首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
李计生  王静 《地下水》2014,(2):87-90
河川基流量是水文水利分析计算、水资源评价、洪水分析、地下水径流特性分析中的重要内容。国内外河川基流量分割方法很多,不同方法的分割结果也不尽相同。通过对甘肃黄河流域洮河水系4个水文站,长江流域白龙江水系2个水文站、内陆河流域黑河水系3个水文站共计9站的1980~2000年20a的实测资料运用滤波算法对基流进行切割,根据年径流量运用PⅢ型曲线查出频率,再根据频率与基流建立模型,得到河川基流量计算的简便实用方法,提高山丘区地下水资源量评价的效率,细化水资源评价结果,便于推广使用。  相似文献   

2.
阿克苏河洪水类型及其形成的500hPa环流特征   总被引:9,自引:6,他引:9  
利用阿克苏河两条支流和干流的月径流量以及年最大洪峰流量资料,分析了阿克苏河的洪水特征.阿克苏河西支托什干河主汛期在5~8月,北支库玛拉克河与阿克苏河干流的主汛期在7~8月,库玛拉克河的洪水对阿克苏河干流洪水作用更大.托什干河洪水以融雪型、融雪叠加暴雨型两种类型为主,库玛拉克河洪水以融雪(冰)型、融雪(冰)叠加冰湖溃坝型为主,阿克苏河干流洪水以混合型最多见,其次是融雪(冰)型.年最大流量排名前15位的洪水中,阿克苏河两条支流与干流在1987年以后分别出现了7~9a,在此基础上分析归纳了三类形成阿克苏河流域主要洪水的500hPa环流模型.阿克苏河流域主汛期形成混合型洪水的500hPa环流特征为:新疆高压脊稳定在天山山区中部及以东地区,5880gpm等高线北界稳定在天山上空或天山以北,西部边界在帕米尔高原以东的南疆盆地上空,中亚地区为副热带低槽活动区,环流形势相对稳定.主汛期形成融雪(冰)型洪水的500hPa环流特征为:新疆高压脊向北发展且稳定维持3d以上,5880gpm等高线北界稳定在天山以北,西部边界在帕米尔高原以西.春季形成融雪型洪水的500hPa环流特征为:帕米尔高原及西天山受新疆高压脊控制,稳定维持3d以上,高压脊内5840gpm等高线北边界维持在40°N以北.  相似文献   

3.
Headwater stream, draining from a rural catchment in NW Spain, was sampled during baseflow and storm-event conditions to investigate the temporal variability in dissolved and particulate Al, Fe, Mn, Cu and Zn concentrations and the role of discharge (Q), pH, dissolved organic carbon (DOC) and suspended sediment (SS) in the transport of dissolved and particulate metals. Under baseflow and storm-event conditions, concentrations of the five metals were highly variable. The results of this study reveal that all metal concentrations are correlated with SS. DOC and SS appeared to influence both the metal concentrations and the partitioning of metals between dissolved and particulate. The SS was a good predictor of particulate metal levels. Distribution coefficients (KD) were similar between metals (4.72–6.55) and did not change significantly as a function of discharge regime. Stepwise multiple linear regression analysis reveals that the most important variable to explain storm-event KD for Al and Fe is DOC. The positive relationships found between metals, in each fraction, indicate that these elements mainly come from the same source. Metal concentrations in the stream were relatively low.  相似文献   

4.
The Paraná River is one of the largest drainage systems in the Americas. Its hydrology is characterized by an active teleconnection with the ENSO, and by a significant discharge increase trend, evident since the mid-1970s. An Eh–pH data set collected in the Paraná’s middle stretch suggests that large flood events, such as the one triggered by the 1982–1983 ENSO, are discernible in the plot, probably due to the influx of water draining flood plain water bodies. The total (particulate + dissolved) concentration of a set of heavy metals (Cr, Mn, Ni, Cu, Zn, As, Cd, and Pb) was determined in a downriver survey of the middle stretch. With the exception of Cu, Cd, and Pb, the metals exhibit a significantly increasing concentration trend towards the river mouth. The slopes of the regression lines imply that Zn and Ni, on one hand, and Mn and Cr, on the other would have common controlling sources. Another set of analyses were performed during the 1982–1983 flooding event; besides an increased variability observable during the flood arrival, most elements, with the only exception of Pb, did not show a variability coherent with the discharge series.  相似文献   

