首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 利用桑斯维特(Thonthwaite)的气候分类法和半峰宽(PWH)计算法,采用Kriging方法和地理信息系统(GIS)等技术,探讨了黑龙江省1961-2003年间气候变化对生态地理区域界限及当地森林主要树种分布的影响。结果表明:在气温升高的背景下,黑龙江省温带与暖温带的热量界限向北撤并东移,寒温带与温带的热量界限则大幅度北撤。同时,分布于大兴安岭的兴安落叶松、小兴安岭及东部山地的云冷杉和红松等树种的可能分布范围和最适分布范围均发生了北移。其中兴安落叶松分布总面积减少6.28万km2,云冷杉和红松分布面积均扩大1.57万km2。  相似文献   

2.
3.
The extensive forests of Eastern Eurasia cover an area of ca. 6 million km2. The FAREAST model, a forest gap model that simulates the stand composition and dynamics of Eastern Eurasian forests under the current climate, was used to simulate the responses of the Eastern Eurasia Forests to the climate change. Two different scenarios of possible future climatic change were obtained from the IPCC (2001) report (CMIP2 and IS92a-GS) and were used as input to the FAREAST model to determine the compositional and structural sensitivity to climate changes for several locations and along montane elevation gradients. The simulation results suggest that, under the influence of the conditions in the two climate-change scenarios, the underlying forest dynamics should be quite different. Further, Eastern Eurasian forests maintain currents forest structure and biomass only within a small range of climate change. Broad-leaved deciduous trees of such genera as Fraxinus, Quercus and Tilia increase their ranges over Eastern Eurasia under the climate-change scenarios. Conifers, such as Larix and Picea, decrease sharply under climate change and the area of their distributions are reduced. The overall biomass of Pinus is not decreased over the region. While the Pinus distribution range shifts, the area associated with the range of the taxa is not changed.  相似文献   

4.
Over the last 100?years, Arctic warming has resulted in a longer growing season in boreal and tundra ecosystems. This has contributed to a slow northward expansion of the boreal forest and a decrease in the surface albedo. Corresponding changes to the surface and atmospheric energy budgets have contributed to a broad region of warming over areas of boreal forest expansion. In addition, mesoscale and synoptic scale patterns have changed as a result of the excess energy at and near the surface. Previous studies have identified a relationship between the positioning of the boreal forest-tundra ecotone and the Arctic frontal zone in summer. This study examines the climate response to hypothetical boreal forest expansion and its influence on the summer Arctic frontal zone. Using the Weather Research and Forecasting model over the Northern Hemisphere, an experiment was performed to evaluate the atmospheric response to expansion of evergreen and deciduous boreal needleleaf forests into open shrubland along the northern boundary of the existing forest. Results show that the lower surface albedo with forest expansion leads to a local increase in net radiation and an average hemispheric warming of 0.6°C at and near the surface during June with some locations warming by 1–2°C. This warming contributes to changes in the meridional temperature gradient that enhances the Arctic frontal zone and strengthens the summertime jet. This experiment suggests that continued Northern Hemisphere high-latitude warming and boreal forest expansion might contribute to additional climate changes during the summer.  相似文献   

5.
We used an individual-based forest simulator (a gap model) to assess the potential effects of anthropogenic climatic change on conifer forests of the Pacific Northwestern United States. Steady-state simulations suggested that forest zones could be shifted on the order of 500–1000 m in elevation, which could lead to the local extirpation of some high-altitude species. For low-elevation sites, species which currently are more abundant hundreds of kilometers to the south would be favored under greenhouse scenarios. Simulations of transient responses suggested that forest stands could show complex responses depending on initial species composition, stand age and canopy development, and the magnitude and duration of climatic warming. Assumptions about species response to temperature, which are crucial to the model's behaviors, were evaluated using data on species temperature limits inferred from regional distributions. The high level of within-species variability in these data, and other confounding factors influencing species distributions, argue against over-interpreting simulations. We suggest how we might resolve critical uncertainties with further research.  相似文献   

