首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atmospheric contributions of methane from Arctic wetlands during the Holocene are dynamic and linked to climate oscillations. However, long-term records linking climate variability to methane availability in Arctic wetlands are lacking. We present a multi-proxy ~12,000?year paleoecological reconstruction of intermittent methane availability from a radiocarbon-dated sediment core (LQ-West) taken from a shallow tundra lake (Qalluuraq Lake) in Arctic Alaska. Specifically, stable carbon isotopic values of photosynthetic biomarkers and methane are utilized to estimate the proportional contribution of methane-derived carbon to lake-sediment-preserved benthic (chironomids) and pelagic (cladocerans) components over the last ~12,000?years. These results were compared to temperature, hydrologic, and habitat reconstructions from the same site using chironomid assemblage data, oxygen isotopes of chironomid head capsules, and radiocarbon ages of plant macrofossils. Cladoceran ephippia from ~4,000?cal?year BP sediments have ??13C values that range from ~?39 to ?31??, suggesting peak methane carbon assimilation at that time. These low ??13C values coincide with an apparent decrease in effective moisture and development of a wetland that included Sphagnum subsecundum. Incorporation of methane-derived carbon by chironomids and cladocerans decreased from ~2,500 to 1,500?cal?year BP, coinciding with a temperature decrease. Live-collected chironomids with a radiocarbon age of 1,640?cal?year BP, and fossil chironomids from 1,500?cal?year BP in the core illustrate that ??old?? carbon has also contributed to the development of the aquatic ecosystem since ~1,500?cal?year BP. The relatively low ??13C values of aquatic invertebrates (as low as ?40.5??) provide evidence of methane incorporation by lake invertebrates, and suggest intermittent climate-linked methane release from the lake throughout the Holocene.  相似文献   

2.
Wetlands and lakes in the Tanana Valley, Alaska, have provided important resources for prehistoric humans who inhabited this region. We examine an ~11,200?cal?yr BP record of environmental and paleolimnological changes from Quartz Lake in the middle Tanana Valley. Our data are also presented in the context of recent archaeological findings in the lake??s general vicinity that have 18 associated AMS 14C dates. We analyzed the stable-carbon and nitrogen isotope composition of total organic matter from the core, coupled with oxygen and carbon isotope analyses of Pisidiidae shells (fingernail clams), in addition to chironomid assemblage changes. Lacustrine sediments began to accumulate at ~11,200?cal?yr BP. Initially, autochthonous production was low and allochthonous organic input was negligible between 11,000 and 10,500?cal?yr BP, and were associated with relatively cool conditions at Quartz Lake at ~10,700?cal?yr BP. After 10,500?cal?yr BP, autochthonous production was higher coincident with a shift to chironomid assemblages dominated by taxa associated with warmer summer climates. A decrease in ??13C values of total organic carbon (TOC) and organic content of the sediment between 9,000 and 4,000?cal?yr BP may indicate declining autochthonous primary production. This period ended with an abrupt (~7???) decrease in the ??18O values from Pisidiidae shells at ~3,000?cal?yr BP, which we hypothesize represented an episodic connection (flood) of the lake with flow from the nearby (~6?km) Tanana River. Our findings coincide with evidence for major flooding at other locations connected to the Tanana River and further afield in Alaska. From ~3,000?cal?yr BP Quartz Lake subsequently appeared to become a relatively closed system, as indicated by the ??18OPisidiidae and ??13CPisidiidae data that are positively correlated and generally higher, which also correlates with a shift to moderately higher abundances of littoral chironomids. The cause of the transition to closed-basin conditions may have been geomorphic rather than climatic. This evidence of a progressively stronger evaporative influence on the lake??s closed hydrology after ~3,000?cal?yr BP is consistent with our modern ??18O and ??D water data from Quartz Lake that plot along a regional evaporative line we base on isotopic measurements from other local lakes and rivers.  相似文献   

