首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study assesses Little Ice Age (LIA) lake sediment morphological and geochemical records and moraine chronologies in the upper Fraser River watershed, British Columbia, Canada, to resolve differences in paleoenvironmental interpretation and to clarify sediment production and sediment delivery processes within alpine geomorphic systems. Moose Lake (13.9 km2), situated at 1032 m a.s.l., contains a partially varved record indicating variable rates of accumulation during the last millennium that, in general, coincide with previously documented LIA glacial advances in the region and locally. Dendrochronological assessment of forefield surfaces in the headwaters of the catchment (Reef Icefield) shows that periods of moraine construction occurred just prior to ad 1770, ad 1839 and ad 1883, and some time before ad 1570. Taken collectively, increases in varve thickness within eight Moose Lake sediment cores coincide with documented glacier advances over the twelfth through fourteenth centuries, the eighteenth century, and nineteenth through twentieth centuries. Glacial activity during the sixteenth century is also indicated. While varve thickness variations in proximal and distal sediments clearly reflect glacial activity upstream of Moose Lake, the intermediate varve record is relatively insensitive to these decadal and longer‐term catchment processes. Variations in Ca and related elements derived from glaciated carbonate terrain within the Moose River sub‐catchment (including Reef Icefield) indicate gradually increasing delivery from these sources from the twelfth through twentieth centuries even where the varve thickness record is unresponsive. Elevated carbonate concentrations confirm glacial activity c. ad 1200, ad 1500, ad 1750, and ad 1900.  相似文献   

2.
A 4450-year sequence of varves, spanning the entire Neoglacialinterval, has been recovered from Hector Lake, Alberta. The varve record is compared to records of regional glacial history toevaluate therelationship between alpine glacial activity and sediment production. Glacial controls on sediment production vary with the timescale considered. Long-term variations in sedimentation rate, of centuries to millennial duration, reflect changes in ice extent of the same timescale. Superimposed on these long-term changes is decadal-scale variability that is complexly related to upvalley ice extent. Over the short term, high sedimentation rates may be associated with glacier maximum stands, or with periods of glacier advance or recession. Overthe last millennium at least, highest sedimentation rates appear to have been associated with transitional periods, preceding or post-dating maximum ice stands, rather than with times of maximum ice extent.  相似文献   

3.
Evidence from lake sediments and glacier forefields from two hydrologically isolated lake basins is used to reconstruct Holocene glacier and climate history at Hallet and Greyling Lakes in the central Chugach Mountains of south-central Alaska. Glacial landform mapping, lichenometry, and equilibrium-line altitude reconstructions, along with changes in sedimentary biogenic-silica content, bulk density, and grain-size distribution indicate a dynamic history of Holocene climate variability. The evidence suggests a warm early Holocene from 10 to 6 ka, followed by the onset of Neoglaciation in the two drainage basins, beginning between 4.5 and 4.0 ka. During the past 2 ka, the glacial landforms and lacustrine sediments from the two valleys record a remarkably similar history of glaciation, with two primary advances, one during the first millennium AD, from ~500 to 800 AD, and the second during the Little Ice Age (LIA) from ~1400 to 1900 AD. During the LIA, the reconstructed equilibrium-line altitude in the region was no more than 83 ± 44 m (n = 21) lower than the modern, which is based on the extent of glaciers during 1978. Differences between the summer temperature inferred from the biogenic-silica content and the evidence for glacial advances and retreats suggest a period of increased winter precipitation from 1300 to 1500 AD, and reduced winter precipitation from 1800 to 1900 AD, likely associated with variability in the strength of the Aleutian Low.
Darrell S. KaufmanEmail:
  相似文献   