6.
Forest gap models have been used widely in the study of forest dynamics, including predicting long-term succession patterns and assessing the potential impacts of climate change on forest structure and composition. However, little effort is devoted to predict forest dynamics in the high elevation areas, although they have the sensitive response to global climate change. In the present study, based on a modified height-diameter function, we developed a new version (FAREAST-GFSM) of the forest patch model, FAREAST for simulating the changes of subalpine forests. The observed data from the Gongga Mt. Alpine Station were also used to test model precision. With the improved performance of FAREAST-GFSM, we explored the impact of three warming scenarios on subalpine forest on the eastern Tibetan plateau within a 100-year period. The study result indicates that the effects of climate change were evident on subalpine forests in the high elevation areas. The response of different species to the warming climate might eventually transform the subalpine Abies fabric forest into Betula utilis forest similar to that which is now widely distributed in the eastern Tibetan Plateau mountainous areas with the relatively lower elevation. Subalpine forests could move to higher and colder areas, which are currently tundra.  相似文献   

7.
Climate response functions for 125 Pinus contorta populations were updated to assess the impact of 16 climate change scenarios on forest productivity. Productivity was defined as the volume of wood expected per hectare at age 20 and was calculated as the product of predicted individual tree volumes, an initial stocking (1600 trees ha–1), and predicted survival. Impact was considered according to the transient effects of a changing climate governed by (1) physiological plasticity in the contemporary generation and (2) long-term evolutionary adjustments that provide adaptedness and optimize productivity in future generations. Direct short-term plastic responses were geographically complex and had repercussions throughout the species' distribution even when temperature fluctuations were small (± 1 ° C) and changes in distribution were inconsequential. Evolutionary adjustments ameliorated negative short-term impacts while enhancing the positive. Scenarios that encompassed predictions for global warming produced short-term impacts that were negative in the south and positive in the north, but subsequent evolutionary adjustments projected substantial increases in productivity. The long-term adjustments may require only 1 to 3 generations in the north but 6 to 12 generations in the south, thereby taking between 200 and 1200 years.  相似文献   

8.
Liu  Tingxiang  Zhang  Shuwen  Yu  Lingxue  Bu  Kun  Yang  Jiuchun  Chang  Liping 《Theoretical and Applied Climatology》2017,130(3-4):971-978
Currently, US forests constitute a large carbon sink, comprising about 9 % of the global terrestrial carbon sink. Wildfire is the most significant disturbance influencing carbon dynamics in US forests. Our objective is to estimate impacts of climate change, CO2 concentration, and nitrogen deposition on the future net biome productivity (NBP) of US forests until the end of twenty-first century under a range of disturbance conditions. We designate three forest disturbance scenarios under one future climate scenario to evaluate factor impacts for the future period (2011–2100): (1) no wildfires occur but forests continue to age (Saging), (2) no wildfires occur and forest ages are fixed in 2010 (Sfixed_nodis), and (3) wildfires occur according to a historical pattern, consequently changing forest age (Sdis_age_change). Results indicate that US forests remain a large carbon sink in the late twenty-first century under the Sfixed_nodis scenario; however, they become a carbon source under the Saging and Sdis_age_change scenarios. During the period of 2011 to 2100, climate is projected to have a small direct effect on NBP, while atmospheric CO2 concentration and nitrogen deposition have large positive effects on NBP regardless of the future climate and disturbance scenarios. Meanwhile, responses to past disturbances under the Sfixed_nodis scenario increase NBP regardless of the future climate scenarios. Although disturbance effects on NBP under the Saging and Sdis_age_change scenarios decrease with time, both scenarios experience an increase in NBP prior to the 2050s and then a decrease in NBP until the end of the twenty-first century. This study indicates that there is potential to increase or at least maintain the carbon sink of conterminous US forests at the current level if future wildfires are reduced and age structures are maintained at a productive mix. The effects of CO2 on the future carbon sink may overwhelm effects of other factors at the end of the twenty-first century. Although our model in conjunction with multiple disturbance scenarios may not reflect the true conditions of future forests, it provides a range of potential conditions as well as a useful guide to both current and future forest carbon management.  相似文献   