3.
Analyses of oxygen and carbon isotopes in bulk carbonate and Chara-stem encrustations, X-ray diffraction, and sediment composition from Keche Lake offer new information on climatic change over the past ~3,400?years in northeastern interior Alaska. The ??18O and ??D values of water samples from the lake and its inlet streams suggest that evaporation plays an important role in determining the isotopic composition of Keche Lake water at present. However, evaporative enrichment does not appear to be a major driver of the pronounced fluctuations in the bulk-carbonate ??18O record on the basis of comparison with Chara-??18O values. The ??18O values of bulk carbonate in the Keche Lake sediments vary by up to 10??? over the past 3,400?years, with maximum values of ?12??? around 3,400?cal BP and between 2,100 and 1,500?cal BP. High ??18O peaks are associated with sediments dominated by quartz, feldspar, and clay minerals suggesting the influence of detrital carbonate. Multi-millennial patterns of ??18O variation at Keche Lake appear to be linked with changes in watershed and sediment-depositional processes, which may be driven by varying moisture abundance associated with the position of the Aleutian Low (AL). The increasing trend of carbonate ??18O from 3,400 to ~2,100?cal BP probably reflects the increasing importance of a westerly AL, and the high frequency of ??18O spikes ~2,100?C1,500?cal BP may have resulted from the prevalence of a westerly AL position. Predominance of a westerly AL likely increased snowfall and winter temperature in the region. Such conditions would have promoted soil erosion and thermokarst activity during spring snowmelt, resulting in episodic large influxes of detrital carbonate to Keche Lake and elevating bulk-carbonate ??18O. Over the past 1,500?years, bulk-carbonate ??18O remained relatively high at Keche Lake but variation was much less pronounced than before. A broad ??18O peak centered ~400?cal BP may be related to enhanced winter moisture during the Little Ice Age, although our chronology is inadequate for a rigorous assessment of this interpretation. This study contributes a new ??18O record and offers additional information on past moisture-regime shifts associated with changing atmospheric-circulation patterns.  相似文献   

4.
Piston cores from deep-water bottom deposits in Lake Ontario contain shallow-water sediments such as, shell-rich sand and silt, marl, gyttja, and formerly exposed shore deposits including woody detritus, peat, sand and gravel, that are indicative of past periods of significantly lower water levels. These and other water-level indicators such as changes in rates of sedimentation, mollusc shells, pollen, and plant macrofossils were integrated to derive a new water-level history for Lake Ontario basin using an empirical model of isostatic adjustment for the Great Lakes basin to restore dated remnants of former lake levels to their original elevations. The earliest dated low-level feature is the Grimsby-Oakville bar which was constructed in the western end of the lake during a near stillstand at 11–10.4 (12.9–12.3 cal) ka BP when Early Lake Ontario was confluent with the Champlain Sea. Rising Lake Ontario basin outlet sills, a consequence of differential isostatic rebound, severed the connection with Champlain Sea and, in combination with the switch of inflowing Lake Algonquin drainage northward to Ottawa River valley via outlets near North Bay and an early Holocene dry climate with enhanced evaporation, forced Lake Ontario into a basin-wide lowstand between 10.4 and 7.5 (12.3 and 8.3 cal) ka BP. During this time, Lake Ontario operated as a closed basin with no outlets, and sites such as Hamilton Harbour, Bay of Quinte, Henderson Harbor, and a site near Amherst Island existed as small isolated basins above the main lake characterized by shallow-water, lagoonal or marsh deposits and fossils indicative of littoral habitats and newly exposed mudflats. Rising lake levels resulting from increased atmospheric water supply brought Lake Ontario above the outlet sills into an open, overflowing state ending the closed phase of the lake by ~7.5 (8.3 cal) ka BP. Lake levels continued to rise steadily above the Thousand Islands sill through mid-to-late Holocene time culminating at the level of modern Lake Ontario. The early and middle Holocene lake-level changes are supported by temperature and precipitation trends derived from pollen-climate transfer functions applied to Roblin Lake on the north side of Lake Ontario.  相似文献   

5.
We present the first palaeolimnological investigation of chironomid larval assemblages from the Bolivian Eastern Cordillera. Taxonomic diagnoses are provided for the 10 chironomid taxa (subfamilies: Chironominae, Orthocladiinae and Tanypodinae) identified in the lake sediments. We compared changes in the chironomid assemblage from two Andean sites with previously reported palynological, charcoal and geochemical data, and highlight the potential of chironomid analysis to provide additional insights into environmental change in this region of high biodiversity over the last 18,000?years. At Lake Challacaba (17°33.257??S, 65°34.024??W; 3,400?m asl), the chironomid and geochemical data indicate periodic desiccation and hypersalinty of the basin c. 4,000?C3,460?cal?year BP. Increased abundance of Chironomus sp. at c. 1,000?cal?year BP suggests a change in human activity, supporting inferences from the pollen and spore records, which indicate elevated pastoral agriculture at this time. The greatest assemblage change in the chironomid record from Laguna Khomer Kocha Upper (17°16.514??S, 65°43.945??W; 4,153?m asl) occurred at c. 6,380?cal?year BP, concomitant with an increase in marsh woodland taxa, wetter conditions and a rising lake level at the end of a Holocene dry event. There is no apparent response in the chironomid assemblage to burning, however, at the onset of this dry event (c. 10,000?cal?year BP), which is the major transformative agent of the terrestrial vegetation. This study shows that chironomid assemblages in the tropical Andes responded to regional and local environmental changes, and in particular, that they were sensitive to adjustments in net moisture balance (water level fluctuations and salinity) and anthropogenic impacts (nutrient input). This suggests that within-lake processes are more important as drivers of chironomid assemblage composition than terrestrial vegetation or fire regime. Nevertheless, the full potential of subfossil chironomid analysis will only be realised once more modern autecological data are available.  相似文献   