4.
主要基于Landsat TM/ETM+影像等数据,分析1990-2010 年来天山地区冰湖变化特征及其对冰川融水径流的影响。近20 年来,天山冰湖面积平均以0.689 km2a-1 或0.8% a-1的速度扩张,其中一半以上是由东天山(0.352 km2 a-1) 贡献的,其次为北天山,面积年均增率为0.165km2 a-1,西天山和中央天山的面积年均增率最小,分别为0.089 km2 a-1和0.083 km2 a-1。除在相对较低海拔(< 2900 m) 和高海拔(> 4100 m) 范围内冰湖面积出现减少的现象,其他各高度带的冰湖面积均在扩张,其中增率最快的在3500~3900 m之间,平均增速达1.6% a-1。冰湖扩张是本区气候变暖和冰川普遍退缩共同作用的结果,以中小规模的冰湖(< 0.6 km2) 对冰川退缩响应最为敏感。冰湖扩张能在一定程度上延缓因气候变暖而导致的区域冰川水资源的亏损,每年大约有0.006 Gt 的冰川融水滞留在冰湖中,约占天山冰川年消融量的2‰,但也将加剧本区冰湖溃决洪水/泥石流灾害的频次和强度。  相似文献   

5.
Large glacial lakes modulated the return of meltwater to the ocean during deglaciation, and their drainage may have initiated global climate change. Yet few records of their drainage come from observations within their basins. Sediment cores from nine lakes along a 240-km transect from northwestern Quebec to northeastern Ontario cover a portion of former Lake Ojibway and provide a stratigraphy of the terminal phase of this large glacial lake. Magnetic susceptibility, density, grain size, X-ray fluorescence chemistry and X-ray diffraction data were used to characterize stratigraphic changes within the basin. The basal sequence consists of till and rhythmites, with ice-proximal debris flows overlain by varves. The varves thin up-section and become unrecognizable, which indicates decreased deposition rates. This fine-grained sediment forms the matrix of a clay-pebble conglomerate. The clay-pebbles are ice-rafted debris (IRD). The IRD flux was probably constant, whereas the sedimentation rate of the finer-grained matrix decreased. The end of IRD marks the cessation of icebergs in the lake and is the best indication for drainage of the glacial lake. The conglomerate is capped by laminated to massive gray silt deposited after lake drainage and marks the transition to organic-rich, post-glacial lakes. Such sequences place drainage into the broader context of deglaciation.  相似文献   

6.
7.
A high resolution sediment record spanning the entire time since the ice retreat after the Last Glacial Maximum has been recovered from Lac d'Annecy. The main focus of this study is to develop a reliable chronology of the record and to evaluate the environmental variability during the period of Late Würmian ice retreat. Most of the record is laminated. These laminations are of different structure, composition, and thickness. On the basis of varve stratigraphy five sedimentation units were identified which correspond to particular stages in the deglaciation of the region. Except for one each facies type has been related to an annual cycle of deposition. Varve counting in combination with radiocarbon dating provides the time control of the record and dates the base of lacustrine deposits to 16,600 varve yrs BP. The beginning of the Late Glacial is marked by a shift from clastic to endogenic carbonate varves caused by the climatic warming. Clastic varves have been further subdivided into a succession of complex and standard varve types. These variations of clastic varve formation are triggered by the ice retreat and related hydrological variations in the watershed of the lake. Sedimentological, mineralogical and isotopic data help identify different sediment sources of the sub-layers. Proximal sediments originate from local carbonaceous bedrock whereas distal sediments have characteristics of the molassic complex of the outer Alps. The alternation of proximal and distal sediments in the varve sequence reflects the deglaciation of the Annecy area with a changing influence of local and regional glaciers. The melting of the Alpine ice sheet is the driving force for regional environmental changes which in turn control the sediment transport and deposition processes in Lac d'Annecy.  相似文献   