9.
The response of terrestrial ecosystems to climate warming has important implications to potential feedbacks to climate. The interactions between topography, climate, and disturbance could alter recruitment patterns to reduce or offset current predicted positive feedbacks to warming at high latitudes. In northern Alaska the Brooks Range poses a complex environmental and ecological barrier to species migration. We use a spatially explicit model (ALFRESCO) to simulate the transient response of subarctic vegetation to climatic warming in the Kobuk/Noatak River Valley (200 × 400 km) in northwest Alaska. The model simulations showed that a significantly warmer (+6 °C) summer climate would cause expansion of forest through the Brooks Range onto the currently treeless North Slope only after a period of 3000–4000 yr. Substantial forest establishment on the North Slope didnot occur until temperatures warmed 9 °C, and only following a 2000 yr time lag. The long time lags between change in climate and change in vegetation indicate current global change predictions greatly over-estimate the response of vegetation to a warming climate in Alaska. In all the simulations warming caused a steady increase in the proportion of early successional deciduous forest. This would reduce the magnitude of the predicted decrease in regional albedo and the positive feedback to climate warming. Simulation of spruce forest refugia on the North Slope showed forest could survive with only a 4 °C warming and would greatly reduce the time lag of forest expansion under warmer climates. Planting of spruce on the North Slope by humans could increase the likelihood of large-scale colonization of currently treeless tundra. Together, the long time lag and deciduous forest dominance would delay the predicted positive regional feedback of vegetation change to climatic warming. These simulated changes indicate the Brooks Range would significantly constrain regional forest expansion under a warming climate, with similar implications for other regions possessing major east-west oriented mountain ranges.  相似文献   

10.
A temperate and boreal deforestation experiment has been performed at Météo-France using the ARPEGE climate model. A first simulation was performed as a control with a present-day vegetation map, and another one with all forests north of 45 °N replaced by meadows. Prescribed monthly mean climatological SSTs were used in both integrations. The ARPEGE climate model includes a physically based land surface scheme, which has been tested both on snowfree and snow-covered sites, and has a relatively high horizontal resolution. Results of the 4-year integrations suggest that forests exert a strong influence on the surface climate of the temperate and boreal regions. Deforestation induces a significant cooling which modifies the atmospheric circulation simulated in the high latitudes, and also in the tropics. The most important impact is observed during the melting season which is delayed by the forest removal. This result is consistent with preliminary stand-alone experiments showing that the atmospheric boundary layer can be heated by the forest, even if the ground is covered by snow. The study confirms that vegetation feedbacks should be included when performing future climate studies such as doubled CO2 experiments, eventhough many uncertainties still remain with regard to other physical aspects of the climate models. Received: 5 September 1995 / Accepted: 12 August 1996  相似文献   

11.
Predicting future changes in tropical rainforest tree communities requires a good understanding of past changes as well as a knowledge of the physiology, ecology and population biology of extant species. Climate change during the next hundred years will be more similar to climate fluctuations that have occurred in the last few thousand years and of a much smaller magnitude than the extent of climate change experienced during last glaciation or at the Pleistocene–Holocene transition. Unfortunately, the extent to which tropical rainforest tree communities have changed during the last few thousand years has been little investigated. As a consequence we lack the detailed evidence for population and range shifts of individual tropical species resulting from climate change analogous to the evidence available for temperate zone forests. Some evidence suggests that the rate of tropical forest change in the last several thousand years may have been high. If so, then CO2 increases and the likely alterations in temperature, forest turnover rate, rainfall, or severe droughts may drive substantial future forest change. How can we predict or model the effects of climate change on a highly diverse tree community? Explanations for the regulation of tropical tree populations often invoke tree physiology or processes that are subject to physiological regulation such as herbivory, pathology or seed production. In order to incorporate such considerations into climate change models, the physiology of a very diverse tree community must be understood. My work has focused on simplifying this diversity by categorizing the shade-tolerant species into functional physiological groups. Most species and most individual trees are shade-tolerant species, gap-requiring species being relatively uncommon. Additionally, in a regenerating gap most of the individuals are shade-tolerant species that established before gap formation. Despite the fact that the shade-tolerant species are of major ecological importance, their comparative physiology has received little attention. I have found that shade-tolerant species differ substantially in their responses to light flecks, treefall light gaps and drought. Furthermore, among phylogenetically unrelated species, these differences in physiology can be predicted from leaf lifetime. These results provide a general framework for understanding the mechanics of tropical rainforests from a physiological perspective that can be used to model their responses to climate change.  相似文献   

