首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inspection of recent spectra presented by Sivjee (1983) show evidence of the 0–4 and 0–5 bands of the N2(c41Σu+a1Πg) Gaydon-Herman system. In conjunction with earlier spectra, it is now possible that this band system is a significant auroral component, with an intensity approx. 7% that of the N2 2P system. The absence in aurorae of the potentially far stronger N2(c41Σu+X1Πg) system is discussed. It is that the O2(A3Σu+X3Σg) band system is indiscernible in Sivjee's auroral spectra, under conditio the foreground nightglow is expected to be clearly visible. On the other hand, at least one relatively strong O2(A3Δua1Δg) band appears to be present in these spectra.  相似文献   

2.
The existence of sidereal semidiurnal variation of cosmic-ray intensity in a rigidity region 102-103 GV has been reported by many researchers, but there is no consensus of opinion on its origin. In this paper, using the observed semidiurnal variations in a rigidity range (300–600 GV) with 10 directional muon telescopes at Sakashita underground station (geog. lat. = 36°, long. = 138°E, DEPTH = 80 m.w.e.), the authors determine the magnitudes (η1, η2) and directions (a1, a2) of the first- and second-order anisotropies in the following galactic cosmic-ray intensity distribution (j)
jdp = j0{1 + η1P1(cos χ1) + η2P2(cos χ2)}dp
, where Pnis the nth order spherical function and χn is the pitch angle of cosmic rays with respect to an. For the determination, the influence of cosmic-ray's heliomagnetospheric modulation, geomagnetic deflection and nuclear interaction with the terrestrial material and also of the geometric configuration of the telescopes are taken into account. Usually, the semidiurnal variation is produced by the second-order anisotropy. The present observation, however, requires also the first-order anisotropy which usually produces only the diurnal variation, but can produce also the semidiurnal variation as a result of the heliospheric modulation. The first- and second-order anisotropies are characterized with η1) > 0 and η2 < 0 have almost the same direction (a1 a2) specified by the right ascension ( 0.75 h) and declination (δ 50°S) and, therefore, they can be expressed, as a whole, by an axis-symmetric anisotropy of loss-cone type (i.e. deficit intensities in a cone). It is noteworthy that this anisotropy approximately coincides with that inferred from the air shower observation at Mt Norikura in the rigidity region 104 GV.  相似文献   

3.
Evidence is presented to suggest that the ƒ0Es value tends to be high at positions in the Es-layer where trough slope-lines and crest slope-lines of F2-layer irregularities meet the Es-layer. These slope-lines are drawn through the troughs and crests, respectively, of the characteristic kinks in the F2-layer ionization contours, which are associated with F2-layer irregularities.

A rotating-loop direction-finding system has allowed an estimation of the distribution of ionization, which gives rise to Sporadic-E echoes. Analysis of Sporadic-E occurrence, on two occasions, suggests that the reflecting surfaces are frontal in nature, the fronts having a separation from each other of some tens of kilometres, and probably existing as closed curves, with diameters of the order of several hundreds of kilometres. A possible association between these structures and the occurrence of the green line of the airglow, is discussed.

A distribution of ionization, which will give contours showing “clouds” of ionization at some frequencies and a ripple structure at other frequencies, is proposed, in an endeavour to explain the apparent dual nature of Sporadic-E occurrence.

The evidence seems to indicate that the mechanism operating at the Es-layer level, producing the phenomenon of Sporadic-E, is the same as that which produces the F2-layer irregularities which are responsible for “Spread-F”.  相似文献   


4.
A conductive ionosphere and a totally non-conductive layer of the atmosphere close to the surface of the planet form a quasispherical concentric resonator. This provides in principle for the possibility of the existence of global resonances of an electromagnetic field generated by thunderstorm activity or by hydromagnetic waves excited in an upper ionosphere and transformed into ordinary electromagnetic waves while penetrating the resonator. We have obtained an estimate of resonance frequencies of a Martian resonator: ƒ1 13–14 Hz,ƒ2 24–26 Hz, ƒ3 35–38 Hz, etc. for two essentially different models of electron density distribution in the low ionosphere of Mars. The corresponding estimated quality values are low: Qn 2–4. A relatively wide range of the quality variation depending on a model of averaged altitudinal electron density distribution in the low ionosphere of Mars yields the criterion for an adequate model.  相似文献   