5.
Water samples were analyzed for DOC and trace metals from Bagmati River within Kathmandu valley, Nepal, to understand the variation trends of DOC and trace metals and their relationship along the drainage network. The variability in organic matter and wastewater input within the Bagmati drainage basin appeared to control DOC and most of the trace metal concentration. The large input of organic matter and wastewater creates anoxic condition by consuming dissolved oxygen and releasing higher concentrations of DOC, trace elements such as nickel, arsenic, barium, cadmium, and copper with downstream distance. Concentrations of DOC and trace metals like barium and zinc showed strong relationships with human population density and suggest that human activities have strong control on these parameters along the drainage network. The DOC and most of the trace metal concentration increased with downstream distance and appeared to be directly associated with human activities. The variation trends of most of the trace metals appeared to be the same; however, concentration varied widely. Inputs of organic matter and wastewater due to human activities appeared directly to be associated for the variation of DOC and trace metals along the Bagmati drainage network within Kathmandu valley.  相似文献   

6.
Once or twice weekly, water sampling was undertaken for a two and a half year period in the Kalix River, northern Sweden. Soil water, groundwater, water in tributaries and mire water were also sampled at several occasions. Samples were filtered and analysed for major dissolved elements and TOC. Although only 5 of the bedrock in the Kalix River drainage basin is situated in the Caledonian mountains (mostly schist, with some outcrops of dolomite and limestone), the chemical composition of the river, at the river mouth, is clearly influenced by water from the mountain areas. High dissolved Ca/Mg ratios in June and July indicate a large influence of water from the mountain areas during summer. The dissolved Si/Mg ratio increases when water from the woodland (bedrock consisting of Precambrian granitoids) predominates during snowmelt in May, but the ratio is low during summer when water from the mountains is increased. However, the low Si concentrations in the mountain areas are probably not primarily the result of the different rocks but more a reflection of the less intense weathering of silicate minerals in the mountains. High Si/Mg ratios are closely related to high TOC. All the major dissolved elements, except TOC, are diluted by snowmelt in May. However, the dilution varies for different elements. Based on the interpretations of major element ratios the melt water discharge in May reflects two major compartments in the woodland; peatland areas and the upper section of the soil. During summer and autumn storm events in the woodland most of the storm water originated from peatland. High K/Mg ratios in the river in May are related to water discharge from the upper section of the till. Low S/Mg ratios in the river indicate an influence of mire water from the woodland both during melt water discharge in May and during increased water discharge in autumn. The Ca/Mg ratios in tributaries in the woodland are consistently lower during melt water discharge compared with values in August. The lower Ca/Mg ratio in May probably reflects water that has been in contact with the B-horizon in the till during spring flood. Data show that the TOC discharged during spring flood originates from two major compartments in the landscape, the upper soil profile and peatland. Storm discharge of TOC during the rest of the year originates mostly from peatland.  相似文献   

7.
River systems play an important role in the global carbon cycle. Rivers transport carbon to the ocean and also affect the carbon cycle in the coastal ocean. The flux from land to the ocean is thought to be a very important part of the land carbon budget. To investigate the effect of dam-building on dissolved organic carbon (DOC) in rivers, three reservoirs of different trophic states in the Wujiang basin, Guizhou Province, were sampled twice per month between May 2011 and May 2012. Temporal and spatial distributions of DOC in the reservoirs and their released waters were studied. It was found that different factors controlled DOC in river water, reservoir water, and released water. DOC in the rivers tended to be affected by primary production. For reservoirs, the main controlling factors of DOC concentration varied by trophic state. For the mesotrophic Hongjiadu Reservoir, the effect of primary production on DOC concentration was obvious. For the eutrophic Dongfengdu Reservoir and the hypereutrophic Wujiangdu Reservoir, primary production was not significant and DOC came instead from soil and plant litter.  相似文献   