12.
Projections of vegetation distribution that incorporate the transient responses of vegetation to climate change are likely to be more efficacious than those that assume an equilibrium between climate and vegetation. We examine the non-equilibrium dynamics of a temperate forest region under historic and projected future climate change using the dynamic ecosystem model LPJ-GUESS. We parameterized LPJ-GUESS for the New England region of the United Sates utilizing eight forest cover types that comprise the regionally dominant species. We developed a set of climate data at a monthly-step and a 30-arc second spatial resolution to run the model. These datasets consist of past climate observations for the period 1901?C2006 and three general circulation model projections for the period 2007?C2099. Our baseline (1971?C2000) simulation reproduces the distribution of forest types in our study region as compared to the National Land Cover Data 2001 (Kappa statistic?=?0.54). Under historic and nine future climate change scenarios, maple-beech-basswood, oaks and aspen-birch were modeled to move upslope at an estimated rate of 0.2, 0.3 and 0.5?m?yr?1 from 1901 to 2006, and continued this trend at an accelerated rate of around 0.5, 0.9 and 1.7?m?yr?1 from 2007 to 2099. Spruce-fir and white pine-cedar were modeled to contract to mountain ranges and cooler regions of our study region under projected future climate change scenarios. By the end of the 21st century, 60% of New England is projected to be dominated by oaks relative to 21% at the beginning of the 21st century, while northern New England is modeled to be dominated by aspen-birch. In mid and central New England, maple-beech-basswood, yellow birch-elm and hickories co-occur and form novel species associations. In addition to warming-induced northward and upslope shifts, climate change causes more complex changes in our simulations, such as reversed conversions between forest types that currently share similar bioclimatic ranges. These results underline the importance of considering community interactions and transient dynamics in modeling studies of climate change impacts on forest ecosystems.  相似文献   

13.
Today’s forests are largely viewed as a natural asset, growing in a climate envelope, which favors natural regeneration of species that have adapted and survived the variability’s of past climates. However, human-induced climate change, variability and extremes are no longer a theoretical concept. It is a real issue affecting all biological systems. Atmospheric scientists, using global climate models, have developed scenarios of the future climate that far exceed the traditional climate envelope and their associated forest management practices. Not all forests are alike, nor do they share the same adaptive life cycles, feedbacks and threats. Much of tomorrow’s forests will become farmed forests, managed in a pro-active, designed and adaptive envelope, to sustain multiple products, values and services. Given the life cycle of most forest species, forest management systems will need to radically adjust their limits of knowledge and adaptive strategies to initiate, enhance and plan forests in relative harmony with the future climate. Protected Areas (IUCN), Global Biosphere Reserves (UNESCO) and Smithsonian Institution sites provide an effective community-based platform to monitor changes in forest species, ecosystems and biodiversity under changing climatic conditions.  相似文献   

14.
We assess the appropriateness of using regression- and process-based approaches for predicting biogeochemical responses of ecosystems to global change. We applied a regression-based model, the Osnabruck Model (OBM), and a process-based model, the Terrestrial Ecosystem Model (TEM), to the historical range of temperate forests in North America in a factorial experiment with three levels of temperature (+0 °C, +2 °C, and +5 °C) and two levels of CO2 (350 ppmv and 700 ppmv) at a spatial resolution of 0.5° latitude by 0.5° longitude. For contemporary climate (+0 °C, 350 ppmv), OBM and TEM estimate the total net primary productivity (NPP) for temperate forests in North America to be 2.250 and 2.602 × 1015 g C ? yr?1, respectively. Although the continental predictions for contemporary climate are similar, the responses of NPP to altered climates qualitatively differ; at +0 °C and 700 ppmv CO2, OBM and TEM predict median increases in NPP of 12.5% and 2.5%, respectively. The response of NPP to elevated temperature agrees most between the models in northern areas of moist temperate forest, but disagrees in southern areas and in regions of dry temperate forest. In all regions, the response to CO2 is qualitatively different between the models. These differences occur, in part, because TEM includes known feedbacks between temperature and ecosystem processes that affect N availability, photosynthesis, respiration, and soil moisture. Also, it may not be appropriate to extrapolate regression-based models for climatic conditions that are not now experienced by ecosystems. The results of this study suggest that the process-based approach is able to progress beyond the limitations of the regression-based approach for predicting biogeochemical responses to global change.  相似文献   

15.
Temperature warming and the increased frequency of climatic anomalies are expected to trigger bark beetle outbreaks with potential severe consequences on forest ecosystems. We characterized the combined effects of climatic factors and density-dependent feedbacks on forest damage caused by Ips typographus (L.), one of the most destructive pests of European spruce forests, and tested whether climate modified the interannual variation in the altitudinal outbreak range of the species. We analyzed a 16-year time-series from the European Alps of timber loss in Picea abies Karsten forests due to I. typographus attacks and used a discrete population model and an information theoretic approach to compare multiple competing hypotheses. The occurrence of dry summers combined with warm temperatures appeared as the main abiotic triggers of severity of outbreaks. We also found an endogenous negative feedback with a 2-year lag suggesting a potential important role of natural enemies. Forest damage per hectare averaged 7-fold higher where spruce was planted in sites warmer than those within its historical climatic range. Dry summers, but not temperature, was related to upward shifts in the altitudinal outbreak range. Considering the potential increased susceptibility of spruce forests to insect outbreaks due to climate change, there is growing value in mitigating these effects through sustainable forest management, which includes avoiding the promotion of spruce outside its historical climatic range.  相似文献   