6.
Holocene Lake Evolution in the Elmali Basin,Southwest Turkey   总被引:1,自引:1,他引:0  
《自然地理学》2013,34(3):234-253
The spatial coverage of paleoecological research from southwestern Turkey is expanded by reporting on a ca. 12,690 14C yr BP (14,935 cal yr BP) proxy record recovered from the Elmali basin. Four AMS radiocarbon age determinations, the litho-stratigraphic analysis of a lake bed core, and the analysis of subsurface sediment samples from 15 shallow auger holes across the basin document sedimentation patterns during the Holocene. Based on the widespread occurrence of Chara gyrogonite, and several species of ostracoda and gastropoda, the Elmali basin was dominated by lacustrine and palustrine environments but was continually influenced by alluvial fan sedimentation. Contrasting stratigraphy in the Kara Göl and Avlan Gölü sub-basins is a result of basin morphology, and possibly hydrologic control by karst features, and sub-basin isolation due to alluvial fan development. The cyclical deposition of marl/lime mud, gyttja, and peat in the Kara Göl core is indicative of periodic fluctuations in water level across a broad shallow basin, whereas the continuous clay record observed at Avlan Gölü implies deep-water sedimentation within a plugged former karst collapse feature. Calcareous clay deposited between 14,935 and 11,180 cal yr BP signals the growth and expansion of paleo Lake Elmali, which at its peak during the late Pleistocene, may have inundated over half of the of the 180 km2 Elmali basin.  相似文献   

7.
Small lakes and wetlands from high elevation within the Sierra Nevada Range (southern Spain) preserve a complete post-glacial Holocene record. Isotopic, TOC and C/N analyses, carried out on a sediment core, show various stages in the evolution of the Borreguiles de la Virgen, which today constitute a small bog at about 2,950?m above sea level. Glacial erosion generated a cirque depression, which became a small lake during the first phase of infilling (from?8,200 to 5,100?cal?yr BP), as suggested by sedimentary evidence, including an atomic C/N ratio generally below 20, low TOC values and the highest ??13C and ??15N values of the record. These results imply significant algal productivity, which is confirmed by the microscopic algal remains. Drier conditions became established progressively in this area from?5,100 to 3,700?cal?yr BP. Subsequently, the lake evolved into a bog as shown by geochemical evidence (C/N ratios above 20, high TOC content and low ??13C values). Unstable conditions prevailed from?3,600 to 700?cal?yr BP; an extremely low sedimentation rate and scarcity of data from this period do not allow us to make a coherent interpretation. Fluctuating conditions were recorded during the last?~700?cal?yr BP, with wetter conditions prevailing during the first part of the interval (with C/N rate below 20) up to 350?years ago. In general, a gradual trend toward more arid conditions occurred since?~6,900?cal?yr BP, with a further increase in aridity since?~5,100?cal?yr BP. This evidence is consistent with other contemporaneous peri-Mediterranean records.  相似文献   

8.
This study uses the Holocene lake sediment of Lake ?ū?i (Latvia, Vidzeme Heights) for environmental reconstruction with multi-proxy records including lithology, computerised axial tomography scan, grain-size analysis, geochemistry, diatoms and macrofossils, supported by AMS radiocarbon dating. Numerical analyses (PCA; CONISS) reveal three main phases in the development of the lake. Response to the Lateglacial–Holocene transition in Lake ?ū?i took place around 11,300 cal. BP. Organogenic sedimentation started with distinctive 5-cm-thick peat layer and was followed by lacustrine sedimentation of carbonaceous gyttja. Several findings of the peat layer with similar dated age and position at different absolute altitudes indicate that lake basin was formed by glaciokarstic processes. In the Early Holocene (until around 8,500 cal. BP), the lake was shallow and holomictic, surrounded by unstable catchment with erosion and inflow events. Predominance of diatom species of Cyclotella and Tabellaria, large numbers of respiratory horns of phantom midge pupae (Chaoboridae), high Fe/Mn ratio, as well as the presence of laminated sediments indicates the transition to a dimictic and oligo-mesotrophic lake conditions with high water level, anoxia in the near-bottom and stable catchment in the Middle Holocene (8,500–2,000 cal. BP). This contrasts with many hydrologically sensitive lakes in Northern and Eastern Europe in which the water level fell several meters during this period. During the Late Holocene (from 2,000 cal. BP to the present), the lithological and biotic variables reveal major changes, such as the increase in erosion (coarser grain-size fraction) and eutrophication [diatoms Aulacoseira ambigua (Grun.) Sim., Stephanodiscus spp., Cyclostephanos dubius (Fricke) Round]. Characteristics of lake-catchment system during the Late Holocene reflect anthropogenic signal superimposed on the natural forcing factors. To date, the Late Quaternary palaeolimnological reconstructions using lake sediment has been limited in the Baltic region. Therefore, findings from Lake ?ū?i provide important information about environmental and climatic changes that took place in this part of Eastern Europe. This study shows that the relative importance of climate and local factors has varied over the time and it is essential to consider the lake basin topography, catchment size and land cover as potential dominant forcing factors for changes in sedimentary signal.  相似文献   

