首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vertical distributions of sulfate, hydrogen sulfide, and iron (II) concentrations in interstitial waters and of sulfur content in sediment have been studied in a sediment core (73 cm long) from a meromictic lake, Lake Suigetsu, which changed from fresh-water to brackish conditions in 1664 A.D. The diatom assemblage of the sediment has also been analyzed. A boundary between high (>1.5%) and low (<0.2%) sulfur contents is found at a depth of 52 cm in the core. In the high sulfur layer (above 52 cm), the maximum sulfur content is 6.8% at 35 to 37 cm. The diatom assemblage, however, indicates that the boundary between fresh-water and brackish sediments lies at 40 cm. The hydrogen sulfide and iron (II) profiles in the interstitial waters indicate a sink for these chemical species near a depth of 40 cm. The discrepancy between the chemically-defined boundary at 52 cm and the paleontologically-defined boundary at 40 cm seems to be due to the downward migration of hydrogen sulfide and deposition of iron sulfide after the lake became brackish.  相似文献   

2.
Vertical profiles of manganese concentration in interstitial waters and of manganese and iron contents in five chemically-separated fractions of sediments have been studied in a sediment core (73 cm long) from a meromictic lake, Lake Suigetsu, which changed from freshwater to brackish conditions in 1664 A.D. The interstitial waters show a minimum manganese concentration of 0.13 ppm near a depth of 10 cm and a maximum of 26 ppm near 65 cm in the core. A predominant amount of manganese, up to 0.17%, is found in the hydrogen peroxide-soluble fraction of sediments in layers above a depth of 52 cm. It is suggested that the manganese is included in stable iron sulfides such as pyrite. Manganese, which diffuses upward from the lower layer, is thought to be deposited along with stable iron sulfide during diagenetic formation of the latter near a depth of 10 cm in the core.  相似文献   

3.
This report presents major and minor element profiles for interstitial waters recovered from the oxygen-minimum zone of the Gulf of California. The major elements and nutrients show concentration-depth profiles typical for anoxic, laminated sediments, with sulfate-reduction occurring close to the sediment-water interface, accompanied by increases in alkalinity and ammonia. Barium is solubilized near the sediment-water interface, but decreases below 10 cm depth, showing concentrations consistent with barite solubility. The dissolved concentrations of Mn, Fe, and Al are higher in the upper part of the sedimentary column; Mn and Fe due to reduction of oxides and Al probably because of dissolution of siliceous material. In contrast, dissolved Mo, V, and Cr show concentrations increasing with depth. The strong correlation of the concentrations of Mo, V and Cr with “yellow substance” absorbance reflect the importance of dissolved organic matter for the mobility of these elements during early diagenesis.  相似文献   

4.
Sediment core samples were taken once a month from July 1980 to September 1981 at a station in Funka Bay (92-m depth) for the determination of phosphate, silicate and alkalinity in interstitial water. A remarkable seasonal variation was found for interstitial phosphate, that is, distinct maxima appeared in spring (March—April), just after a phytoplankton bloom which brought a large amount of settling particles to the bottom, and in summer (July—August) when the water was stratified and the dissolved oxygen content of the bottom water decreased due to the decomposition of organic matter. The high interstitial phosphate concentration was always accompanied by a sharp increase in alkalinity, indicating sulfate reduction. This large seasonal variation in interstitial phosphate cannot be explained by in situ decomposition of organic matter and/or the diffusive loss of interstitial phosphate. A more likely explanation is adsorption and desorption of interstitial phosphate coincident with the depth of the active sulfate reduction layer.  相似文献   

5.
In and around the beds of vesicomyid clam (Calytogena soyoae) located off Hatsushima Island in Sagami Bay, central Japan, hydrogen sulfide concentration in bottom water and interstitial water was measured every 10 cm from just above seafloor to 40 cm deep usingin situ separative dialysis bags. While hydrogen sulfide over 0.01 mmol/kg was not measured from the seawater just above the dense clam beds, the concentration of hydrogen sulfide increased rapidly below 10 cm deep. The results indicate that the habit of the clam is correlated with high concentration of hydrogen sulfide contained in pore waters of sediments between depths of 10 and 20 cm from the bottom surface. Concentrations of hydrogen sulfide ranging from approximately 0.05 mmol/kg to 0.6 mmol/kg might be suitable requirement for the habitat ofC. soyoae.  相似文献   