8.
《Geodinamica Acta》2013,26(5-6):255-266
The Sambor Prei Kuk archaeological site in lower reach of the Stung Sen River, central Cambodia, is the site of the capital city of the pre- Angkor state of Chenla. The location of Sambor Prei Kuk is discussed in relation to the geomorphological characteristics of lower reach of the Stung Sen River and the requirements of the inhabitants. The uplands were divided into upland I, which is characterized by hills, and uplands II and III, both of which have flat surfaces, with upland III lower than upland II. The present river follows a meandering course within a conspicuous meander scroll zone, and deposits along the channel are repeatedly eroded and redeposited. Back marsh areas have gradually filled with suspended flood water sediments during the last 4600 years at an accumulation rate of 0.6 mm/yr. The floodplain and lake plain were divided into five zones to evaluate the monsoonal flood risk and accessibility to upland, considering uplands distribution. Sambor Prei Kuk on upland II with the port town adjacent the river is situated on the place where water transport is feasible and the risk of monsoonal flood is low, which means the people accommodated to the highly different dry and monsoonal environment.  相似文献   

9.
长江氮的输送通量   总被引:13,自引:0,他引:13       下载免费PDF全文
沈志良 《水科学进展》2004,15(6):752-759
1997年枯水期(11~12月)和1998年丰水期(8月和10月),对长江流域从金沙江至河口干流和主要支流、湖泊各种形态的氮(N)进行了调查。各种形态N的基本输送模式为,从上游至河口通量逐渐增加,其中以硝酸盐(NO3-N)、溶解无机氮(DIN)、总溶解氮(TDN)和总氮(TN)最显著,这与它们的稳定程度有关。长江口各种形式N的输出通量大部分是由中、下游贡献的,特别是枯水期。支流和湖泊贡献的N大约占输出通量的一半以上,其中洞庭湖水系贡献最大,鄱阳湖水系次之。长江枯、丰期三态无机N的输送和输出通量中,NO3 N占绝大部分。各种形式的溶解N输送和输出通量中,DIN是主要的。在所有形式的N中,溶解形式的N占绝大部分。长江枯、丰期干、支流各种形式N通量和长江口各种形式N的输出通量主要受径流量所控制,与人类活动密切相关。并提出了长江各种形式N的输送方程式。  相似文献   

10.
长江中下游江湖关系演变趋势数值模拟   总被引:5,自引:1,他引:4       下载免费PDF全文
以长江中下游防洪系统为对象,概述了在大型复杂防洪系统洪水行为数值模拟基础上,成功地将长江中下游洪水演进数学模型转化为面向长江防洪系统防洪规划方案评估需求的长江中下游江湖水沙演变的数学模型.为适应防洪规划方案论证涉及江湖水沙相互制衡相互关联客观情况,建立了面向江湖水沙关系及其演变的数学模型.针对长江中下游江湖水沙运动特点,在水沙数值模拟的范围内侧重对下荆江河道冲刷、荆江三口分流分沙模式、洞庭湖泥沙淤积、江湖耦合等环节进行了讨论,提出了合理可行的数值处理方法.模拟结果较好反映了江湖水沙演变规律,主要成果已应用于长江中下游防洪规划和防汛调度方案中.  相似文献   