16.
The dynamics of the forest at the ecotone of the boreal forest and temperate forest in Northeast China were simulated using the adapted gap model BKPF under global climatic change (GFDL scenario) and doubled CO2 concentrations at 50 years in the future. The response of tree species and species with similar biological characteristics under global climate change and double CO2 concentrations were based on biophysical limits of the tree species in the area and their biological competition. The results showed that after 50 years the stand density and LAI (leaf area index) of the forest growing from a clear-cut would not be significantly different from those under current conditions. Stand productivity would increase about 7%, and stand aboveground biomass would increase 15%. However, the stand density of the current mature forest would be reduced by more than 20%. The stand would be dominated by Quercus mongolica Fisch., Populus davidiana Dode., Betula spp. and other broadleaved tree species, and Quercus mongolica would account for about 50% of the total density. The stand biomass would be reduced by more than 90%. Quercus mongolica would comprise about 57% of the total stand biomass. The stand productivity would not change significantly, but it would be comprised mainly of Quercus mongolica, Populus davidiana, Betula spp. The current stand height would decrease slightly. The stand LAI would decline dramatically, moreover, Quercus mongolica would comprise about 50% of the stand LAI.  相似文献   

17.
Large-scale conversion of tropical forests into pastures or annual crops will likely lead to changes in the local microclimate of those regions. Larger diurnal fluctuations of surface temperature and humidity deficit, increased surface runoff during rainy periods and decreased runoff during the dry season, and decreased soil moistrue are to be expected.It is likely that evapotranspiration will be reduced because of less available radiative energy at the canopy level since grass presents a higher albedo than forests, also because of the reduced availability of soil moisture at the rooting zone primarily during the dry season. Recent results from general circulation model (GCM) simulations of Amazonian deforestation seem to suggest that the equilibrium climate for a grassy vegetation in Amazonia would be one in which regional precipitation would be significantly reduced.Global climate changes probably will occur if there is a marked change in rainfall patterns in tropical forest regions as a result of deforestation. Besides that, biomass burning of tropical forests is likely adding CO2 into the atmosphere, thus contributing to the enhanced greenhouse warming.  相似文献   

18.
Most, if not all forests in the Caribbean are subject to occasional disturbances from hurricanes. If current general circulation model (GCM) predictions are correct, with doubled atmospheric CO2 (2 × CO2), the tropical Atlantic will be between 1 °C and 4 °C warmer than it is today. With such a warming, more than twice as many hurricanes per year could be expected in the Caribbean. Furthermore, Emanuael (1987) indicates that in a warmed world the destructive potential of Atlantic hurricanes could be increased by 40% to 60%. While speculative, these increases would dramatically change the disturbance regimes affecting tropical forests in the region and might alter forest structure and composition. Global warming impacts through increased hurricane damage on Caribbean forests are presented.An individual tree, gap dynamics forest ecosystem model was used to simulate the range of possible hurricane disturbance regimes which could affect the Luquillo Experimental Forest in Puerto Rico. Model storm frequency ranged from no storms at all up to one storm per year; model storm intensity varied from no damage up to 100% mortality of trees. The model does not consider the effects of changing temperature and rainfall patterns on the forest. Simulation results indicate that with the different hurricane regimes a range of forest types are possible, ranging from mature forest with large trees, to an area in which forest trees are never allowed to reach maturity.  相似文献   

19.
A gap-typed forest dynamic model KOPIDE was used to assess the dynamic responses of a mixed broadleaved-Korean pine forest stand to climate change in northeastern China. The GFDL climate change scenario was applied to derive the changes in environmental variables, such as 10 °C based DEGD and PET/P, which were used to implement the model. The simulation result suggests that the climate change would cause important changes in stand structure. Korean pine, the dominant species in the area under current climate conditions, would disappear under the GFDL equilibrium scenario. Oak and elm would become the dominant species replacing Korean pine, ash and basswood. Such a potential change in forest structure would require different strategies for forest management in northeastern China.  相似文献   

