂谷系,发育了巨厚的中—新生界沉积盖层。然而,该区域勘探程度较低,制约了对其构造体系的认识及油气勘探潜力的评价。文章基于研究区的重力异常数据,针对其构造特征的认识进行了数据处理及解释。研究结果表明,受中非剪切带右旋剪切应力的影响,研究区发育规模较大的北西向基底断裂和规模较小的北东向盖层断裂,且北东向断裂切断北西向断裂;基底深度差异大,总体呈"两凹夹一隆"的特征,凹陷区沉积了巨厚的中—新生界盖层;受北西向拉张断裂和沿构造软弱带发育的北东向断裂的控制,研究区划分为东部凹陷、中部凸起、南部隆起和西部凹陷4个构造单元,呈现"东西分带、南北分块"的构造格局。   相似文献   

16.
利用碎屑岩骨架组分、含量分布、古水流方向、砂岩岩石学特征、常量与微量元素及沉积构造特征等,对鄂尔多斯盆地西缘二叠纪山西组母岩类型、物源方向及大地构造属性进行了研究。砂岩岩石组分表明,物源主要以再旋回造山带为主,源区主要由花岗岩、浅变质岩及片麻岩类组成。砂岩百分含量图也表明,山西组沉积时的主物源区在盆地以北的阴山地区,南部仅为次物源区。古水流参数也证明物源方向为SSW。另外,沉积岩常量与微量元素分布特征显示,当时该区的大地构造环境为被动大陆边缘环境。因而可推知,二叠世山西组沉积时,鄂尔多斯盆地西缘的沉积以北方物源为主,且可能来自北部的阴山地区和西北方向的阿拉善地块。   相似文献   

17.
大陆克拉通早期构造演化历史探讨:以华北为例   总被引:22,自引:1,他引:21  
大陆早期构造演化的研究一直是大陆地质学研究的焦点问题.在华北克拉通基底构造1∶200万编图研究基础上, 本文开展基底断裂边界、构造样式及后期叠加关系的研究, 借鉴比较大地构造理论, 对华北克拉通基底重新进行了构造区划.结合标志性构造单元及其时代、同位素年龄数据库的综合研究, 提出华北早期构造格局演化及其重大构造热事件.华北克拉通基底主要由大面积的新太古代TTG杂岩及表壳岩系组成, 新太古代涉及活动陆缘环境的大规模陆壳增生及不同微陆块的碰撞聚合过程, 造成新太古代末期陆壳迅速增生和克拉通化.古元古代初期开始伸展裂解和早期盖层发育阶段, 古元古代晚期发生微陆块碰撞缝合, 形成超级克拉通, 并在克拉通西北边缘发生强烈改造作用.1.84Ga前后, 华北克拉通经历最强烈的一次伸展裂解过程, 从超级克拉通裂解, 开始了独立的构造演化, 在伸展构造背景下, 克拉通基底被强烈隆升冷却, 经历风化剥蚀, 发育沉积盖层.以上构造格局及其构造热事件提供了早期超级大陆再造研究的构造制约条件.   相似文献   

18.
海拉尔盆地乌南凹陷南一段时期断裂和火山作用强烈, 导致岩石碎屑组成具有多样性。碎屑成分有火山碎屑、变质岩碎屑和其他剥蚀碎屑。碎屑多样性使本区岩性及其分区具有鲜明的特色。岩性丰度、矿物组合、阴极发光及其重矿物组合研究显示, 区内存在4个单岩性区和2个混合区。单岩性区是变质岩碎屑岩区、火山碎屑沉积岩区、熔结火山碎屑岩区和火山碎屑岩区。根据岩石中各碎屑组成的体积分数可将混合区分为正常沉积碎屑占优势的混合区和火山碎屑占优势的混合区。各单岩性区与构造单元相符合, 变质岩碎屑岩区对应乌西断阶带, 火山碎屑沉积岩区和熔结火山碎屑岩区对应巴彦塔拉构造带, 火山碎屑岩区为乌东弧形构造带的一部分。地球化学数据显示本区源岩岩浆属于壳源花岗质岩浆, 同时受到明显的幔源岩浆影响, 重稀土较富集。乌西断阶带具有高的稀土总量和不明显的Eu负异常, 变质源岩岩浆壳幔混染程度高;巴彦塔拉构造带具有低的稀土总量和明显的Eu负异常, 源岩岩浆壳幔混染程度中等;乌东弧形构造带具有高的稀土总量和明显的Eu负异常, 源岩岩浆壳幔混染程度低。Dickinson图解显示, 乌东弧形构造带源区没有深切割, 而巴彦塔拉构造带源区经过了深切割。德尔布干断裂的正滑移导致嵯岗构造片麻岩发育和嵯岗隆起相对隆升, 为乌西断阶带提供变质碎屑沉积物, 形成扇三角洲沉积体系;同时断裂又为幔源岩浆的上升提供了通道。巴彦塔拉断裂的伸展走滑使得幔源岩浆上升发生壳幔混染并发生火山喷发, 在巴彦塔拉构造带发育熔结火山碎屑岩-火山碎屑沉积岩, 塑造了火山碎屑扇三角洲沉积体系。巴彦山隆起区壳幔混染程度低, 但幔源岩浆的底垫作用导致壳源岩浆的强结晶分异作用、火山活动和地表隆升, 在乌东弧形构造带发育火山碎屑岩, 塑造了火山碎屑三角洲沉积体系。  相似文献   

19.
奥陶纪—泥盆纪时期,受加里东构造活动的影响,北祁连洋盆经历了俯冲消亡至造山的复杂转换。其中,志留纪是记录了盆山转换的重要大地构造过渡阶段,然而北祁连造山带在该时期的盆地性质一直存在争议。本文对北祁连地区志留系沉积地层开展了详细的野外地质调查及室内测试分析,通过岩性、沉积构造和古生物化石组合等方面的研究,共识别出潮坪相、浅海陆棚相及半深海相三种沉积相类型。此外,基于前人的研究成果和本研究的新资料,编制了全新的北祁连地区志留纪沉积构造格架、沉积盆地类型及空间配置关系图。在此基础上,通过区域地层对比,以及岩相古地理编图研究,重建了北祁连造山带志留纪沉积盆地充填序列,并采用造山带岩相古地理编图方法编制了全新的研究区志留纪岩相古地理图。  相似文献   

20.
Through, long-lived structural-kinematic parageneses were established in the southeastern marginal part of the Baltic Shield on the basis of structural studies. These parageneses were formed and periodically rejuvenated from at least the Paleoproterozoic until the neotectonic stage of the evolution of this territory. A series of consecutive tectonic events related to the vertical and horizontal mobility of rocks of the crystalline basement and sedimentary cover had important implications for the formation of present-day structure of the southeastern margin of the Baltic Shield. These tectonic displacements developed for an extremely long time with retention of the main kinematic tendencies. At the end of the Paleoproterozoic, the volcanic and sedimentary rocks of the Vetreny Belt underwent tectonic stacking as a result of the countermotion of the crystalline masses of the Vodlozero Massif and the Belomorian-Lapland Belt. The clockwise rotation and lateral displacement of the Vodlozero Massif to the northeast provided the left-lateral transpression of the Vetreny Belt. Under these conditions, the Paleoproterozoic sequences experienced squeezing in the southeastern direction. This kinematic tendency was retained at the subsequent evolutional stages and eventually was recorded in the structure of the present-day boundary between the Baltic Shield and the Russian Platform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号