11.
 Karstic aquifers are highly susceptible to rapid infiltration of river water, particularly during periods of high flow. Following a period of sustained rainfall in the Suwannee River basin, Florida, USA, the stage of the Suwannee River rose from 3.0 to 5.88 m above mean sea level in April 1996 and discharge peaked at 360 m3/s. During these high-flow conditions, water from the Suwannee River migrated directly into the karstic Upper Floridan aquifer, the main source of water supply for the area. Changes in the chemical composition of groundwater were quantified using naturally occurring geochemical tracers and mass-balance modeling techniques. Mixing of river water with groundwater was indicated by a decrease in the concentrations of calcium, silica, and 222Rn; and by an increase in dissolved organic carbon (DOC), tannic acid, and chloride, compared to low-flow conditions in water from a nearby monitoring well, Wingate Sink, and Little River Springs. The proportion (fraction) of river water in groundwater ranged from 0.13 to 0.65 at Wingate Sink and from 0.5 to 0.99 at well W-17258, based on binary mixing models using various tracers. The effectiveness of a natural tracer in quantifying mixing of river water and groundwater was related to differences in tracer concentration of the two end members and how conservatively the tracer reacted in the mixed water. Solutes with similar concentrations in the two end-member waters (Na, Mg, K, Cl, SO4, SiO2) were not as effective tracers for quantifying mixing of river water and groundwater as those with larger differences in end-member concentrations (Ca, tannic acid, DOC, 222Rn, HCO3). Received, March 1999 / Revised, July 1999 / Accepted, July 1999  相似文献   

12.
沈倩娜  张霞 《水文》2021,41(2):80-85
2017年6月下旬到7月初,2019年7月上旬到中旬,湘江干流接连发生特大洪水.通过分析湘江流域多个测站的水文整编资料,结合部分实时信息,从降雨过程时空分布、干支流有关测站洪水水位流量过程、洪水组成、洪量、洪水传播时间与宣泄速度等方面,对2017年洪水与2019年洪水的暴雨洪水特征进行了对比分析.2017年洪水,湘潭站...  相似文献   

13.
Coal seam gas (CSG, or coal bed methane) mining is rapidly growing, with poorly understood impacts on groundwater and surface water systems. Here, we use chemical tracers to investigate groundwater-surface water connectivity in an Australian river system (Richmond River Catchment, New South Wales) prior to CSG extraction but after ∼ 50 exploratory CSG wells were drilled. We performed four surveys of 29 interconnected creek and river sites, over contrasting hydrological conditions. Radon was used to determine if a surface water segment was gaining groundwater. Radon observations over four seasons revealed that 28 out of 77 surface water segments were clearly gaining groundwater, 5 were possibly gaining groundwater and 44 were undetermined. This is equivalent to gaining segments in 333 km (39%) of surface water from the 864 km being investigated. High spatial and temporal variability in groundwater gaining segments was found. Na/Cl ratios were used to determine the fraction of groundwater in surface water. Overall, the groundwater contribution in surface waters was 14–24% higher in post flood conditions than during the other three surveys of baseflow and moderate flow conditions. The results serve as a regional baseline assessment of river water chemistry and groundwater-surface water connectivity prior to the planned development of CSG fields. Our geochemical tracer approach allows for a quick qualitative assessment of groundwater-surface water connectivity in poorly gauged river systems and can define priority locations where groundwater extraction for CSG mining should be carefully managed.  相似文献   

14.
Dissolved trace elements and heavy metals of waters and sediments in the ten shallow lakes in the middle and lower reaches of the Yangtze River region were determined to identify their composition and spatial distribution, and to assess the extent of their environmentally detrimental effects by comparison with water and sediment quality guidelines. Results indicated that As and Pb were the main pollutants in lake waters and Mn and Hg the potential ones, while As, Cu and Pb were the main pollutants in lake sediments. Their spatial distribution indicated that Daye Lake was seriously polluted by metals, which was corroborated by cluster analysis. Higher concentrations of trace elements have been found in lakes downstream of the Yangtze River delta, and higher concentrations of metals have been recorded in sediments of upstream lakes, suggesting that metals in water were more sensitive to anthropogenic activities and that metals in sediment were mainly controlled by minerals. Correlation analyses demonstrated that there were stronger associations among metals in lake sediments than those in lake waters, and their good relationships suggested the common sources. Further research on the subject will help develop water quality management with the aim of restoring shallow lakes in the Yangtze River.  相似文献   

