首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tectonics of sedimentary basins: from crustal structure to basin fill   总被引:1,自引:0,他引:1  
《Tectonophysics》2002,346(1-2)
  相似文献   

2.
3.
Evidence for anisotropy in the super-thick sedimentary basin under the northern Bay of Bengal is presented. Surface wave group velocity data given by Brune and Singh (1986) is better fit by an anisotropic model than an isotropic one. This lends support to the hypothesis that the mid-crustal rocks are metasediments and that the section of sediments and metasediments is more than 20 km thick.  相似文献   

4.
Interpretation of a long-range seismic refraction line in Saudi Arabia has shown that beneath the Arabian Shield velocity generally increases with depth, from about 6 km s−1 at the surface to about 7 km s−1 at the top of the crust-mantle transition zone. The base of this transition zone (Moho) occurs at 37–44 km in depth. Intracrustal discontinuities can also be recognized, the most important being in the 10–20 km-depth range and separating the upper from the lower crust. Laterally, the variations in the intracrustal discontinuities and the total crustal thickness can be correlated with previously defined tectonic regions. Beneath the Red Sea shelf and coastal plain the crust, including 4 km of sediments, is only 15–17.5 km thick. With the aid of both seismic and gravity data an abrupt, steeply dipping transition from the crust of the Red Sea shelf and coastal plain to that of the Arabian Shield has been derived. With a jump of more than 20 km in Moho depth, this appears to be the major discontinuity between the Red Sea depression and the Arabian continental shield.  相似文献   

5.
《Gondwana Research》2015,28(4):1487-1493
Receiver function imaging along a temporary seismic array (ANTILOPE-2) reveals detailed information of the underthrusting of the Indian crust in southern Tibet. The Moho dips northward from ~ 50 km to 80 km beneath the Himalaya terrane, and locally reaches ~ 85 km beneath the Indus–Yalung suture. It remains at ~ 80 km depth across the Lhasa terrane, and shallows to ~ 70 km depth under the Qiangtang terrane. An intra-crustal interface at ~ 60 km beneath the Lhasa terrane can be clearly followed southward through the Main Himalaya Thrust and connects the Main Boundary Thrust at the surface, which represents the border of the Indian crust that is underthrusting until south of the Bangong–Nujiang Suture. A mid-crustal low velocity zone is observed at depths of 14–30 km beneath the Lhasa and Himalaya terranes probably formed by partial melt and/or aqueous fluids.  相似文献   

6.
Sea surface manifestations of internal waves (IW) in the shallow continental shelf waters of North Bay of Bengal have been observed in almost all seasons imaged by Synthetic Aperture Radar (SAR) images of ERS1/2 and Envisat ASAR missions during the period 1993–2004. Shoreward propagating short-period IW packets are observed particularly in summer stratified coastal waters Off Chilka region. In summer waters, prominent short-period shoreward propagating internal waves of consecutive imageries of ERS-1/2 SAR (12th and 13th April 1996) are studied. On 4th October 2003, Envisat ASAR imaged strong surface manifestations of huge internal wave group wavelengths and those propagations were discussed in detail. In the research, we also made an attempt for temporal distribution of IW signatures on SAR in North Bay of Bengal.  相似文献   

7.
秦岭造山带是华北板块和扬子板块南北两个大陆边缘长期演化的产物,各部分性质和时代不同,是一个复杂的构造混杂体。由于其所处位置的重要性,演化时间上的长期性、多旋回性,空间上的多样性、变异性,一直是地质和地球物理学研究的热点。为了沟通该区复杂的浅表地质现象与深部结构成像,获取更精细的上地壳结构成为厘定秦岭造山带不同块体之间接触关系,揭示其地球动力学演化过程的关键。本文对一条长450 km、南北向跨越鄂尔多斯地块南缘、渭河地堑、秦岭造山带、大巴山逆冲推覆带和四川盆地北缘的宽角反射与折射地震剖面采集的15个大炮数据进行了层析成像研究。本研究对690个初至走时拾取数据使用有限差分算法,采用变网格尺度及平滑参数的迭代策略,经20次迭代反演,走时均方根误差降至0.105 s,收敛良好。成像结果精细刻画了渭河地堑的低速沉积特征,系一个南深北浅的断陷盆地,最深处可达7 km,其发育主要受秦岭北缘断裂、乾县—富平断裂及渭河断裂控制。秦岭北缘断裂与安康—竹山断裂之间的秦岭造山带上地壳呈高速特征,横向变化剧烈,仅残余若干较浅的山间盆地。与南部四川盆地稳定沉积相比,大巴山逆冲推覆带下方沉积层速度结构不统一,反映了逆冲推覆作用的改造,但整体仍保留了3~6 km的沉积厚度。本文分析认为剖面中部的秦岭地区是古生代—早中生代南北板块汇聚的核心地带,之后造山带两翼的南、北陆缘分别于燕山期和新生代转入逆冲推覆和伸展两种迥异的构造环境,而现今研究区的上地壳构造格局是三次事件叠加的结果。  相似文献   