6.
The Sakhalin Slope Gas Hydrate Project (SSGH) is an international collaborative effort by scientists from Japan, Korea, and Russia to investigate natural gas hydrates (GHs) that have accumulated on the continental slope off Sakhalin Island, Okhotsk Sea. From 2009 to 2011, field operations of the SSGH-09, -10, and -11 projects were conducted. GH-bearing and -free sediment cores were retrieved using steel hydro- and gravity corers. The concentrations of sulfate ions in sediment pore waters were measured to investigate sulfate concentration–depth profiles. Seventeen cores showed linear depth profiles of sulfate concentrations. In contrast, eight cores and two cores showed concave-up and -down profiles plausibly explained by sudden increase and decrease in methane flux from below, respectively, presumably caused by the formation of gas hydrate adjacent to the core sampling sites.  相似文献   

7.
The oxidation and reduction that occur during early diagenesis of sediments has been studied in the interstitial waters of a rapidly accumulating sedimentary sequence from the Mediterranean margin of Spain. A series of reactions that are mediated by progressively lower free energy derived from oxidation of organic matter is evident in the sedimentary sequence. Iron and manganese are rapidly reduced. Phosphate and alkalinity maxima at a subbottom depth of 15?m indicate maximal organic matter degradation. Methane first appears at ~20?m subbottom after sulfate is depleted, and its concentrations quickly climb.  相似文献   

8.
The concentrations of rare earth elements (REEs), sulphate, hydrogen sulphide, total alkalinity, calcium, magnesium and phosphate were measured in shallow (<12 cm below seafloor) pore waters from cold-seep sediments on the northern and southern summits of Hydrate Ridge, offshore Oregon. Downward-decreasing sulphate and coevally increasing sulphide concentrations reveal sulphate reduction as dominant early diagenetic process from ~2 cm depth downwards. A strong increase of total dissolved REE (∑REE) concentrations is evident immediately below the sediment–water interface, which can be related to early diagenetic release of REEs into pore water resulting from the re-mineralization of particulate organic matter. The highest pore water ∑REE concentrations were measured close to the sediment–water interface at ~2 cm depth. Distinct shale-normalized REE patterns point to particulate organic matter and iron oxides as main REE sources in the upper ~2-cm depth interval. In general, the pore waters have shale-normalized patterns reflecting heavy REE (HREE) enrichment, which suggests preferential complexation of HREEs with carbonate ions. Below ~2 cm depth, a downward decrease in ∑REE correlates with a decrease in pore water calcium concentrations. At this depth, the anaerobic oxidation of methane (AOM) coupled to sulphate reduction increases carbonate alkalinity through the production of bicarbonate, which results in the precipitation of carbonate minerals. It seems therefore likely that the REEs and calcium are consumed during vast AOM-induced precipitation of carbonate in shallow Hydrate Ridge sediments. The analysis of pore waters from Hydrate Ridge shed new light on early diagenetic processes at cold seeps, corroborating the great potential of REEs to identify geochemical processes and to constrain environmental conditions.  相似文献   

9.
通过沉积物柱孔隙水中甲烷,SO2-4,Cl-,δc(34S-SO2-4)、δc(13 C-CH4)的垂直分布特征,研究了硫酸盐还原和甲烷厌氧氧化(anaerobic oxidation of methane,简称AOM)过程在九龙江河口沉积物中的分布规律.测定结果显示两个站位(J-A和J-E)间隙水中SO2-4浓度随深...  相似文献   

10.
The contribution of organic matter (humic compounds) to the alkaline reserve of seawater in the Sea of Japan, in the Razdol’naya River estuarine waters, and in the interstitial waters of the sediments of the Sea of Okhotsk was characterized using two procedures for alkalinity measurements: the method by Bruevich and that of the sample equilibrium with air. It was found that the surface waters of the Sea of Japan contained about 20 μmol/kg of alkalinity of organic origin, and this value twofold decreased with depth. For most of the actual cases of the calculations of the seawater carbonate system, this value may be neglected. Meanwhile, the contribution of organic alkalinity to the Razdol’naya River waters amounts to nearly 120 μmol/kg. It was shown that, if this value in the calculation of the carbonate system of the Razdol’naya River estuary-Amur Bay is neglected, this may cause gross errors in the values of the partial pressure of carbon dioxide (the error might be over 1500 μatm) and in the dissolved inorganic carbon (an error over 150 μmol/kg). The maximum absolute contribution of the humic matter (over 300 μmol/kg) was found for the interstitial waters in selected sediments of the Sea of Okhotsk. In the interstitial waters of these sediments, humic matter concentrations as high as 300 mg/l were detected. The data obtained show that the determination of the amount of humic matter must be an indispensable condition for an adequate analysis of estuarine carbonate systems and of the interstitial water in reduced marine sediments.  相似文献   