15.
流域洪灾的形成直接受到地质、地貌条件的制约。洪灾是由洪水引发的,但洪水并不等于洪灾,由暴雨发展为洪水、洪灾是一种外动力地质作用过程。暴雨是一种气象现象,洪水是一种水文现象,而暴雨→洪水→洪灾,则是一种地质过程。因此,地质学在防洪、减灾中具有重要意义。根据地质学原理,长江防洪策略为:①沿江干堤不宜继续加高;②干堤加固应因地(地质、地貌条件)制宜,要考虑到三峡工程可能引起的河流地质作用变化;③启用古河道分流泄洪;④“退田还湖”与“挖泥还湖”相结合;⑤“平垸行洪”与“民垸蓄洪”结合;⑥实施有计划地开提放淤工程,防洪与除渍结合;⑦区段综合治理与全流域系统治理结合。  相似文献   

16.
In order to constrain the origin and fluxes of elements carried by rivers of high latitude permafrost-dominated areas, major and trace element concentrations as well as Sr and U isotopic ratios were analyzed in the dissolved load of two Siberian rivers (Kochechum and Nizhnyaya Tunguska) regularly sampled over two hydrological cycles (2005-2007). Large water volumes of both rivers were also collected in spring 2008 in order to perform size separation through dialysis experiments. This study was completed by spatial sampling of the Kochechum watershed carried out during summer and by a detailed analysis of the main hydrological compartments of a small watershed. From element concentration variations along the hydrological cycle, different periods can be marked out, matching hydrological periods. During winter baseflow period (October to May) there is a concentration increase for major soluble cations and anions by an order of magnitude. The spring flood period (end of May-beginning of June) is marked by a sharp concentration decrease for soluble elements whereas dissolved organic carbon and insoluble element concentrations strongly increase.When the spring flood discharge occurs, the significant increase of aluminum and iron concentrations is related to the presence of organo-mineral colloids that mobilize insoluble elements. The study of colloidal REE reveals the occurrence of two colloid sources successively involved over time: spring colloids mainly originate from the uppermost organic-rich part of soils whereas summer colloids rather come from the deep mineral horizons. Furthermore, U and Sr isotopic ratios together with soluble cation budgets in the Kochechum river impose for soluble elements the existence of three distinct fluxes over the year: (a) at the spring flood a surface flux coming from the leaching of shallow organic soil levels and containing a significant colloidal component (b) a subsurface flux predominant during summer and fall mainly controlled by water-rock interactions within mineral soils and (c) a deep groundwater flux predominant during winter which enters large rivers through unfrozen permafrost-paths. Detailed study of the Kochechum watershed suggests that the contribution of this deep flux strongly depends on the depth and continuous nature of the permafrost.  相似文献   

17.
2020年长江上游和中下游先后发生特大洪水,其中干流编号洪水全部发生在上游,构成了长江流域洪水的主要部分。首先回顾2020年洪水及洪灾情况,然后根据历史上几次特大洪水过程和历年实测资料,分析长江上游洪水特征、洪灾类型及特点,最后提出新时代长江流域洪水整体防御战略及山洪灾害防治战术。研究表明:金沙江洪水是长江上游洪水基础部分,岷江、嘉陵江和干流区间是洪峰的主要来源,三者洪水遭遇是产生上游特大洪水的主因,上游洪水又是全流域特大洪水的基础和重要组成部分。目前造成洪灾死亡人数最多的是山洪以及山洪引起的地质灾害,财产损失最大的是中下游及湖泊地区。未来堤防仍然是防洪的基础,提高沿江城市防洪标准主要手段是控制性水库的联合优化调度,而减少洪涝灾害损失最有效的途径是给洪水以空间的自然解决方案等非工程措施。  相似文献   