9.
We analyzed Holocene sedimentary records from two lakes in the Lofoten Islands, northern Norway to evaluate environmental changes during the Holocene related to northern North Atlantic climate dynamics. The lakes are located in different geomorphological settings, and thus provide a contrast in their response to regional climate change. Environmental changes at both lakes were interpreted based on magnetic susceptibility, organic-matter flux, C/N, ??13Corg, Ti concentrations, and mass accumulation rates. Chronologies were established using 16 AMS radiocarbon dates, and average deposition rates in both environments are higher than 0.2?mm/year throughout the Holocene. At Vikjordvatnet, sedimentary geochemical properties define three distinct phases of sedimentation related to changes in aquatic productivity and gradual landscape development. Following deglaciation, during the early Holocene (11.6?C7.2?ka), aquatic productivity increased and the landscape stabilized as regional temperatures increased in response to higher summer insolation and increasing inflow of warm Atlantic water into the Norwegian Sea. Centennial-scale intervals of decreased organic-matter flux, from 10.9 to 10.2?ka and 9.2 to 8.0?ka, record episodes of instability during the early Holocene. These may represent regional cooling events related to freshwater forcing and a slowdown of the northward transport of warm water into the North Atlantic. During the mid-Holocene (7.2?C4.8?ka) organic-matter properties show less variability and the timing of this phase corresponds with the regional Holocene thermal maximum. The late Holocene sediments (4.8?ka?Cpresent) record a transition to colder climate conditions. The record from Fiskeb?lvatnet captures periodic changes in clastic input related to runoff and exhibits high-frequency variations over the last 9.5?ka. The most significant change in sedimentation was during the late Holocene (4.3?ka?Cpresent) when the frequency and magnitude of runoff events show an abrupt transition to wetter conditions. The timing of this shift corresponds to other regional reconstructions that indicate wetter and colder conditions during the late Holocene.  相似文献   

10.
Studies combining sedimentological and biological evidence to reconstruct Holocene climate beyond the major changes, and especially seasonality, are rare in Europe, and are nearly completely absent in Germany. The present study tries to reconstruct changes of seasonality from evidence of annual algal successions within the framework of well-established pollen zonation and 14C-AMS dates from terrestrial plants. Laminated Holocene sediments in Lake Jues (10°20.7′ E, 51°39.3′ N, 241 m a.s.l.), located at the SW margin of the Harz Mountains, central Germany, were studied for sediment characteristics, pollen, diatoms and coccal green algae. An age model is based on 21 calibrated AMS radiocarbon dates from terrestrial plants. The sedimentary record covers the entire Holocene period. Trophic status and circulation/stagnation patterns of the lake were inferred from algal assemblages, the subannual structure of varves and the physico-chemical properties of the sediment. During the Holocene, mixing conditions alternated between di-, oligo- and meromictic depending on length and variability of spring and fall periods, and the stability of winter and summer weather. The trophic state was controlled by nutrient input, circulation patterns and the temperature-dependent rates of organic production and mineralization. Climate shifts, mainly in phase with those recorded from other European regions, are inferred from changing limnological conditions and terrestrial vegetation. Significant changes occurred at 11,600 cal. yr. BP (Preboreal warming), between 10,600 and 10,100 cal. yr. BP (Boreal cooling), and between 8,400 and 4,550 cal. yr. BP (warm and dry interval of the Atlantic). Since 4,550 cal. yr. BP the climate became gradually cooler, wetter and more oceanic. This trend was interrupted by warmer and dryer phases between 3,440 and 2,850 cal. yr. BP and, likely, between 2,500 and 2,250 cal. yr. BP.  相似文献   