5.
Measurements of the density at the F2 peak (NmF2) were obtained by the Boulder, Colorado, ionosonde as part of the SUNDIAL-86 campaign. The measurements were made during a period of low to moderate geomagnetic activity following a “disturbed” day. These measurements were then used to estimate the height of the F2 peak (hmF2). A three-dimensional time-dependent model of Earth's ionosphere was used to calculate NmF2 and hmF2 using the vertical plasma drift as a free parameter. Since the plasmasphere-ionosphere exchange flux can remain upward during the night for these conditions, different feasible flux scenarios were inputed to the ionospheric model. These different flux scenarios had a large effect on the “induced” vertical plasma drifts required to match the measurements (i.e. at times greater than a factor of 2 in speed or a difference in direction). Futhermore, uncertainty in the O+---O collision frequency changes the required vertical plasma drift at night. Despite knowledge of hmF2, interpretation of the vertical plasma drifts as meridional neutral winds is compromised by a lack of knowledge of the plasmasphere-ionosphere exchange flux following disturbed days.  相似文献   

6.
Correlation of cosmic-ray intensity (I) with the solar magnetic field expanded into the spherical surface harmonics, Bns(n 9), by Hoeksema and Scherrer has been studied using the following regression equation:
, where are subgroups of Bns classified in ascending order of n, and τi is the time lag of I behind correlation coefficient between the observed and simulated intensities (Iobs, Isml) in the period 1976–1985 is 0.87 and considerably better than that derived from any single index of solar activity. The lag time τ3 is greater than others, indicating that the higher order magnetic disturbances effective to the cosmic-ray modulation have a longer lifetime in space than the lower order disturbances. The rigidity spectrum of the cosmic-ray intensity variation responsible for AI due to the dipole moment is harder than those for others (A2,A3), indicating that the lowest order (i.e. largest scale) magnetic disturbances can modulate cosmic rays more effectively than the higher order disturbances. As another result of the present analysis, it has been found that the intensity depends also on the polarity of the polar magnetic field of the Sun; the residual (IobsIsml) of the simulation changes its sign from positive to negative with a time lag (0–5 Carrington rotation periods) behind the directional change of the solar magnetic dipole moment from northward to southward, and has a softer rigidity spectrum than AiS. The dependence is consistent with the result having been obtained in the previous period, 1936–1976, by one (K.N.) of the present authors. The polarity dependence can be found also in the 22-year variation of the time lags obtained every solar cycle in the period 1936–1985. The theoretical interpretation of these polarity dependences is discussed on the basis of the diffusion-convection-drift model.  相似文献   

7.
N. Hiotelis   《New Astronomy》2002,7(8):531-539
We present density profiles, that are solutions of the spherical Jeans equation, derived under the following two assumptions: (i) the coarse grained phase-density follows a power-law of radius, ρ/σ3r, and (ii) the velocity anisotropy parameter is given by the relation βa(r)=β1+2β2 (r/r*)/[1+(r/r*)2] where β1, β2 are parameters and r* equals twice the virial radius, rvir, of the system. These assumptions are well motivated by the results of N-body simulations. Density profiles have increasing logarithmic slopes γ, defined by γ=−d ln ρ/d ln r. The values of γ at r=10−2.5rvir, a distance where the systems could be resolved by large N-body simulations, lie in the range 1.0–1.6. These inner values of γ increase for increasing β1 and for increasing concentration of the system. On the other hand, slopes at r=rvir lie in the range 2.42–3.82. A model density profile that fits well the results at radial distances between 10−3rvir and rvir and connects kinematic and structural characteristics of spherical systems is described.  相似文献   

8.
The simultaneous observations of Pc4 geomagnetic pulsations at the two temporary stations, located along the geomagnetic meridian 50 km to the North and South from the observatory Borok (L = 2.8), have been used for the investigation of amplitude gradients of both H- and D-components of these pulsations. It has been discovered that the direction of a meridional component of the gradient H (gradMH) depends on the frequency ƒ of a spectral component of pulsations. The gradMD is directed more or less permanently northward independently from the frequency ƒ These results are the consequence of a local amplification of geomagnetic pulsations due to Alfvén waves resonance along the magnetic field lines. It has been demonstrated that the frequencies ƒR for which the northward direction of gradMH is replaced by the southward one (with increasing ƒ) can be interpreted as the eigen frequencies of the field line which intersects the meridian in the middle between two temporary stations, i.e. in Borok.

The possible applications of a gradient method of measurement of the magnetic field lines' eigen frequencies are discussed.  相似文献   


9.
Transport equations are used to determine coefficients which are generalizations for any frequency of electric field of the parallel, Pedersen and Hall conductivities in a fully ionized gas.