18.
The discharge of major cations and dissolved organic carbon (Corg) with water of the Ob River and its tributaries along the natural zones within the Ob River basin was calculated, and the contribution of the underground component to the volumes of total discharge of the Ob River basin was estimated. It was demonstrated that the total chemical composition of river water and the geochemical discharge in the Ob River basin were consistent with the zoned hydroclimatic conditions controlling the character and duration of interaction in the water–rock system. It was established that the average ionic discharge of the Ob River increased from 6–7 × 106 t/year near Barnaul to 46–47 × 106 t/year near Salekhard; the discharge of dissolved Corg increased from 0.1 × 106 to 3.8 × 106 t/year. Multiple enrichment of underground waters of the Ob River in dissolved organic matter from the upper to the lower reaches was revealed.  相似文献   

19.
The St. Lawrence River discharges a substantial volume of water (405 km3/a) containing suspended (SPM; 3.42 × 106t) and dissolved (68.0 × 106t) materials to the Gulf of St. Lawrence. The total load contains organic carbon in paniculate (POC; 3–14% of SPM), and dissolved (DOC; 3.76 ± 0.63 mg/l) form. The concentration of POC (and particulate organic nitrogen) is positively correlated with discharge (increased during the spring flood and the fall enhancement of flow), but concentration of DOC is not so simply related to discharge. In consequence, the total organic carbon (POC + DOC) load is relatively invariant, and increased annually by only 2–3% despite a progressive increase of 8% in discharge over the years of this study. Seasonal differences in the composition of the particulate organic matter (POM) are interpreted as reflecting dominant contributions from within-river production in summer and from terrestrial sources in spring and fall. In years when the annual discharge was greater than average, a higher proportion of the POM was terrigenous. The organic matter in surface sediments of the estuary to which the river discharges is predominantly of terrestrial provenance.  相似文献   

20.
The interaction between heavy metals and river sediment is very important because river sediment is the sink for heavy metals introduced into a river and it can be a potential source of pollutants when environmental conditions change. The Kumho River, the main tributaries of the Nakdong River in Korea, can be one of the interesting research targets in this respect, because it runs through different geologic terrains with different land use characteristics in spite of its short length. Various approaches were used, including mineralogical, geochemical, and statistical analyses to investigate the distribution and behavior of heavy metals in the sediments and their sources. The effect of geological factor on the distribution of these metals was also studied. No noticeable changes in the species or relative amounts of minerals were observed by quantitative X-ray diffraction in the sediments at different stations along the river. Only illite showed a significant correlation with concentrations of heavy metals in the sediments. Based on an average heavy metal concentration (the average concentrations of Cd, Co, Cr, Cu, Ni, Pb, and Zn were 1.67, 20.9, 99.7, 125, 97.6, 149, 298 ppm, respectively), the sediments of the Kumho River were classified as heavily polluted according to EPA guidelines. The concentrations of heavy metals in the sediments were as follows: Zn > Pb > Cu > Ni > Cr > Co > Cd. In contrast, contamination levels based on the average I geo (index of geoaccumulation) values were as follows: Pb > Cd > Zn > Cu > Co = Cr > Ni. The concentrations of heavy metals increased downstream (with the exception of Cd and Pb) and were highest near the industrial area, indicating that industrial activity is the main factor in increasing the concentrations of most heavy metals at downstream stations. Sequential extraction results, which showed increased heavy metal fractions bound to Fe/Mn oxides at the downstream stations, confirmed anthropogenic pollution. The toxicity of heavy metals such as Ni, Cu, and Zn, represented by the exchangeable fraction and the fraction bound to carbonate, also increased at the downstream stations near the industrial complexes. Statistical analysis showed that Pb and Cd, the concentrations of which were relatively high at upstream stations, were not correlated with other heavy metals, indicating other possible sources such as mining activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号