11.
Whitefish Lake is a large (11-km-long), shallow, basin in Northwestern Ontario, Canada. The presence of extensive stands of wild rice (Zizania sp.) in combination with high archaeological site density suggests that this lake was ecologically important to regional precontact populations. Collection and analysis of sediment from Whitefish Lake was initiated in 2008 in order to reconstruct changes in lake depth, climate, and vegetation throughout the Holocene. In general, the upper 4.5 m of basinal sediment is composed of ~1.5+ m of varves, which is overlain by a 1.5-m-thick unit with ped-like structures, and ~1.5 m of lacustrine sediment. This sequence documents an early proglacial lake phase, followed by a dry interval before 4,300 (4,900 cal) BP when the lake was significantly shallower, and the establishment of the modern lake during the late Holocene. Plant microfossil (phytolith) evidence indicates that wild rice had colonized the basin ~5,300 (6,100 cal) BP as the lake level rose in response to climate change. Beginning ~4,000 (4,500 cal) BP, changes in elemental data suggest a sharp increase in lake productivity and a switch to anaerobic depositional conditions as the rate of organic sedimentation increased. Recent archaeological research confirms that wild rice was locally processed and consumed during the Middle and Late Woodland periods (~300 BC–AD 1700) although it was evidently growing in the lake well before this time.  相似文献   

12.
Paleohydrology studies at Mathews Pond and Whitehead Lake in northern Maine revealed synchronous changes in lake levels from about 12,000 14C yrs BP to the present. We analyzed gross sediment structure, organic and carbonate content, mineral grain size, and macrofossils of six cores from each of the two lakes, and obtained 72 radiocarbon dates. Interpretation of this paleo-environmental data suggests that the late-glacial and Younger Dryas climate was dry, and lake levels were low. Early Holocene lake levels were considerably higher but declined for an interval from about 8000 to 7200 14C yrs BP. Sediment of both lakes contains evidence of a dry period at ∼7400 14C yrs BP (8200 cal yr). Lake levels of both sites declined abruptly about 4800 14C yrs BP and remained low until 3000 14C yrs BP. Modern lake levels were achieved only within the past 600 years. The west-to-east, time-transgressive nature of lake-level changes from several sites across northeastern North America suggests periodic changes in atmospheric circulation patterns as a driving force behind observed moisture balance changes. Electronic supplementary material to this article is available at and accessible for authorized users.  相似文献   

13.
Climatic and environmental changes since the last glacial period are important to our understanding of global environmental change. There are few records from Southern Tibet, one of the most climatically sensitive areas on earth. Here we present a study of the lake sediments (TC1 core) from Lake Chen Co, Southern Tibet. Two sediment cores were drilled using a hydraulic borer in Terrace 1 of Lake Chen Co. AMS 14C dating of the sediments showed that the sequence spanned >30,000 years. Analyses of present lake hydrology indicated that glacier melt water is very important to maintaining the lake level. Sediment variables such as grain size, TOC, TN, C/N, Fe/Mn, CaCO3, and pollen were analyzed. Warm and moderately humid conditions dominated during the interval 30,000–26,500 cal year BP. From 26,500 to 20,000 cal year BP, chemical variables and pollen assemblages indicate a cold/dry environment, and pollen amounts and assemblages suggest a decline in vegetation. From 20,000 to 18,000 cal year BP, the environment shifted from cold/dry to warm/humid and vegetation rebounded. The environment transitioned to cold/humid during 16,500–10,500 cal year BP, with a cold/dry event around 14,500 cal year BP. After 10,500 cal year BP, the environment in this region tended to be warm/dry, but exhibited three stages. From 10,500 to 9,000 cal year BP, there was a short warm/humid period, but a shift to cold/dry conditions occurred around 9,000 cal year BP. Thereafter, from 9,000 to 6,000 cal year BP, there was a change from cold/dry to warm/humid conditions, with the warmest period around 6,000 cal year BP. After 6,000 cal year BP, the environment cooled rapidly, but then displayed a warming trend. Chemical variables indicate that a relatively warm/dry event occurred around 5,500–5,000 cal year BP, which is supported by time-lagged pollen assemblages around 4,800 cal year BP. Our lake sediment sequence exhibits environmental changes since 30,000 cal year BP, and most features agree with records from the Greenland GISP2 ice core and with other sequences from the Tibetan Plateau. This indicates that environmental changes inferred from Lake Chen Co, Southern Tibet were globally significant.  相似文献   