8.
Variability of the ocean surface boundary layer characteristics on daily time-scale is studied utilizing the 3-hourly hydrographic data collected at a stationary location (20°N, 89°E) in the Bay of Bengal during August (18th–31st) and September (9th–19th), 1990 under MONTBLEX-90 field programme. The daily variations of temperature, salinity, σ0, mixed layer thickness, stability, heat content and rate of change of heat content in the upper 100 m are discussed in relation to prevailing weather (depressions) and hydrographic conditions (influx of fresh water, presence of eddies). The mixed layer thickness is examined through temperatureand σ0-based criteria considering also the surface salinity in the latter. TheT-based mixed layer thickness is always higher than that of σ0-based thickness. The rate of change of heat content is also computed up to the depth of 20°C and 14°C isotherms which takes into account the vertical motion and hence divergence. With the development of a low into a deep depression close to the study area, intense upwelling of subsurface cold waters is noticed from 100 m to the bottom of the surface mixed layer (20m) from 18th to 20th August. The upwelling is weakened by 21st August when the depression moved away from the study location. This variation of upwelling is supported by the variation of surface mixed layer thickness, static stability at 30 m depth, heat content in the upper 100 m and the heat content up to the depth of 20°C isotherm from 18th to 21st August. The rate of change of heat content in the upper 100 m and up to the depths of 20°C and 14°C isotherms leads to net heat storage during August and to net heat depletion during September. This together with the net surface heat gain lead to an import (197Wm?2) and export (233 Wm?2) of heat during August and September respectively through horizontal advective processes. These advective processes are attributed to the presence and movement of a warm core eddy through the study location.  相似文献   

9.
10.
苏鲁造山带区域地壳山根结构特征   总被引:21,自引:6,他引:15  
徐纪人  赵志新 《岩石学报》2004,20(1):149-156
本利用苏鲁大别造山带及其邻区的三维P波速度资料,详细对比研究了苏鲁与大别超高压变质带莫霍面深度和深部P波速度结构分布特征。结果表明,尽管苏鲁、大别超高压变质带都具有上地壳明显高速且上凸;中地壳增厚;下地壳埋藏较深且下凹等共同的P波速度结构特征,与大别地区相比较,苏鲁超高压变质带还存在着独特的区域性特征。从地貌上看,苏鲁地区山脉已经基本消失。苏鲁超高压变质带的地壳厚度为32~33公里,深于其周围地区2~3公里,但是莫霍面下凹程度远不如大别地区,造山带地壳山根已逐步趋向消失。苏鲁地区上地壳P波速度高于大别,比其周围地区约快1~1.2km/s,有可能显示了该区有更多高速、高密度的超高压变质岩折返到上地壳与地表的岩石物性效果。大别造山带山脉依然存在,莫霍面下凹更明显,沿NWW向串状残留地壳山根最深为37~38公里,深于其周围地区3~4公里。对比研究结果表明,由于区域构造运动的作用,苏鲁大别造山带中的不同地段,在其造山、演化过程中也存在着差别。苏鲁的造山运动起始虽略晚于大别,但结束的更快,比大别更早进入了造山运动的后期。分析促使苏鲁造山运动进程加速的主要构造原因可能有两点,郯庐断裂带的左旋走滑运动以及通过中国华北区域的大范围NW-SE向扩张应力场的影响。大区域构造背景加速了苏鲁造山带地表高山侵蚀过程的同时,随着山根浮力的不断减弱,地壳深部山根逐渐趋向消失。地壳速度结构特征有可能反映了苏鲁造山带的地壳山根随着地表山脉的侵蚀而减弱,趋向消失的过程。  相似文献   