8.
Sediments retrieved from a long core on the floor of glacial Lake Assiniboine, Saskatchewan, expose 106 couplets, consisting of thick, light coloured, silt-rich beds and thin, dark, clay-rich beds. The couplets contain sharp lower and upper contacts of the silt bed, silty and clayey laminations within both the silt and clay beds, and ice-rafted debris in the silt beds, which are features characteristic of glacial varves.Seasonal variations in runoff are reflected in grain size profiles of individual silt beds in the varves. Mean grain size maxima in the lower portion of the silt bed suggest that snow accumulation during the previous winter had been substantial and that a warm spring combined with a rapid melting rate generated significant volumes of nival meltwater runoff. Coarse laminae higher in the silty part of the couplet imply that substantial meltwater inflow was produced by summer melting of glacier ice.Vertical trends in clay bed thicknesses, silt bed thicknesses, and total couplet thicknesses were strongly influenced by the proximity of meltwater inflow channels and lake depth. These interpretations, and correlation of the core to varve exposures at the surface, formed the framework for a paleohydrological reconstruction. Close to 11,000 BP, ice dammed the outlet of glacial Lake Assiniboine and the water depth rose about 2 m yr–1. Eventually the lake became deep enough for couplets to form. Varve years 1–40 contain thick clay beds, silt beds, and couplets as a result of the proximal inflow of meltwater. A decline in silt bed and couplet thicknesses from varve years 41–85 occurred in response to ice retreat and more distal inflow. Varve deposition ceased in the shallow part of the basin probably because underflow currents from the distal source were redirected. Varve years 86–106 are distinguished by an increase in silt bed and couplet thicknesses and a decrease in clay bed thickness caused by a reduction in water depth and a return to proximal inflow. Varved sedimentation terminated when Lake Assiniboine drained through the Assiniboine valley to Lake Agassiz.  相似文献   

9.
A new lichen dating method and new moraine observations enabled us to improve the chronology of glacier advances in the Cordillera Blanca (Peru) during the Little Ice Age (LIA). Our results reveal that an early LIA glacial advance occurred around AD 1330 ± 29. However, a second major glacial advance at the beginning of the 17th century overlapped the earlier stage for most glaciers. Hence, this second glacial stage, dated from AD 1630 ± 27, is considered as the LIA maximum glacial advance in the Cordillera Blanca. During the 17th–18th centuries, at least three glacial advances were recorded synchronously for the different glaciers (AD 1670 ± 24, 1730 ± 21, and 1760 ± 19). The moraines corresponding to the two first stages are close to the one in 1630 suggesting a slow recession of about 18% in the total length of the glacier. From the LIA maximum extent to the beginning of the 20th century, the 24 glaciers have retreated a distance of about 1000 m, corresponding to a reduction of 30% in their length. This rate is comparable to that observed during the 20th century. Estimates of palaeo-Equilibrium Line Altitudes show an increase in altitude of about 100 m from the LIA maximum glacial extension at the beginning of the 17th century to the beginning of the 20th century. Because long time series are not available for precipitation and temperature, this glacial retreat is difficult to explain by past climate changes. However, there is a fair correspondence between changes in glacier length and the δ18O recorded in the Quelccaya ice core at a century timescale. Our current knowledge of tropical glaciers and isotope variations leads us to suggest that this common tropical signal reflects a change from a wet LIA to the drier conditions of today. Finally, a remarkable synchronicity is observed with glacial variations in Bolivia, suggesting a common regional climatic pattern during the LIA.  相似文献   

10.
The status of tropical glaciers is enormously important to our understanding of past, present, and future climate change, yet lack of continuous quantitative records of alpine glacier extent on the highest mountains of tropical East Africa prior to the 20th century has left the timing and drivers of recent glacier recession in the region equivocal. Here we investigate recent changes (the last 150–700 years) in lacustrine sedimentation, glacier extent, and biogeochemical processes in the Rwenzori Mountains (Uganda- Democratic Republic of Congo) by comparing sedimentological (organic and siliciclastic component determined by loss-on-ignition; LOI) and organic geochemical profiles (carbon and nitrogen abundance, ratio, and isotopic composition of sedimentary organic matter) from lakes occupying presently glaciated catchments against similar profiles from lakes located in catchments lacking glaciers. The siliciclastic content of sediments in the ‘glacial lakes’ significantly decreases towards the present, whereas ‘non-glacial lakes’ generally show weak trends in their siliciclastic content over time, demonstrating that changes in the siliciclastic content of glacial lake sediments primarily record fluctuations in glacier extent. Radiometric dating of our sediment cores indicates that prior to their late 19th-century recession Rwenzori glaciers stood at expanded ‘Little Ice Age’ positions for several centuries under a regionally dry climate regime, and that recession was underway by 1870 AD, during a regionally wet episode. These findings suggest that the influence of late 19th century reductions in precipitation in triggering Rwenzori glacier recession is weaker than previously thought. Our organic geochemical data indicate that glacier retreat has significantly affected carbon cycling in Afroalpine lakes, but trends in aquatic ecosystem functioning are variable among lakes and require more detailed analysis.  相似文献   