20.
Important findings on the consequences of climate change for agriculture and forestry from the recently completed Third Assessment Report (TAR) of the Intergovernmental Panel on Climate Change (IPCC) are reviewed, with emphasis on new knowledge that emerged since the Second Assessment Report (SAR). The State-Pressure-Response-Adaptation model is used to organize the review. The major findings are:
  • Constant or declining food prices are expected for at least the next 25 yr, although food security problems will persist in many developing countries as those countries deal with population increases, political crisis, poor resource endowments, and steady environmental degradation. Most economic model projections suggest that low relative food prices will extend beyond the next 25 yr, although our confidence in these projections erodes farther out into the 21st century.
  • Although deforestation rates may have decreased since the early 1990s, degradation with a loss of forest productivity and biomass has occurred at large spatial scales as a result of fragmentation, non-sustainable practices and infrastructure development.
  • According to United Nations estimates, approximately 23% of all forest and agricultural lands were classified as degraded over the period since World War II.
  • At a worldwide scale, global change pressures (climate change, land-use practices and changes in atmospheric chemistry) are increasingly affecting the supply of goods and services from forests.
  • The most realistic experiments to date – free air experiments in an irrigated environment – indicate that C3 agricultural crops in particular respond favorably to gradually increasing atmospheric CO2 concentrations (e.g., wheat yield increases by an average of 28%), although extrapolation of experimental results to real world production where several factors (e.g., nutrients, temperature, precipitation, and others) are likely to be limiting at one time or another remains problematic. Moreover, little is known of crop response to elevated CO2 in the tropics, as most of the research has been conducted in the mid-latitudes.
  • Research suggests that for some crops, for example rice, CO2 benefits may decline quickly as temperatures warm beyond optimum photosynthetic levels. However, crop plant growth may benefit relatively more from CO2 enrichment in drought conditions than in wet conditions.
  • The unambiguous separation of the relative influences of elevated ambient CO2 levels, climate change responses, and direct human influences (such as present and historical land-use change) on trees at the global and regional scales is still problematic. In some regions such as the temperate and boreal forests, climate change impacts, direct human interventions (including nitrogen-bearing pollution), and the legacy of past human activities (land-use change) appear to be more significant than CO2 fertilization effects. This subject is, however an area of continuing scientific debate, although there does appear to be consensus that any CO2 fertilization effect will saturate (disappear) in the coming century.
  • Modeling studies suggest that any warming above current temperatures will diminish crop yields in the tropics while up to 2–3 °C of warming in the mid-latitudes may be tolerated by crops, especially if accompanied by increasing precipitation. The preponderance of developing countries lies in or near the tropics; this finding does not bode well for food production in those countries.
  • Where direct human pressures do not mask them, there is increasing evidence of the impacts of climate change on forests associated with changes in natural disturbance regimes, growing season length, and local climatic extremes.
  • Recent advances in modeling of vegetation response suggest that transient effects associated with dynamically responding ecosystems to climate change will increasingly dominate over the next century and that during these changes the global forest resource is likely to be adversely affected.
  • The ability of livestock producers to adapt their herds to the physiological stress of climate change appears encouraging due to a variety of techniques for dealing with climate stress, but this issue is not well constrained, in part because of the general lack of experimentation and simulations of livestock adaptation to climate change.
  • Crop and livestock farmers who have sufficient access to capital and technologies should be able to adapt their farming systems to climate change. Substantial changes in their mix of crops and livestock production may be necessary, however, as considerable costs could be involved in this process because investments in learning and gaining experience with different crops or irrigation.
  • Impacts of climate change on agriculture after adaptation are estimated to result in small percentage changes in overall global income. Nations with large resource endowments (i.e., developed countries) will fare better in adapting to climate change than those with poor resource endowments (i.e., developing countries and countries in transition, especially in the tropics and subtropics) which will fare worse. This, in turn, could worsen income disparities between developed and developing countries.
  • Although local forest ecosystems will be highly affected, with potentially significant local economic impacts, it is believed that, at regional and global scales, the global supply of timber and non-wood goods and services will adapt through changes in the global market place. However, there will be regional shifts in market share associated with changes in forest productivity with climate change: in contrast to the findings of the SAR, recent studies suggest that the changes will favor producers in developing countries, possibly at the expense of temperate and boreal suppliers.
  • Global agricultural vulnerability is assessed by the anticipated effects of climate change on food prices. Based on the accumulated evidence of modeling studies, a global temperature rise of greater than 2.5 °C is likely to reverse the trend of falling real food prices. This would greatly stress food security in many developing countries.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号