11.
We present a new set of contour maps of the seismic structure of South America and the surrounding ocean basins. These maps include new data, helping to constrain crustal thickness, whole-crustal average P-wave and S-wave velocity, and the seismic velocity of the uppermost mantle (Pn and Sn). We find that: (1) The weighted average thickness of the crust under South America is 38.17 km (standard deviation, s.d. ±8.7 km), which is ∼1 km thinner than the global average of 39.2 km (s.d. ±8.5 km) for continental crust. (2) Histograms of whole-crustal P-wave velocities for the South American crust are bi-modal, with the lower peak occurring for crust that appears to be missing a high-velocity (6.9–7.3 km/s) lower crustal layer. (3) The average P-wave velocity of the crystalline crust (Pcc) is 6.47 km/s (s.d. ±0.25 km/s). This is essentially identical to the global average of 6.45 km/s. (4) The average Pn velocity beneath South America is 8.00 km/s (s.d. ±0.23 km/s), slightly lower than the global average of 8.07 km/s. (5) A region across northern Chile and northeast Argentina has anomalously low P- and S-wave velocities in the crust. Geographically, this corresponds to the shallowly-subducted portion of the Nazca plate (the Pampean flat slab first described by Isacks et al., 1968), which is also a region of crustal extension. (6) The thick crust of the Brazilian craton appears to extend into Venezuela and Colombia. (7) The crust in the Amazon basin and along the western edge of the Brazilian craton may be thinned by extension. (8) The average crustal P-wave velocity under the eastern Pacific seafloor is higher than under the western Atlantic seafloor, most likely due to the thicker sediment layer on the older Atlantic seafloor.  相似文献   

12.
A three-dimensional (3D) density model, approximated by two regional layers—the sedimentary cover and the crystalline crust (offshore, a sea-water layer was added), has been constructed in 1° averaging for the whole European continent. The crustal model is based on simplified velocity model represented by structure maps for main seismic horizons—the “seismic” basement and the Moho boundary. Laterally varying average density is assumed inside the model layers. Residual gravity anomalies, obtained by subtraction of the crustal gravity effect from the observed field, characterize the density heterogeneities in the upper mantle. Mantle anomalies are shown to correlate with the upper mantle velocity inhomogeneities revealed from seismic tomography data and geothermal data. Considering the type of mantle anomaly, specific features of the evolution and type of isostatic compensation, the sedimentary basins in Europe may be related into some groups: deep sedimentary basins located in the East European Platform and its northern and eastern margins (Peri-Caspian, Dnieper–Donets, Barents Sea Basins, Fore–Ural Trough) with no significant mantle anomalies; basins located on the activated thin crust of Variscan Western Europe and Mediterranean area with negative mantle anomalies of −150 to −200×10−5 ms−2 amplitude and the basins associated with suture zones at the western and southern margins of the East European Platform (Polish Trough, South Caspian Basin) characterized by positive mantle anomalies of 50–150×10−5 ms−2 magnitude. An analysis of the main features of the lithosphere structure of the basins in Europe and type of the compensation has been carried out.  相似文献   