These coefficients are used in an investigation of the propagation of weak electromagnetic and hydromagnetic waves of all frequencies across a homogeneous and constant magnetic field in a rarefied fully ionized gas. For propagation perpendicular to the magnetic field it is found for all frequencies

(i)
(ii)
where V2 = H2/4π and v, h are the perturbations of the velocity, magnetic field. Similar relationships are deduced for propagation at any angle to the field for frequencies greater than about 10 times the gyrofrequency of electrons.

The theory is applied to discuss transmission of disturbance across the interplanetary medium, the temperature of the solar corona and the earth's outer atmosphere, the emission of non-thermal solar radio noise, cosmic radio noise and the anomalous emission of light from shock fronts.  相似文献   


10.
On the basis of radial velocity and Hipparcos proper motion data, we have analyzed the galactic kinematics of classical Cepheids. Using the 3-D Ogorodnikov-Milne model we have determined the rotational velocity of the Galaxy to be V0 = 240.5 ± 10.2 km/s, on assuming a glactocentric distance of the Sun of R0 = 8.5 kpc. The results clearly indicate a contracting motion in the solar neighbourhood of (∂Vθ∂θ)/R = −2.60 ± 1.07 km s−1 kpc−1, along the direction of galactic rotation. Possible reason for this motion is discussed. The solar motion found here is S = 18.78 ± 0.86 km/s in the direction l = 54.4° ± 2.9° and b = +26.6° ± 2.6°.  相似文献   

11.
A numerical analysis of cyclotron instabilities is carried out by computing the dispersion relation for a three component cold plasma-beam system. Rates of growth and damping for various values of the stream density are calculated from the dispersion relation. The rates of growth and damping increase monotonically as the number density of the proton stream increases. It is found that the frequencies at the rates of maximum growth and the damping decrease slightly to lower frequencies and a sharp peak at these frequencies becomes blunt. The minimum e-folding times of an ion cyclotron wave for (a) σs = 10−4, σi = 10−2 and (b) σs = 10−1, σi = 10−2 are about 3·84 and 0·16 sec respectively in the vicinity of the equatorial plane at 6 Re, where σs and σi are the ratios of the beam density Ns and the helium ion (H6+) density Ni to the total positive ions in the plasma-beam system.  相似文献   

12.
A comparison covering more than three decades is made between the seasonal variation of radar meteor influx and seasonal variations in the occurrence probabilities of ionosonde sporadic-E parametersƒ0Es and ƒbEs for different diurnal intervals at two Southern Hemisphere stations. The analyses show that for medium intensity 3Em type sporadic-E no clear correlation with major Southern Hemisphere meteor shower activity exists. This finding which does not support some earlier shorter period surveys suggests the need for further work into the aeronomy of Es source ions.  相似文献   

13.
We analysed the emission spectra of solar prominences using the complete linearization method [5] and found simultaneously the optical depth at the line centre τ0, the doppler width of the line ΔλD and the damping width a. The results show 1) that the complete linearization method has a larger radius of convergence, 2) that we must consider the variation of the source function with depth, when determining τ0, and 3) that the calculated values of the damping constant for the H, Hβ of hydrogen and H and K lines of Calcium are all much greater than the theoretical values from doppler broadening and radiation damping, showing that other mechanisms besides these two also contribute to the broadening of prominence lines.  相似文献   

14.
The system of transfer equations of the four Stokes parameters I, Q, U, V under the action of the magneto-optical effect (i.e. the Unno-Beckers equations) are numerically solved in this paper for the magneto-sensitive lines FeI λλ 6302.499 and 5324.191 using an appropriate sunspot model. The errors in the expressions for the coefficients r and W in Beckers' paper [2] have been corrected for. From the results of calculations, features of the profiles of the Stokes parameters dependent on the magnetic vector have been isolated. Our computations also show that the magneto-optical effect should be taken into consideration in the measurement of the vector magnetic fields.

In the fourth section of this paper we have established a simple and convenient method for obtaining-information on the magnetic vector (including the field strength B, its inclination to the line of sight γ and its azimuth χ) from the profiles of the Stokes parameters. It consists of three steps: (1) The value of B is determined from the distance of the highest point in the V-profile from the central line. (2) γ is then found from Vmax, i.e maximum value of V. (3) Lastly, the angle χ is found from Q0, i.e. the value of Q at line centre.  相似文献   