14.
The Kangerlussuaq area of southwest Greenland is a lake-rich landscape that covers a climate gradient: a more maritime, cooler and wetter coastal zone contrasts with a dry, continental interior. Radiocarbon-dated sediment sequences (covering ~11,200?C8,300?cal?year) from paired lakes at the coast and the head of the fjord were analysed for lithostratigraphic variables (organic-matter content, bulk density, Ti, Ca). Minerogenic and carbon accumulation rates from the four lakes were compared to determine catchment and lake response to Holocene climatic variability. Catchment erosion at the coast was dominated by cryonival processes, with considerable sediment production due to the limited vegetation cover and exposed rock faces. Input of minerogenic sediment at one site (AT4) was high (>1?gDW?cm?2?year?1) during the period 5,800?C4,000?cal?year BP, perhaps reflecting intensification of cryogenic processes on northeast-facing slopes and rapid delivery to the lake. This period of erosional activity was not observed at the nearby, higher elevation site (AT1) due to the lower catchment relief; instead, there was an abrupt decline in carbon and minerogenic accumulation rates at ~5,800?cal?year BP. Sediment accumulation rates at the inland sites were much lower (<0.005?gDW?cm?2?year?1) reflecting greater catchment stability (more extensive vegetation cover), lower relief and substantially lower precipitation, but synchronous increases in mineral accumulation rates from ~1,200 to 1,000?cal?year BP may reflect wind erosion associated with regional cooling and local aridity. Carbon-accumulation-rate profiles were similar at the two inland sites, with higher-than-average accumulation (~6?C8?g?C?m?2?year?1) during the early Holocene and a subsequent decline after ~6,000?cal?year BP. At the inland lakes, both mineral and carbon accumulation rates exhibited a stronger link to climate, driven by trends in effective precipitation and regional aeolian activity. Catchment differences (relief, altitude) lead to more individualistic records in both erosion history and lake productivity at the coast.  相似文献   

15.
We studied mineral magnetic properties of a 6-m-long, late Pleistocene through Holocene sediment sequence from Lake Aibi in Dzungaria (Zunggary, Junggar), northern Xinjiang, China. Results were used to infer environmental changes and are compared with previously studied cores from Lake Manas. Both water bodies occupy the deepest parts of the Dzungarian Basin and are remnants of large Holocene lakes. During the Late Pleistocene, the magnetic mineralogy in both lakes was dominated by detrital, iron oxide minerals. Oxic conditions, which dominated during sedimentation and early diagenesis, persisted over the Pleistocene–Holocene transition. Later, during the middle Holocene, lake bottom conditions enabled authigenic formation of iron sulphide minerals such as pyrite (FeS2) in Lake Aibi, and pyrite and greigite (Fe3S4) in Lake Manas. This iron sulphide mineralogy suggests increased biological activity in stagnant, anoxic bottom waters. Anoxic bottom conditions started about 9.8 cal kyr BP in Lake Manas and at about 7.2 cal kyr BP in Lake Aibi. A short dry event recorded in Lake Manas between 6.8 and 5.2 cal kyr BP is not clearly observed in Lake Aibi. In the late Holocene, i.e. the last 2.8 cal kyr, sediments of both lakes are again characterised by iron oxides, suggesting well-mixed, shallow water bodies. For this recent period, it seems that the detrital material in the two lakes had a common origin. Magnetic properties of sediments in Lakes Aibi and Manas show broadly similar environmental evolution during the late Pleistocene and Holocene. Nevertheless, despite the close proximity of the two lakes (~200 km) in the same basin, they display some different magnetic properties and record environmental changes at different times.  相似文献   

16.
High-resolution quantitative analysis of ostracod assemblages from 4.3-m-thick freshwater tufa-rich sediments, deposited during the last 12.8 ka in Lake Sinijärv, northern Estonia, yielded information on water level, trophic state conditions, and temperature changes since the late glacial. AMS 14C dates from aquatic mosses provided time constraints on the palaeoenvironmental development of the region. In the ostracod assemblage structure, four faunal zones (OFZ) were determined. The most significant change in the ostracod fauna occurred at 10,590 cal. y BP, when a typical littoral, polythermophilic fauna was replaced by a mostly sublittoral, species-rich meso- to stenothermophilic fauna. The ostracod data indicate two major low-water-level periods in the lake at 12,800–10,590 and 7,600–3,700 cal. y BP. Sediment analysis indicates the most intensive tufa precipitation occurred during these low stand periods, rather than during the warmest climate in Estonia between 8,000 and 4,500 cal. y BP. The late glacial low water level in the groundwater-fed Lake Sinijärv at 12,800–10,590 cal. y BP coincides partly with the regression in the Lake Peipsi basin (14,000–12,100 cal. y BP) and with the last drainage event of the Baltic Ice Lake at 11,600 cal. y BP. The low-water-level period in Lake Sinijärv occurred earlier than in lakes in the SE sector of Scandinavian glaciation. The change from low to high water level in Lake Sinijärv at 10,590 cal. y BP preceded the first post-glacial transgression events in the small lowland lakes of Estonia, southern Sweden, Poles`ye in Belarus, and Valday in NW Russia. In general, the mid-Holocene low-water-level period in Lake Sinijärv between 7,600 and 3,700 cal. y BP is concurrent with the regressions in the lakes of the SE sector of Scandinavian glaciation.  相似文献   