13.
The evolution and deep structure of the Songliao and Zeya-Bureya basins can be divided into the rift, platform (subsidence), and neotectonic phases. The rift phase (Middle Jurassic-Early Cretaceous) climaxed at the formation of a basin-wide near N-S-oriented rift system, which was followed (Late Cretaceous) by the deposition of the deep-water organic-rich lacustrine source facies with the maximum thickness identified in the Songliao basin (up to 1100 m). The neotectonic phase was marked by the pronounced differences in the basin’s development caused by the formation of a series of E-W-trending transverse structures, which eventually separated the basins, changed the drainage pattern, and blocked the rivers draining southwards from the Zeya-Bureya to the Songliao basin. The differences in the deep structure of the basins are also strongly pronounced. High heat flow values of more than 70 mW/m2 are typical of the Songliao basin, and its mantle heat flow component is higher than the crustal one, as compared to the Zeya-Bureya basin (below 50 mW/m2). The crustal thickness of the Zeya-Bureya basin is higher than that of the Songliao basin (38–42 km and 29–34 km) with a lithospheric thickness of 110–140 km and 50–75 km, respectively. The only exception is the southern Zeya-Bureya basin, which has an electrical structure similar to that of the Songliao basin. These differences have important implications for the evaluation of the hydrocarbon potential of the rift basins. It was suggested that the evaluation of the hydrocarbon potential of the sedimentary basins or parts of these basins should account for two factors: (1) the influence of the lithospheric motions and the related collisional processes and (2) the anomalies in the deep lithospheric structures (the high heat flow and the reduced crustal and lithospheric thickness). The results of this study indicate that the southern part of the Zeya-Bureya basin (in particular, the Lermontovka, Dmitrievka, Mikhailovka, Ekaterinoslavka, and Arkhara troughs) is interpreted to have a fairly high hydrocarbon potential.  相似文献   

14.
青藏高原东部壳幔速度结构和地幔变形场的研究   总被引:16,自引:0,他引:16  
在青藏高原东部地球动力学问题中,笔者在文中主要考虑与地壳上地幔速度结构和地幔变形场有关的问题,它涉及当前流行的下地壳流动模型和壳-幔的耦合-解耦模型。在2000年完成的穿过川西高原和四川盆地的深地震测深剖面,揭示了川西高原的地壳结构具有地壳增厚(主要是下地壳增厚)、地壳平均速度低等特点,显示地壳的缩短与增厚的碰撞变形特征。根据川西高原上设置各爆炸点的记录截面图共同呈现PmP(莫霍界面反射波)弱能量的特点,推断在川西高原的下地壳介质具有强衰减(Qp=100~300)的性质,支持存在下地壳流动的模型。青藏高原东部和川滇西部地区的上地幔各向异性(SKS波快波偏振方向和快慢波延迟时间)的初步结果表明,这两个地区的壳-幔变形特征是不同的,尽管它们在地理位置上属于同一个板块碰撞带。在青藏高原内部的壳幔变形属于垂直连贯变形,它以缩短为主,而高原外部的地壳(或岩石圈)则相对于其下方地幔运动。在高原内部和外部之间存在一个重要的地幔变形过渡带。然而,高原内部的垂直连贯变形与高原内部存在大范围下地壳流动的模型不一致。笔者在该地区开展了近两年的宽频带流动地震观测,试图从地震记录中确定过渡带的位置和探讨它的流变性质。文中扼要回顾已经取得的结果,并介绍正在进行的研究。  相似文献   

15.
环印度洋周缘被动陆缘盆地油气资源潜力巨大,是当前世界油气勘探的热点地区之一。本文基于IHS商业数据库和前人研究成果等资料,厘定了环印度洋地区被动陆缘盆地构造演化史,分析了构造演化对盆地充填结构和成藏要素的影响,并利用蒙特卡洛模拟法评估了盆地油气资源潜力,优选了有利勘探区带。研究结果表明,环印度洋地区被动陆缘盆地经历了3期构造演化阶段,依次为裂前期、同裂谷期和被动陆缘期。根据盆地演化的主导阶段,研究区内被动陆缘盆地可分为拉张边缘裂前发育型、拉张边缘断坳叠置型、拉张边缘坳陷发育型和转换边缘断坳叠置型。盆地内烃源岩主要发育于裂前期—被动陆缘早期,不同地区的主力烃源岩层系不同;储集岩主要发育于裂前期—被动陆缘晚期;区域盖层则主要发育于被动陆缘期。资源评价结果显示,研究区内重点被动陆缘盆地待发现石油、天然气和凝析油可采资源量(均值)分别为4.49×108 t,15.86×1012 m3和5.23×108 t,折合成油当量137.69×108 t。澳大利亚西北陆架北卡那封盆地裂前中—上三叠统区带、东非地区鲁伍马盆地北部和坦桑尼亚盆地南部中白垩统—新近系三角洲-深水扇区带是最有潜力的勘探区带。  相似文献   