11.
The varved sediment record from glacially-fed Lake Tuborg, Ellesmere Island, Nunavut, shows that only three large jökulhlaups have occurred there in the last millennium: 2003, 1993, and 1960. Detailed analyses of sediment microstructure and particle size, combined with in-situ hydrometeorological and limnological process studies, allowed jökulhlaup facies identification and discrimination from deposits from other processes. Deposits from large jökulhlaups are anomalously thick, typically lack internal structure, have sharp bases, and fine upwards. The ice-dammed lake above Lake Tuborg (the source of the jökulhlaups) likely changed its drainage style in 1960, from ice-dam overtopping to ice-dam flotation and glacial tunnel enlargement by melt widening, which allowed the lake to drain completely and catastrophically. Complete drainage of ice-dammed lakes by ice-dam flotation is rare in the region is due to the pervasiveness of cold-based ice. Twentieth century warming is likely responsible for some combination of dam thinning, lake expansion and deepening, and changing the thermal regime at the base of the dam. Anomalously thick individual varves were periodically deposited beginning in the nineteenth century, and their thickness increased with time. This likely reflects a combination of increased ice dam overtopping, subaqueous slope failures, sediment availability and rising air temperature. The varve record presented here significantly correlates with a previous, shorter record from Lake Tuborg. However, generally weak correlations are found between the new varve time series, regional records of air temperature, and glacial melt from ice cores on the Agassiz Ice Cap. It is hypothesized that on short timescales, sedimentation at the coring location reflects a complex and varying integration of multiple hydroclimatic, geomorphic and limnologic influences.  相似文献   

12.
Variations in the oxygen-isotope composition of paleo-water bodies in the Lake Superior Basin provide information about the timing and pathways of glacial meltwater inflow into and within the Lake Superior Basin. Here, the oxygen-isotope compositions of Lake Superior have been determined using ostracodes from four sediment cores from across the Basin (Duluth, Caribou and Ile Parisienne sub-basins, Thunder Bay trough). The δ18O values indicate that lake water (Lake Minong) at ~10,600–10,400 cal [~9,400–9,250] BP was dominated by glacial meltwater derived from Lake Agassiz and the Laurentide Ice Sheet (LIS). From that time to ~9,000 cal [~8,100] BP, a period associated with formation of thick varves across the Lake Superior Basin, the δ18O values of Lake Minong decreased even further (−24 to −28‰), symptomatic of an increasing influx of glacial meltwater. Its supply was reduced between ~9,000 and ~8,900 cal [~8,100–8,000] BP, and lake water δ18O values grew higher by several per mil during this period. Between ~8,900 and ~8,800 cal [~8,000–7,950] BP, there was a return to δ18O values as low as −29‰ in some parts of the Lake Superior Basin, indicating a renewed influx of glacial meltwater before its final termination at ~8,800–8,700 cal [~7,950–7,900] BP. The sub-basins in the Lake Superior Basin generally displayed very similar patterns of lake water δ18O values, typical of a well-mixed system. The final stage of glacial meltwater input, however, was largely expressed near its input (Thunder Bay trough) and recognizable in dampened form mainly in the Duluth sub-basin to the west. Water in the easternmost Ile Parisienne sub-basin was enriched in 18O relative to the rest of the lake, particularly after ~10,000 cal [~8,900] BP, probably because of a strong influence of local precipitation/runoff, and perhaps also enhanced evaporation. By ~9,200 cal [~8,250] BP, lake water δ18O values in the Ile Parisienne sub-basin were similar to the adjacent Lake Huron Basin, suggesting a strong hydraulic connection between the two water bodies, and common responses to southern Ontario’s shift to warmer and dry climatic conditions after ~9,000 cal [~8,100] BP.  相似文献   