15.
Charged boson stars and vacuum instabilities   总被引:1,自引:0,他引:1  
We consider charged boson stars and study their effect on the structure of the vacuum. For very compact particle like “stars”, with constituent mass m* close to the Planck mass mPl, i.e. m2* = O(m2Pl), we argue that there is electric charge Zc, which, primarily, is due to the formation of a pion condensate (Zc 0.5−1e, where is the fine structure constant and e is the electric charge of the positron). If the charge of the “star” is larger than Zc we find numerical evidence for a complete screening indicating a limiting charge for a very compact object. There is also a less efficient competing charge screening mechanism due to spontaneous electron-positron pair creation in which case Zc −1e. Astrophysical and cosmological abundances of charged compact boson stars are briefly discussed in terms of dark matter.  相似文献   

16.
We have determined for the first time a spectroscopic orbit for WX Cnc. The orbital elements are V0 = +9.8 km/s, k1 = 110.2 km/s, K2 = 149.0 km/s, To = HJD 2446 480.0309. After combining with the published photometric results, we derive the the following absolute parameters: A = 6.32R, R1 = 1.53R, R2=1.18R, M1 = 1.29 M, M2 = 0.96M. The spectroscopic mass-ratio is q = 0.74.  相似文献   

17.
It is greatly expected that the relic neutrino background from past supernovae will be detected by Superkamiokande (SK) which is now under construction. We calculate the spectrum and the event rate at SK systematically by using the results of simulations of a supernova explosion and reasonable supernova rates. We also investigate the effect of a cosmological constant, Λ, on the spectrum, since some recent cosmological observations strongly suggest the existence of Λ. We find following results. (1) The spectrum has a peak at about 3 MeV, which is much lower than that of previous estimates (6–10 MeV). (2) The event rate at SK in the range from 10 MeV to 50 MeV, where the relic neutrinos from past supernovae are dominant, is about 25h502(RSN/0.1 yr−1)(nGh50−3/0.02 Mpc−3) events per year, where RSN is the supernova rate in a galaxy, nG is the number density of galaxies, and h50 = H0/(50 km/s Mpc), where H0 is the Hubble constant. (3) The event rate is almost insensitive to Λ. The flux increases in the low energy side (< 10 MeV) with increasing Λ, but decreases in the high energy side (> 10 MeV) in models in which the integrated number of supernovae in one galaxy is fixed.  相似文献   

18.
The evolution of the cosmic ray primary composition in the energy range 106–107 GeV (i.e. the “knee” region) is studied by means of the e.m. and muon data of the Extensive Air Shower EAS-TOP array (Campo Imperatore, National Gran Sasso Laboratories). The measurement is performed through: (a) the correlated muon number (Nμ) and shower size (Ne) spectra, and (b) the evolution of the average muon numbers and their distributions as a function of the shower size. From analysis (a) the dominance of helium primaries at the knee, and therefore the possibility that the knee itself is due to a break in their energy spectrum (at EkHe=(3.5±0.3)×106 GeV) are deduced. Concerning analysis (b), the measurement accuracies allow the classification in terms of three mass groups: light (p,He), intermediate (CNO), and heavy (Fe). At primary energies E0≈106 GeV the results are consistent with the extrapolations of the data from direct experiments. In the knee region the obtained evolution of the energy spectra leads to: (i) an average steep spectrum of the light mass group (γp,He>3.1), (ii) a spectrum of the intermediate mass group harder than the one of the light component (γCNO2.75, possibly bending at EkCNO≈(6–7)×106 GeV), (iii) a constant slope for the spectrum of the heavy primaries (γFe2.3–2.7) consistent with the direct measurements. In the investigated energy range, the average primary mass increases from lnA=1.6–1.9 at E01.5×106 GeV to lnA=2.8–3.1 at E01.5×107 GeV. The result supports the standard acceleration and propagation models of galactic cosmic rays that predict rigidity dependent cut-offs for the primary spectra of the different nuclei. The uncertainties connected to the hadronic interaction model (QGSJET in CORSIKA) used for the interpretation are discussed.  相似文献   

19.
Intensified Reticon spectra have been obtained at a high dispersion for the Algol system, RT Persei. They were measured by the cross-correlation technique. The spectroscopic elements, revised for the primary component and determined for the secondary for the first time, are: T0 = HJD 2,446,038.9332, K1 = 55.0, K2 = 194.7, V0 = −8.3 km/s. A mass ratio q = m2/m1 = 0.282 is deduced. A circular orbit is adopted. The spectrum of the primary is F5V, and the secondary is a subgiant. With the elements determined here and the published photometric parameters, the absolute dimensions of the binary are: A = 4.20, R1 = 1.20, R2 = 1.08 R; M1 = 1.08, M2 = 0.30 M.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号