16.
Prediction of hydrocarbons in sedimentary basins   总被引:1,自引:0,他引:1  
To estimate the undiscovered hydrocarbon potential of sedimentary basins, quantitative play assessments specific for each location in a region may be obtained using geostatistical methods combined with the theory of classification of geological objects, a methodology referred to as regionalization. The technique relies on process modeling and measured borehole data as well as probabilistic methods to exploit the relationship between geology (the predictor) and known hydrocarbon productivity (the target) to define prospective stratigraphic intervals within a basin. It is demonstrated in case studies from the oil-producing region of the western Kansas Pennsylvanian Shelf and the gas-bearing Rotliegend sediments of the Northeast German Basin.  相似文献   

17.
Regional isostatic adjustment to the load that fills the trough of a large graben will produce a surface depression that extends far beyond the boundaries of the load. Sediment infilling of this depression can lead to the development of a major sedimentary basin as the regional adjustment mechanism approaches isostatic equilibrium.  相似文献   

18.
ABSTRACT

We investigated the oceanic crustal structure and lithospheric dynamics of the South China Sea (SCS) basin through a comprehensive analysis of residual gravity anomaly and bathymetry combined with seismic constraints and interpretation from geodynamic modelling. We first calculated the residual mantle Bouguer anomaly (RMBA) of the oceanic crustal regions of the SCS by removing from free-air gravity anomaly the predicted gravitational attractions of water-sediment, sediment-crust, and crust-mantle interfaces, as well as the effects of lithospheric plate cooling, using the latest crustal age constraints including IODP Expedition 349 and recent deep-tow magnetic surveys. We then calculated models of the gravity-derived crustal thickness and calibrated them using the available seismic refraction profiles of the SCS. The gravity-derived crustal thickness models correlate positively with seismically determined crustal thickness values. Our analysis revealed that the isochron-averaged RMBA are consistently more negative over the northern flank of the SCS basin than the southern conjugate for magnetic anomaly chrons C8n (~25.18 Ma) to C5Dn (~17.38 Ma), implying warmer mantle and/or thicker crust over much of the northern flank. Computational geodynamic modelling yielded the following interpretations: (1) Models of asymmetric and variable spreading rates based on the relatively high-resolution deep-tow magnetic analysis would predict alternating thicker and thinner crust at the northern flank than the southern conjugate, which is inconsistent with the observed systematically thicker crust on the northern flank. (2) Models of episodic southward ridge jumps could reproduce the observed N-S asymmetry, but only for crustal age of 23.6–20 Ma. (3) Southward migration of the SCS ridge axis would predict slightly thinner crust at the northern flank, which is inconsistent with the observations. (4) Models of higher mantle temperatures of up to 25–50°C or >2% less depleted mantle sources on the northern flank could produce large enough anomalies to explain the observed N-S asymmetries.  相似文献   

19.
20.
Tectonically active Vindhyan intracratonic basin situated in central India, forms one of the largest Proterozoic sedimentary basins of the world. Possibility of hydrocarbon occurrences in thick sediments of the southern part of this basin, has led to surge in geological and geophysical investigations by various agencies. An attempt to synthesize such multiparametric data in an integrated manner, has provided a new understanding to the prevailing crustal configuration, thermal regime and nature of its geodynamic evolution. Apparently, this region has been subjected to sustained uplift, erosion and magmatism followed by crustal extension, rifting and subsidence due to episodic thermal interaction of the crust with the hot underlying mantle. Almost 5–6 km thick sedimentation took place in the deep faulted Jabera Basin, either directly over the Bijawar/Mahakoshal group of mafic rocks or high velocity-high density exhumed middle part of the crust. Detailed gravity observations indicate further extension of the basin probably beyond NSL rift in the south. A high heat flow of about 78 mW/m2 has also been estimated for this basin, which is characterized by extremely high Moho temperatures (exceeding 1000 °C) and mantle heat flow (56 mW/m2) besides a very thin lithospheric lid of only about 50 km. Many areas of this terrain are thickly underplated by infused magmas and from some segments, granitic–gneissic upper crust has either been completely eroded or now only a thin veneer of such rocks exists due to sustained exhumation of deep seated rocks. A 5–8 km thick retrogressed metasomatized zone, with significantly reduced velocities, has also been identified around mid to lower crustal transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号