13.
Spheroidal carbonaceous particles (SCPs) from the high temperature combustion of fossil-fuels are stored in lake sediments and provide an unambiguous record of industrially derived atmospheric contamination. It has been assumed that a single sediment core provides an accurate representation of SCP accumulation but to date there have been no studies to determine within-lake variability of the SCP sediment record. This paper describes the SCP profiles of ten sediment cores taken from the deep water area of Loch Coire nan Arr, a remote lake in north-west Scotland, UK. Although each core shows the basic SCP profile used for sediment dating in the UK there is considerable variation between cores. The conversion of SCP concentrations to cumulative percentages resolves a great deal of this variation with the result that more accurate cross-correlation and hence date allocation is possible, especially in the post-1945 section of the cores. However, significant departures from the usual SCP profile still reduce the effectiveness of this approach. It is concluded that: (i) SCP profiles from single cores from the deepest areas of the lake usually provide an accurate representation of the historical record of atmospherically deposited pollutants and that inter-core variability or noise does not affect the temporal interpretation of that profile, and (ii) comparisons of total SCP inventories are a better way of comparing historical deposition between sites as the impact of temporary variability is considerably reduced.  相似文献   

14.
A multi-core, multidisciplinary palaeolimnological study of the partially varved sediment of a deep, meromictic, arctic lake, Kongressvatnet (Svalbard, Western Spitsbergen), provides a record of environmental and climatic changes during last ca. 1800 years. The chronology of sedimentation was established using several dating techniques (137Cs, 210Pb, varve counts, palaeomagnetic correlation). A multiproxy record of palaeolimnological variability was compiled based on sedimentation rates, magnetic properties, varve thickness, organic matter, geochemistry, pigments from algal and photosynthetic bacteria, mineralogy and biological assemblages (diatoms, Cladocera). The major features recognised in our master core K99-3 include a shift in sediment source and supply (magnetic measurements, geochemistry) probably caused by glaciological changes in the catchment around 38–32 cm core depth (AD 700–820). Additional environmental changes are inferred at 20–18, 8–4.5 and 3–2 cm (AD ca. 1160–1255; 1715–1880; 1940–1963, respectively). During the past ca. 120 years a prominent sedimentological change from brownish-grey, partly laminated silt-clay (varves) to black organic-rich deposits was observed. From AD 1350 to AD1880 the sediment is comprised of a continuous sequence of varves, whereas the earlier sediments are mostly homogeneous with only a few short intercalated laminated sections between AD 860 and 1350. Sedimentation and accumulation rates increased during the last 30 years (modern warming). Pigment concentrations are very low in the lower ca. 32 cm of the core (AD 820) probably because of the high turbidity high energy environment. The high sulphur content in the uppermost 32 cm of sediment has given rise to two horizontally stratified populations of sulphur anaerobic photosynthetic bacteria, as inferred from their specific carotenoids. These bacteria populations are much more abundant during the Little Ice Age (LIA) than during warmer periods (e.g., during the Medieval Warm Period and 20th century). Diatoms are lacking from the core base up to 18 cm (ca. AD 1255); at this level, species indicative of mesotrophic water are present, whereas from 17 cm to the top of the core, oligotrophic taxa such as Staurosira construens/S. pinnata complex dominate, indicating extended ice coverage and more oligotrophic waters during the LIA. The concentration of Cladocera subfossil remains (dominated by Chydorus) are relatively high in the deepest sections (54–32 cm), whereas the upper 32 cm are characterized by a very low concentration of remains, possibly because of the strongly anoxic conditions, and in this upper sediment section rotifer resting eggs become prevalent. We interpret these changes as responses to climate forcing through its impact on glacial melt water, lake ice cover duration and mainly redox conditions in deep water. The observed changes suggest that at least some of our recorded changes may parallel the Greenland Ice core, although our study added more details about the inferred climatic changes. Further aspects are discussed, such as catchment processes, glacial activity, duration of the Medieval Warm Period, the Little Ice Age, local human activity, and limnology.  相似文献   