17.
Variations in the oxygen-isotope composition of paleo-water bodies in the Lake Superior Basin provide information about the timing and pathways of glacial meltwater inflow into and within the Lake Superior Basin. Here, the oxygen-isotope compositions of Lake Superior have been determined using ostracodes from four sediment cores from across the Basin (Duluth, Caribou and Ile Parisienne sub-basins, Thunder Bay trough). The δ18O values indicate that lake water (Lake Minong) at ~10,600–10,400 cal [~9,400–9,250] BP was dominated by glacial meltwater derived from Lake Agassiz and the Laurentide Ice Sheet (LIS). From that time to ~9,000 cal [~8,100] BP, a period associated with formation of thick varves across the Lake Superior Basin, the δ18O values of Lake Minong decreased even further (−24 to −28‰), symptomatic of an increasing influx of glacial meltwater. Its supply was reduced between ~9,000 and ~8,900 cal [~8,100–8,000] BP, and lake water δ18O values grew higher by several per mil during this period. Between ~8,900 and ~8,800 cal [~8,000–7,950] BP, there was a return to δ18O values as low as −29‰ in some parts of the Lake Superior Basin, indicating a renewed influx of glacial meltwater before its final termination at ~8,800–8,700 cal [~7,950–7,900] BP. The sub-basins in the Lake Superior Basin generally displayed very similar patterns of lake water δ18O values, typical of a well-mixed system. The final stage of glacial meltwater input, however, was largely expressed near its input (Thunder Bay trough) and recognizable in dampened form mainly in the Duluth sub-basin to the west. Water in the easternmost Ile Parisienne sub-basin was enriched in 18O relative to the rest of the lake, particularly after ~10,000 cal [~8,900] BP, probably because of a strong influence of local precipitation/runoff, and perhaps also enhanced evaporation. By ~9,200 cal [~8,250] BP, lake water δ18O values in the Ile Parisienne sub-basin were similar to the adjacent Lake Huron Basin, suggesting a strong hydraulic connection between the two water bodies, and common responses to southern Ontario’s shift to warmer and dry climatic conditions after ~9,000 cal [~8,100] BP.  相似文献   

18.
Maar lakes in the Auckland Volcanic Field are important high-resolution archives of Holocene environmental change in the Southern Hemisphere mid-latitudes. Stable carbon and nitrogen isotope analyses were applied on bulk organic matter and the green alga Botryococcus from a sediment core from Lake Pupuke (Auckland, North Island, New Zealand) spanning the period since 7,165?cal.?year BP. The origin of organic matter was established using total-organic?Ccarbon-to-nitrogen ratios (TOC/TN) as well as organic carbon (??13COM) and nitrogen (??15N) isotope composition of potential modern sources. This approach demonstrated that the contribution of allochthonous organic matter to the lake sediment was negligible for most of the record. The sedimentary TOC/TN ratios that are higher than Redfield ratio (i.e. >7) are attributed to N-limiting conditions throughout the record. Variations of nitrogen and carbon isotopes during the last 7,165?years are interpreted as changes in the dominant processes in the lake. While epilimnetic primary productivity controlled isotope composition before 6,600?cal.?year BP, microbial processes, especially denitrification and methane oxidation, caused overall shifts of the ??15N and ??13C values since the Mid-Holocene. Comparisons with climate reconstructions from the Northern Island suggest that changes in the wind-induced lake overturn and a shift to more pronounced seasonality were the most likely causes for lake-internal changes since 6,600?cal.?year BP.  相似文献   

