共查询到20条相似文献,搜索用时 15 毫秒
1.
It is important to understand the effect of freeze–thaw cycles on the mechanical properties of rocks. In this paper, the variation of the uniaxial compressive strength, peak strain, elastic modulus and stress–strain curves of granite subjected to freeze–thaw cycles with different heating temperatures were studied experimentally and the relationships were derived. As the number of freeze–thaw cycles increases, the compressive strength and elastic modulus decrease, while the peak strain decreases. In addition, an increased temperature increases the peak strain while decreasing the compressive strength and elastic modulus. An expression for the initial damage for the adopted rock material due to freeze–thaw cycling was proposed based on the Loland model. The current research has established a solid foundation for further experimental studies on the fatigue behavior of granite after freeze–thaw cycling. 相似文献
3.
Two of the most popular weathering tests used for dimension stone are EN 12371 freeze–thaw (FT) and EN 12370 Salt Crystallization (SC). These tests are used to assign a durability value to the rocks. Both tests are based on the cyclical growth of crystals in the porous system of the rock, which causes structural stress on the rock matrix that may affect its integrity. The weathering mechanism is the same in both tests although the rate of volume increase is higher for the salt crystals. Due to this similarity, the two tests provide complementary information. The EN (European Norms) recommend evaluating the results together, but do not establish correlations between the results of these two tests for different types of rocks. Knowing these relationships would improve the understanding of the results and the response to weathering of the rock once placed in a building. In this work, several ornamental rocks (sandstones, limestones, dolostones, and a travertine) from the Iberian Peninsula were submitted to FT and SC tests. Rocks were mineralogically and petrographically characterized, and their porous systems were defined by a combination of techniques (scanning electronic microscopy, digital images analysis, and mercury porosimetry). The results of the tests were quantified numerically to compare them. The velocity of propagation of ultrasonic waves was measured before and after the tests. After the statistical analysis, significant correlations were found between the FT and SC tests, and between the connected porosity and the durability index of the rocks. 相似文献
4.
Acta Geotechnica - In this paper, the strength, ductility and microstructure behavior of cement-treated silt with polypropylene fiber was studied by a host of experimental studies. The influence of... 相似文献
5.
Natural Hazards - In the freeze–thaw zone of the eastern Sichuan–Tibet Mountains, the phases of water in cracks show strong seasonal variations, which significantly affect the stability... 相似文献
6.
ABSTRACTIn this study, uniaxial compression experiments with seven different bedding angles and six numbers of freeze–thaw cycles were conducted to investigate the influences of freeze–thaw cycles on the elastic parameters and the uniaxial compressive strength of slate. The laws of the elastic parameters, uniaxial compressive strength and failure characteristics were analysed, and a new uniaxial compressive strength prediction model that considers the bedding angle and the number of freeze–thaw cycles as control variables was established and verified using the experimental data. The results showed that the uniaxial compressive strength, elastic modulus and shear modulus decreased exponentially with an increasing number of freeze–thaw cycles. However, the Poisson’s ratio increased linearly with an increasing number of freeze–thaw cycles. The uniaxial compressive strength initially decreased and then increased with increasing bedding angle. There are three forms of failure occurred during the tests: when the bedding angle was 0°≤ β ≤ 26.6°, the splitting failure and shear failure occurred at the same time; when the bedding angle was 26.6°≤ β ≤ 83.0°, sliding failure occurred along the bedding plane; and when the bedding angle was 83.0°≤ β ≤ 90°, splitting failure occurred along the axial direction of sample. 相似文献
7.
Freeze–thaw action is a complex moisture–heat-mechanics interaction process, which has caused prevailing and severe damages to canals in seasonally frozen regions. Up to now, the detailed frost damage mechanism has not been well disclosed. To explore the freeze–thaw damage mechanism of the canal in cold regions, a numerical moisture–heat-mechanics model is established and corresponding computer program is written. Then, a representative canal in the northeast of China is taken as an example to simulate the freeze–thaw damage process. Meanwhile, the robustness of the numerical model and program is tested by some in situ data. Lastly, the numerical results show that there are dramatic water migration and redistribution in the seasonal freeze–thaw variation layer, causing repetitive frost heave and thaw settlement, and tension–compression stresses. Therefore, the strengths of soil are reduced after several freeze–thaw cycles. Further, the heavy denudation damage and downslope movement of the canal slope would be quite likely triggered in seasonally frozen regions. These zones should be monitored closely to ensure safe operation. As a preliminary study, the numerical model and results in this paper may be a reference for design, maintenance, and research on other canals in seasonally frozen regions. 相似文献
8.