15.
A multi-proxy paleolimnological record obtained from a small, lowland closed-drainage basin located in the Peace-Athabasca Delta (Alberta, Canada), 10 km northwest of the present-day shore of Lake Athabasca, captures evidence of pronounced hydroecological changes over the past ~400 years. Consistent with historical maps produced by early European explorers of western Canada, paleolimnological data support the existence of a Lake Athabasca highstand during the Little Ice Age (LIA), c. 1600–1900 Common Era (CE). This contrasts with interpretations from previous analyses on sediment cores from an upland closed-drainage basin located centrally within the Peace sector of the delta that indicate low water levels during this interval. The different paleohydrological records at these two basins reflect the relative influence of different controls on the lake water balances. During the LIA, the lowland site was influenced by high levels in Lake Athabasca, whereas the elevated basin was outside the range of water-level rise in the lake and its distributaries, and was instead controlled by dry atmospheric conditions that led to evaporative drawdown. Integration of paleolimnological records and historical sources demonstrates that the ecosystem has undergone marked climate-driven hydroecological change over the past century, which is important information for effective management.  相似文献   

16.
Climate records during the last millennium are essential in placing recent anthropogenic-induced climate change into the context of natural climatic variability. However, detailed records are still sparse in Alaska, and these records would help elucidate climate patterns and possible forcing mechanisms. Here we present a multiple-proxy sedimentary record from Kepler Lake in south-central Alaska to reconstruct climatic and environmental changes over the last 800?years. Two short cores (85 and 101?cm long) from this groundwater-fed marl lake provide a detailed stable isotope and sediment lithological record with chronology based on four AMS 14C dates on terrestrial macrofossils and 210Pb analysis. The ??18O values of inorganic calcite (CaCO3) range from ?17.0 to ?15.7???, with the highest values during the period of 1450?C1850 AD, coeval with the well-documented Little Ice Age (LIA) cold interval in Alaska. The high ??18O values during the cold LIA are interpreted as reflecting shifts in atmospheric circulation. A weakening of the wintertime Aleutian low pressure system residing over the Gulf of Alaska during the LIA would have resulted in 18O-enriched winter precipitation as well as a colder and possibly drier winter climate in south-central Alaska. Also, elevated calcite contents of >80?% during the LIA reflect a lowering of lake level and/or enhanced seasonality (warmer summer and colder winter), as calcite precipitation in freshwater lakes is primarily a function of peak summer temperature and water depth. This interpretation is also supported by high ??13C values, likely reflecting high aquatic productivity or increased residence times of the lake water during lower lake levels. The lower lake levels and warmer summers would have increased evaporative enrichment in 18O, also contributing to the high ??18O values during the LIA. Our results indicate that changes in atmospheric circulation were an important component of climate change during the last millennium, exerting strong influence on regional climate in Alaska and the Arctic.  相似文献   

17.
冰湖的界定与分类体系——面向冰湖编目和冰湖灾害研究   总被引:4,自引:0,他引:4  
姚晓军  刘时银  韩磊  孙美平 《地理学报》2017,72(7):1173-1183
冰川湖泊(简称冰湖)不仅是高山区重要的水资源,而且是许多冰川灾害的孕育者和发源地,在冰冻圈科学、气候变化和山地灾害研究中具有重要地位。本文系统讨论了现有冰湖定义及存在的问题,从冰湖编目和冰湖灾害研究视角提出冰湖的定义,指出现有冰湖研究主要是基于“以现代冰川融水为主要补给源或在冰碛垄洼地内积水形成的天然水体”这一冰湖定义的。同时,从冰湖形成机理、地貌形态和空间分布位置将冰湖划分为冰川侵蚀湖(冰斗湖、冰川槽谷湖和其他冰川侵蚀湖)、冰碛阻塞湖(终碛阻塞湖、侧碛阻塞湖、冰碛垄热融湖)、冰川阻塞湖(冰川前进阻塞湖和其他冰川阻塞湖)、冰面湖、冰下(内)湖和其他冰川湖6大类及8个亚类,并给出各冰湖类型相应的遥感判识指标和定量指标,以期建立具有普适性和可操作性的冰湖分类体系。  相似文献   