19.
West Hawk Lake (WHL) is located within the glacial Lake Agassiz basin, 140 km east of Winnipeg, Manitoba. The small lake lies in a deep, steep-sided, meteorite impact crater, which has been partly filled by 60 m of sediment that today forms a flat floor in the central part of the basin below 111 m of water. Four cores, 5–11 m in length, were collected using a Kullenberg piston gravity corer. All sediment is clay, contains no unconformities, and has low organic content in all but the upper meter. Sample analyses include bulk and clay mineralogy, major and minor elements, TOC, stable isotopes of C, N, and O, pollen, charcoal, diatoms, and floral and faunal macrofossils. The sequence is divided into four units based mainly on thickness and style of lamination, diatoms, and pollen. AMS radiocarbon dates do not provide a clear indication of age in the postglacial sequence; possible explanations include contamination by older organic inwash and downward movement of younger organic acids. A chronological framework was established using only selected AMS dates on plant macrofossils, combined with correlations to dated events outside the basin and paleotopographic reconstructions of Lake Agassiz. The 822 1-cm-thick varves in the lower 8 m of the cored WHL sequence were deposited just prior to 10,000 cal years BP (∼8,900 14C years BP), during the glacial Lake Agassiz phase of the lake. The disappearance of dolomite near the top of the varved sequence reflects the reduced influence of Lake Agassiz and the carbonate bedrock and glacial sediment in its catchment. The lowermost varves are barren of organisms, indicating cold and turbid glacial lake waters, but the presence of benthic and planktonic algae in the upper 520 varves indicates warming; this lake phase coincides with a change in clay mineralogy, δ18O and δ13C in cellulose, and in some other parameters. This change may have resulted from a major drawdown in Lake Agassiz when its overflow switched from northwest to east after formation of the Upper Campbell beach of that lake 9,300–9,400 14C years ago. The end of thick varve deposition at ∼10,000 cal years BP is related to the opening of a lower eastern outlet of Lake Agassiz and an accompanying drop in West Hawk Lake level. WHL became independent from Lake Agassiz at this time, sedimentation rates dropped, and only ∼2.5 m of sediment was deposited in the next 10,000 years. During the first two centuries of post-Lake Agassiz history, there were anomalies in the diatom assemblage, stable O and C isotopes, magnetic susceptibility, and other parameters, reflecting an unstable watershed. Modern oligotrophic conditions were soon established; charcoal abundance increased in response to the reduced distance to the shoreline and to warmer conditions. Regional warming after ∼9,500 cal years BP is indicated by pollen and diatoms as well as C and O isotope values. Relatively dry conditions are suggested by a rise in pine and decrease in spruce and other vegetation types between 9,500 and 5,000 cal years BP (∼8,500–4,400 14C years BP), plus a decrease in δ13Ccell values. After this, there was a shift to slightly cooler and wetter conditions. A large increase in organic content and change in elemental concentration in the past several thousand years probably reflects a decline in supply of mineral detritus to the basin and possibly an increase in productivity.  相似文献   

20.
Serpent River Bog lies north of North Channel, 10 m above Lake Huron and 15 m below the Nipissing Great Lake level. A 2.3 m Holocene sequence contains distinct alternating beds of inorganic clastic clay and organic peat that are interpreted as evidence of successive inundation and isolation by highstands and lowstands of the large Huron-Basin lake. Lowstand phases are confirmed by the presence of shallow-water pollen and plant macrofossil remains in peat units. Twelve 14C dates on peat, wood and plant macrofossils combined with previously published 14C ages of lake-level indicators confirm much of the known early Holocene lake-level history with one notable exception. A new Late Mattawa highstand (8,390 [9,400 cal]–8,220 [9,200 cal] BP) evidenced by a sticky blue-grey clay bed is tied to outburst floods of glacial Lake Minong during erosion of the Nadoway drift barrier in the eastern Lake Superior basin. A subsequent Late Mattawa highstand (8,110 [9,040 cal]–8,060 [8,970 cal] BP) is attributed to enhanced meltwater inflows that first had deposited thick varves throughout Superior Basin. Inundation by the Nadoway floods and possibly the last Mattawa flood were likely responsible for termination of the Olson Forest (southern Lake Michigan). A pollen diagram supports the recognized progression of Holocene vegetation, and defines a subzone implying a very dry, cool climate about 7.8–7.5 (8.6–8.3 cal) ka BP based on the Alnus crispa profile during the Late Stanley lowstand. A new date of 9,470 ± 25 (10,680–10,750 cal) BP on basal peat over lacustrine clay at Espanola West Bog supports the previous interpretation of the Early Mattawa highstand at ca. 9,500 (10,740 cal) BP. The organic and clastic sediment units at these two bogs are correlated with other records showing coherent evidence of Holocene repeated inundation and isolation around northern Lake Huron. Taken together the previous and new lake-level data suggest that the Huron and Georgian basin lakes were mainly closed lowstands throughout early Holocene time except for short-lived highstands. Three of the lowstands were exceptionally low, and likely caused three episodes of offshore sediment erosion which had been previously identified as seismo-stratigraphic sequence boundaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号