11.
New light-stable carbonate-carbon isotope and lattice-bound CO2 data from Quaternary Peru-Chile margin phosphatic nodules, crusts and pelletal grains, and from associated dolomicritic concretions, are presented, which provide constraints on the timing and mechanisms of growth of these phases in organic carbon-rich sediments. Comparison of δ13C values from carbonate fluorapatite (CFA) nodules and pelletal grains (−4.8 to 0.0‰ and −2.9 to +1.0‰ PDB, respectively) with pore-water total dissolved δ13C values from these sediments suggests early authigenic CFA precipitation from pore waters within a few centimeters of the sediment-water interface in association with suboxic to perhaps anoxic microbial degradation of organic matter. In contrast, the dolomicritic cores of nodules recovered from about 12°S display both strongly negative to positive δ13C values (−10.8 to +6.1‰) characteristic of formation deeper in the sediments in association with methanogenic and perhaps sulfate reduction microbial processes.

The amount of structural carbonate in CFA suggests that carbonate substitution generally increases as δ13C in CFA decreases, a probable consequence of increasing carbonate and accompanying charge-balancing substitutions in the CFA lattice in response to increasing pore-water carbonate ion concentrations with depth below the sediment-water interface. In one buried upward-growing nodule, decreasing CFA δ13C and increasing structural CO2 also correspond to decreasing CFA growth rates. These data suggest that in addition to other constraints such as pore-water phosphorus and fluoride availability, the lower limit of CFA precipitation in suboxic to anoxic sediments may be controlled by lattice poisoning due to excessive dissolved carbonate ion concentrations. In organic-rich Peru-Chile margin sediments this depth threshold appears to be at approximately 5–10 cm below the sediment-water interface where maximum CFA CO2 contents of about 6 Wt.% occur; in less organic-rich settings, greater depths of precipitation of CFA may be anticipated. Below this relatively shallow depth of CFA precipitation on the Peru shelf, high pore-water alkalinity and associated elevated total dissolved carbon and carbonate ion concentration apparently favor the precipitation of authigenic carbonates.  相似文献   


12.
The reversibility of the temperature effect on the chemical composition of interstitial waters of three deep-sea sediment samples was examined between 2 and 25°C for Cl, Na, K, Mg, Ca, Si, B, Mn and alkalinity. When the temperature of sediment samples was returned from 25°C to the initial value of 2°C, most chemical species gave nearly their initial concentrations. However, for alkalinity and in one case for magnesium, it took another three to four hours to reach their initial concentrations.  相似文献   

13.
We consider data on the contents of hydrogen sulfide and silicic acid in waters of the Black Sea obtained in the course of field investigations during Cruise 4 of the R/VKiev. The special attention is given to the results of studying the influence of recently opened mud volcano manifestations on the chemical composition of benthic waters and, first of all, on the content of hydrogen sulfide. The data concerning the contents of hydrogen sulfide and silicic acid and the analysis of the relative chemical composition indicate the absence of any direct influence of mud volcanoes on the chemical composition of waters. At the same time, the investigations carried out confirmed the possibility of presence of distributed sources of hydrogen sulfide, which is a product of bacterial utilization of incoming hydrocarbons.  相似文献   

14.
Temperature, pH, total alkalinity, dissolved oxygen, silicate, nitrate, phosphate and the Mn, Fe and Al contents of suspended particulate matter (SPM) were measured in the Rimouski River estuary as functions of chlorinity during the period May—September 1980.At any given time, total alkalinity (TA) is conservative within the estuary with respect to chlorinity. However, the total alkalinity (TA) of the freshwater is related to river flow. This is attributed to dilution of the river water with bicarbonate-poor rainwater.Generally, pH follows the same pattern observed for TA in freshwater. Dissolved oxygen is usually more concentrated in freshwater and decreases linearly with increasing chlorinity. Freshwater is always saturated or supersaturated with respect to O2. Seasonal fluctuations are attributed to temperature variations.There is no evidence for removal of soluble silicate from the freshwater entering the sea. The concentration of silicate in the freshwater is strongly influenced by rainfall. Soil leaching, conditioned by high rainfall increases the concentration of soluble silicate in freshwater. Nitrate behaves similarly whereas phosphate is complicated by the presence of sewage.Analysis of the Mn, Fe and Al contained in the SPM indicates dilution of river-borne particles rich in Mn by others less rich in this element. A decrease in Mn content with increasing chlorinity and SPM concentration as well as increasing concentrations of SPM with increasing chlorinity indicate that the composition is controlled primarily by physical mixing of material from two sources rather than by chemical processes. Within the analytical precision the Fe/Al ratio does not vary with the chlorinity.  相似文献   