Relying on the application of the artificial freezing method on subway tunnel construction, a series of triaxial creep tests were carried out to study the creep behavior changes of Shanghai soft clay subjected to artificial freeze–thaw action. On this basis, MIP tests were conducted with the soil samples before and after creep for comparison to investigate the microstructure changes. The results indicate that freeze–thawed soil produces smaller creep deformation and instantaneous deformation than the unfrozen soil. On a micro-level, during the creep process, the soil skeleton reaches a new structure balance with smaller pore volume and pore area. But the diameter of the maximum pore increases. The change rate of total intrusion volume is a pivotal micro-parameter to evaluate creep strain as there is a good linear relationship between them. 相似文献
9.
Damages to natural building stones induced by the action of frost are considered to be of great importance. Commonly, the frost resistance of building stones is checked by standardised freeze–thaw tests before using. Corresponding tests normally involve 30–50 freeze–thaw action cycles. In order to verify the significance of such measurements, we performed long-term tests on four selected rocks over 1,400 freeze–thaw action cycles. Additionally, numerous petrophysical parameters were analysed to compare the behaviour of rocks in the weathering tests according to the current explanatory models of stress formation by growing ice crystals in the pore space. The long-term tests yield more information about the real frost sensibility of the rocks. A clear deterioration cannot be determined in most cases until 50 weathering cycles have been completed. In the freeze–thaw tests, the samples are also stressed by changing temperature and moisture, indicating that different decay mechanisms can interfere with each other. Thus, thermohygric and moisture expansion are important damage processes. 相似文献
10.
Being a potential preferential way for water to flow, interfaces between host rock and engineered barriers are critical in the design of deep radioactive waste repositories. In case of cementitious materials, presence of water may lead to long term degradation by leaching. Such a phenomenon could impede the integrity of the confinement by its effect on the hydro-mechanical properties of the interface. Recent experimental results from Buzzi et al. [8] have evidenced some effects of leaching on the hydro-mechanical behavior of rock–concrete interfaces for one leaching time. This paper intends to investigate the influence of leaching on the mechanical behavior of rock–mortar interfaces by means of numerical simulations. These latter will be run for several leaching times to produce a better understanding of the phenomenon. For this purpose, a DEM approach has been developed to simulate the increase of the macro-porosity resulting from the leaching process. The implementation of the approach is first discussed. Then direct shear tests under constant normal stress are performed on a simple interface geometry and on a natural interface geometry. The results after Buzzi et al. [8] are corroborated by this research. 相似文献
11.
A constitutive model is proposed for tailing soils subjected to freeze–thaw cycles based on the meso-mechanics and homogenization theory. The evolution of meso-structure upon loading was analyzed within the framework of breakage mechanism. When the new model is formed, tailing soils are idealized as composite materials composed of bonded elements described by an elastic brittle model and frictional elements described by a double hardening model. Based on meso-mechanics and homogenization theory, the nonuniform distributions of stress and strain within the representative volume element are given by introducing a structure parameter of breakage ratio with the derivation of the strain coefficient tensor, which connects the strains of the bonded elements and the representative volume element. The methods for determining model parameters are suggested based on the available tested results. The model proposed here can predict the deformation properties of tailing soils experiencing freeze–thaw cycles with acceptable accuracy. The strain-hardening and post-peak strain-softening behaviors of tailing soils under various confining pressures as well as different numbers of freeze–thaw cycles are well captured, and the dilatancy and contraction features are also adequately represented. 相似文献
12.
The frost sensitivity of a rock is resulting from the combined action of processes linked to porous network characteristics (state parameters) and to the way water flows into this porous network (transfer parameters), our study was thus about the influence of these parameters on frost weathering of rocks. Sedimentary rocks often found on buildings (limestone and sandstone) and consequently submitted to temperature variations have been selected. State and transfer parameters have been measured for sample characterization and the follow-up of weathering during freeze–thaw cycles. The coupled influence of a state parameter (dynamic modulus of elasticity) and a transfer parameter (water permeability), i.e. between rock skeletal strength and voids connection, has thus been discussed. 相似文献
13.
A collection of 235 samples were taken from 115 sites (representing a density of 1 sampling site ca. 130 km 2) on rural soils derived from the major rock types in the southern Iberian Massif. The geochemical baselines of selected trace elements (As, Co, Cr, Cu, Ni, Pb and Zn) were determined on the < 2 mm soil fraction. The sampling sites were not directly influenced by external pollution. Soil geochemical baseline and threshold values were calculated for each element in two geologically different zones: the Ossa-Morena Zone (OMZ) and the South-Portuguese Zone (SPZ). 相似文献
14.