18.
近50年气候变化背景下青藏高原冰川和湖泊变化(英文)   总被引:2,自引:0,他引:2  
本文综述了近年来青藏高原冰川和湖泊变化研究取得的成果,并特别着重于冰川和湖泊变化的相互关系论述。在全球变暖背景下,近几十年青藏高原冰川以退缩为主,湖泊水量以增加为主。本文一方面对青藏高原冰川末端退缩、冰川面积和冰川储量变化方面的研究成果进行了综合分析,探讨了冰川变化的时空特征;另一方面从湖泊面积和水位与水量变化探讨了湖泊变化的时空规律。结果表明青藏高原冰川退缩的幅度总体上呈从青藏高原外缘向内陆呈减小的变化态势,受冰川融水补给比较大的湖泊近期面积扩张、水位上升明显。最后指出了青藏高原冰川、湖泊变化研究中存在的问题及今后的发展趋势。  相似文献   

19.
我国喜马拉雅山区冰湖扩张特征及其气候意义   总被引:4,自引:1,他引:4  
分析冰湖扩张特征和扩张方式及其气候意义,有利于认识冰川-冰湖-气候三者的变化关系和冰湖溃决灾害危险性程度。基于大比例尺地形图、DEM、ASTER影像等数据,分析近30年来我国喜马拉雅山区不同海拔高度冰湖变化的特征及冰湖-母冰川的相对位置的变化关系,探讨其气候效应。结果显示:(1) 存在冰湖的面积增大是冰湖面积扩张的主要贡献者,占总面积净增量的67%,新增湖的面积占总面积净增量的33%;(2) 不同高度带冰湖面积多呈扩张态势,净增面积在5000~5300 m出现峰值,指示气候变化的垂直差异性;(3) 在2000s 母冰川-冰湖距离为0 的冰湖,数量占扩张冰湖总数的19%,而其冰湖面积增量却占了总面积增量的60%,为冰湖扩张的主体,反映出冰湖与母冰川关系越紧密,气候效应越强烈,冰湖面积增加越显著。  相似文献   

20.
Sedimentological, mineralogical and compositional analyses performed on short gravity cores and long Kullenberg cores from meromictic Montcortès Lake (Pre-Pyrenean Range, NE Spain) reveal large depositional changes during the last 6,000 cal years. The limnological characteristics of this karstic lake, including its meromictic nature, relatively high surface area/depth ratio (surface area ~0.1 km2; z max = 30 m), and steep margins, facilitated deposition and preservation of finely laminated facies, punctuated by clastic layers corresponding to turbidite events. The robust age model is based on 17 AMS 14C dates. Slope instability caused large gravitational deposits during the middle Holocene, prior to 6 ka BP, and in the late Holocene, prior to 1,600 and 1,000 cal yr BP). Relatively shallower lake conditions prevailed during the middle Holocene (6,000–3,500 cal years BP). Afterwards, deeper environments dominated, with deposition of varves containing preserved calcite laminae. Increased carbonate production and lower clastic input occurred during the Iberian-Roman Period, the Little Ice Age, and the twentieth century. Although modulated by climate variability, changes in sediment delivery to the lake reflect modifications of agricultural practices and population pressure in the watershed. Two episodes of higher clastic input to the lake have been identified: 1) 690–1460 AD, coinciding with an increase in farming activity in the area and the Medieval Climate Anomaly, and 2) 1770–1950 AD, including the last phase of the Little Ice Age and the maximum human occupation in late nineteenth and early twentieth centuries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号