15.
The rate of the hydrogen sulfide oxidation in the redox zone of the Black Sea and the rate of the hydrogen sulfide formation due to bacterial sulfate reduction in the upper layer of the anaerobic waters were measured during the period of February–April 1991. The measurements were made using a sulfur radioisotope under conditions close to those in situ. It was established that the hydrogen sulfide is oxidized in the layer where oxygen and hydrogen sulfide coexist, which is under the upper boundary of the hydrogen sulfide layer. The maximum rate of the hydrogen sulfide oxidation was recorded within the limits of the density values δτ of 16.20–16.30, while varying in the layer from 2 to 4.5 μM/day. The average rate of the hydrogen sulfide oxidation was 1.5–3 times higher than that during the warm season. Sulfide formation was not observed at most of the stations in the examined lower portion of the pycnocline layer (140 to 400 m depths). Noticeable sulfate reduction was detected only at one station on the northwestern shelf. A probable reason for such noticeable changes in the sulfur dynamics in the water mass of the Black Sea may be the intensified hydrodynamics in the upper layers of the water mass during the cold season. The data suggesting that hydrogen sulfide oxidation proceeds under the hydrogen sulfide boundary indicate the absence of the so called “suboxic zone” in this basin.  相似文献   

16.
 The oxidation and reduction that occur during early diagenesis of sediments has been studied in the interstitial waters of a rapidly accumulating sedimentary sequence from the Mediterranean margin of Spain. A series of reactions that are mediated by progressively lower free energy derived from oxidation of organic matter is evident in the sedimentary sequence. Iron and manganese are rapidly reduced. Phosphate and alkalinity maxima at a subbottom depth of 15 m indicate maximal organic matter degradation. Methane first appears at ∼20 m subbottom after sulfate is depleted, and its concentrations quickly climb. Received: 27 October 1997 / Revision received: 4 March 1998  相似文献   

17.
硫化氢对管线钢在氯化钠溶液中应力腐蚀开裂的影响   总被引:3,自引:0,他引:3  
采用动电位扫描、慢应变速率拉伸、氢渗透试验方法时X70管线钢在不同电位下含不同浓度H2S的质量分数3.5%NaCl溶液中的应力腐蚀开裂行为进行了研究。结果表明,H2S的加入使渗氢电流逐渐增大,硫化物应力腐蚀开裂(SSCC)敏感性逐渐增加,随着H2S浓度的增大,其断裂特征由塑性断裂逐渐转变为脆性断裂。在阳极极化下,X70管线钢无SSCC敏感电位区;在阴极极化程度较小时,材料对SSCC的敏感性减小;在阴极极化程度较强时,材料对SSCC的敏感性显著增加。分析表明X70管线钢的SSCC受阳极溶解和氢脆共同控制。  相似文献   

18.
19.
The interstitial water composition ( , alkalinity, Ca2+, Mg2+, Sr2+, Na+, K+) and the cation exchange capacity (CEC) were determined for the muddy sediments of the continental shelf off the Gironde Estuary (France), in the area where the sediment represents the deposit of the muddy suspension of the river. In comparison with seawater concentrations, the pore waters below 10 cm depth, show depletions of and Ca2+ and below a 30 cm depth show depletions of Mg2+. Inversely, the upper 10 cm an enrichment of Ca2+ concentration, and an increase of K+ concentration to a 40 cm depth. High values of are observed at the top 4 cm. Alkalinity enrichment is observed along the length of the core. Applying the alkalinity models for the sediment below a 10 cm depth demonstrates generally that calculated alkalinities are higher than the measured ones. Ca2+ dissolution occurs at the first 10 cm and authigenic carbonate precipitation starts beneath that level. Mg2+ depletion is accompanied by bicarbonate loss. This proves that Mg2+ depletion is due to a Mg-silicate reaction. The result of the CEC does not confirm the Mg2+ uptake by clay minerals in exchangeable site, under reducing conditions. Diffusion and bioturbation play an important role in the pore water concentration at the top of the core.  相似文献   

20.
Vertical profiles of total sulfur and organic carbon have been measured in two deep-sea piston cores from the southwestern Japan Sea where sulfate reduction is proceeding within the sediments. The content of total sulfur, most of which is present as pyrite, increases gradually with increasing depth, showing several peaks. The amount of diagenetically deposited sulfide-sulfur is estimated using a steady-state model that considers vertical change in the diffusion coefficient. It is suggested that two-thirds to three-fourths of the observed total sulfur content has been deposited diagenetically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号