We report results of laser ablation inductively coupled plasma-mass spectrometry-based dating, as well as the analysis of bulk-rock major and trace elements, and Sr–Nd isotopes to address the genesis and tectonic settings of the Yanshanian granitoids in neighbouring sections of Zhejiang, Jiangxi, and Anhui provinces (the WZG region) within the Yangtze block. Geochronological results indicate that intense magmatic activity took place during Jurassic to Cretaceous time in the WZG region. Three episodes can be clearly distinguished by their bulk-rock geochemistry. (1) Early–Middle Jurassic granitoids (180–170 Ma) have high Sr and low Yb content, high ? Nd(t) and low initial 87Sr/ 86Sr ratios, and weakly negative Eu anomalies. These granitoids are strongly enriched with LREE, Rb, K, and Th but are depleted of HREE, Nb, and Ta. (2) Late Jurassic to Early Cretaceous granitoids (165–140 Ma) have relatively low Sr and low Yb contents, as well as low ? Nd(t) and high initial 87Sr/ 86Sr ratios, with characteristics similar to those of the Early–Middle Jurassic granitoids in terms of the rare earth element and trace element patterns. (3) Early Cretaceous granitoids (140–120 Ma) have extremely low Sr and high Yb concentrations, as well as high SiO 2 but low MgO, CaO, and Al 2O 3 content, with strong negative anomalies in Eu, Ba, Sr, P, and Ti. These characteristics indicate that the WZG Jurassic granitoids were related to northwestward subduction of the Izanagi plate, whereas the Early Cretaceous granitoids formed in a within-plate extensional setting. The time of transition between the two tectonic environments can be constrained to ~140 Ma. This tectonic transition may be attributed to progressive slab roll-back of the Izanagi plate. The presence of two A-type granite belts in the WZG region probably reflects lithospheric thinning. The NE trend of the A-type granite belts indicates that this extension in Southeast China was controlled by underflow of the Izanagi plate. 相似文献
15.
Soil CO 2 efflux from an ecosystem responds to the active layer thawing depth ( H) significantly. A Li-8100 system was used to monitor the CO 2 exchange from a wet meadow ecosystem during a freeze–thaw cycle of the active layer in a permafrost region on the Qinghai-Tibet Plateau. An exponential regression equation ( $ F_{\text{soil\, flux}} = 1.84e^{0.023H} + 5.06\,R^{2} = 0.96 $ ) has been established on the basis of observed soil CO 2 efflux versus the thawed soil thickness. Using this equation, the total soil CO 2 efflux during an annual freeze–thaw cycle has been calculated to be approximately 8.18 × 10 10 mg C. The results suggest that freeze–thaw cycles in the active layer play an important role in soil CO 2 emissions and that thawed soil thickness is the major factor controlling CO 2 fluxes from the wet meadow ecosystem in permafrost regions on the Qinghai-Tibet Plateau. It can be concluded that with active layer thickening due to permafrost degradation, massive amounts of soil carbon would be emitted as greenhouse gases, and the permafrost region would become a carbon source with a positive feedback effect on climate warming. Hence, more attention should be paid to the influences of the active layer changes on soil carbon emission from these permafrost regions. 相似文献
16.
The process of creating man made or “cut” slopes in rock invariably leads to stress relief within the rock mass which in turn induces a certain degree of fracturing and disturbance. The level of disturbance can be particularly significant when the slope is formed using blasting techniques. However, the effects of this disturbance on the overall rock slope stability have not been investigated thoroughly in the current literature. In order to account for rock mass disturbance during construction, a disturbance factor has been included in the Hoek–Brown failure criterion [1]. This paper uses finite element upper and lower bound limit analyses to estimate rock slope stability based on the Hoek–Brown failure criterion whilst including the effect of rock mass disturbance. A rigorous set of analyses have been performed where the level of disturbance is considered as constant or linearly varying throughout the slope. The results are then compared to a number of reported case histories for verification purposes. From the results of this study, the disturbance factor was found to have significant influence on the rock slope stability assessment, especially for poorer quality rock masses. Hence, cautious engineering judgement must be exercised when estimating the level of disturbance. In addition, utilising stability charts to estimate the stability of cut rock slopes without considering the rock mass disturbance may lead to significant overestimations. 相似文献
17.
In this study, the effect of diesel fuel contamination on the electrical properties of unsaturated soils was estimated in
the low frequency ranges. For the soils having 5% water content, the electrical resistivity increased with the diesel fuel
contents while the permittivity decreased at higher diesel contents. However, at 15% water content, the variation of electrical
properties was not significant possibly because most of the electric currents should occur through the pore water. The linear
relationship between the electrical resistivity and the diesel fuel contents in soil was developed at 5% water content, which
implied that the electrical resistivity could be used to quantify the extent of diesel fuel contamination in soil. The results
indicated that the electrical properties including the resistivity and the permittivity could give the reliable estimation
on the diesel contamination with the low water content in soil and the frequency applied below 1 MHz. 相似文献
18.
Eastern and western portions of the Jinchuan ultramafic intrusion have previously been interpreted as dismembered segments
of a single elongate intrusion by late faults. However, the different stratigraphic sequences of the two portions indicate
that they are originally two separate intrusions, referred to as Eastern and Western intrusions in this study. The Eastern
intrusion is characterized by a concentric distribution of rock types with a core of sulfide dunite enveloped by lherzolite,
whereas the Western intrusion is composed of the Upper and Lower units, interpreted as magmatic mega cycles with regular variations
in lithology and chemistry. In the Western intrusion, the Upper unit consists of fine-grained dunite, lherzolite, and pyroxenite
from its base to its top. The MgO contents decrease upward from the dunites (42–45 wt.%) to the lherzolites (36–41 wt.%),
while Al 2O 3 and incompatible elements increase upward. In contrast, the Lower unit consists of coarse-grained dunites and lherzolites
containing 37–40 and 28–35 wt.% MgO, respectively. Sharp contacts between the Upper and Lower units and fine-grained dunite
xenoliths at the top of the Lower unit indicate that the Lower unit intruded along the base of the Upper unit. Disseminated
and net-textured sulfides primarily occur in the Lower unit and comprise the no. 24 ore body. Very low S contents (<100 ppm)
of the wall rocks at Jinchuan indicate that they were not the source of S causing sulfide immiscibility. Sulfide segregation
more likely occurred in deep-seated magma chambers, and sulfides were deposited in the Western intrusion when sulfide-bearing
magmas passed through the intrusion. In contrast, the Eastern intrusion was formed by injections of sulfide-free and sulfide-bearing
olivine-crystal mushes, respectively, from another deep-seated staging magma chamber. The Eastern and Western intrusions and
the deep-seated magma chambers comprise a complicated magma plumbing system at Jinchuan. Normal faults played a significant
role in the formation of the magma plumbing system and provided pathways for the magmas. 相似文献
20.
Whole-rock geochemical analyses using major and trace elements in combination with the Sm–Nd and Pb–Pb isotope systems, together with SHRIMP age dating on metasedimentary rocks from the Sierras de Chepes, the Sierras de Córdoba, the Sierra Norte and the San Luis Formation in the Sierra de San Luis, have been carried out to unravel the provenance and the geodynamic history of the Eastern Sierras Pampeanas, Central Argentina. The geochemical and the Sm–Nd data point to a slightly stronger mafic and less-fractionated material in the provenance area of the Sierras de Córdoba when compared to the other units. The T DM model ages from the Sierras de Chepes (~1.82 Ga) and the Sierra Norte (~1.79 Ga) are significantly older than the data from the Sierras de Córdoba (1.67 Ga). The Pb data are homogeneous for the different units. Only the 208Pb/ 204Pb ratios of some samples from the Sierras de Córdoba are higher. A late Pampean detrital zircon peak around 520 Ma from the Sierras de Chepes is in accordance with the new data from the San Luis Formation. This is similar to the literature data from the Famatina Belt located to the northwest of the Sierras de Chepes and also fits the detrital zircon peaks in the Mesón group. These maximum depositional ages were also reported from some locations in the Puncoviscana Formation but are absent in the Sierras de Córdoba. An improved model for the development of the Eastern Sierras Pampeanas in the area between the Sierras de Córdoba and the Puncoviscana Formation is provided. This gives new insights into the late Pampean development of the Sierra de San Luis and the complex development of the Eastern Sierras Pampeanas. This new model explains the younger detrital ages in the Puncoviscana Formation compared with the older ages of the Sierras de Córdoba. Another model of the Sierra de San Luis explains the younger depositional ages of the Pringles Metamorphic Complex and the San Luis Formation when compared to the Nogolí Metamorphic Complex and the Conlara Metamorphic Complex. Additionally, the rather fast change of the high-grade metamorphic conditions in the Pringles Metamorphic Complex and the low-grade metamorphic conditions in the San Luis Formation is explained by extension, the ascent of (ultra) mafic material and later folding and erosion. 相似文献
|