首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluid inclusions in granite quartz and three generations of veins indicate that three fluids have affected the Caledonian Galway Granite. These fluids were examined by petrography, microthermometry, chlorite thermometry, fluid chemistry and stable isotope studies. The earliest fluid was a H2O-CO2-NaCl fluid of moderate salinity (4–10 wt% NaCl eq.) that deposited late-magmatic molybdenite mineralised quartz veins (V1) and formed the earliest secondary inclusions in granite quartz. This fluid is more abundant in the west of the batholith, corresponding to a decrease in emplacement depth. Within veins, and to the east, this fluid was trapped homogeneously, but in granite quartz in the west it unmixed at 305–390 °C and 0.7–1.8 kbar. Homogeneous quartz δ18O across the batholith (9.5 ± 0.4‰n = 12) suggests V1 precipitation at high temperatures (perhaps 600 °C) and pressures (1–3 kbar) from magmatic fluids. Microthermometric data for V1 indicate lower temperatures, suggesting inclusion volumes re-equilibrated during cooling. The second fluid was a H2O-NaCl-KCl, low-moderate salinity (0–10 wt% NaCl eq.), moderate temperature (270–340 °C), high δD (−18 ± 2‰), low δ18O (0.5–2.0‰) fluid of meteoric origin. This fluid penetrated the batholith via quartz veins (V2) which infill faults active during post-consolidation uplift of the batholith. It forms the most common inclusion type in granite quartz throughout the batholith and is responsible for widespread retrograde alteration involving chloritization of biotite and hornblende, sericitization and saussuritization of plagioclase, and reddening of K-feldspar. The salinity was generated by fluid-rock interactions within the granite. Within granite quartz this fluid was trapped at 0.5–2.3 kbar, having become overpressured. This fluid probably infiltrated the Granite in a meteoric-convection system during cooling after intrusion, but a later age cannot be ruled out. The final fluid to enter the Granite and its host rocks was a H2O-NaCl-CaCl2-KCl fluid with variable salinity (8–28 wt% NaCl eq.), temperature (125–205 °C), δD (−17 to −45‰), δ18O (−3 to + 1.2‰), δ13CCO2 (−19 to 0‰) and δ34Ssulphate (13–23‰) that deposited veins containing quartz, fluorite, calcite, barite, galena, chalcopyrite sphalerite and pyrite (V3). Correlations of salinity, temperature, δD and δ18O are interpreted as the result of mixing of two fluid end-members, one a high-δD (−17 to −8‰), moderate-δ18O (1.2–2.5‰), high-δ13CCO2 (> −4‰), low-δ34Ssulphate (13‰), high-temperature (205–230 °C), moderate-salinity (8–12 wt% NaCl eq.) fluid, the other a low-δD (−61 to −45‰), low-δ18O (−5.4 to −3‰), low-δ13C (<−10‰), high-δ34Ssulphate (20–23‰) low-temperature (80–125 °C), high-salinity (21–28 wt% NaCl eq.) fluid. Geochronological evidence suggests V3 veins are late Triassic; the high-δD end-member is interpreted as a contemporaneous surface fluid, probably mixed meteoric water and evaporated seawater and/or dissolved evaporites, whereas the low-δD end-member is interpreted as a basinal brine derived from the adjacent Carboniferous sequence. This study demonstrates that the Galway Granite was a locus for repeated fluid events for a variety of reasons; from expulsion of magmatic fluids during the final stages of crystallisation, through a meteoric convection system, probably driven by waning magmatic heat, to much later mineralisation, concentrated in its vicinity due to thermal, tectonic and compositional properties of granite batholiths which encourage mineralisation long after magmatic heat has abated. Received: 3 April 1996 / Accepted: 5 May 1997  相似文献   

2.
The Jinshan orogenic gold deposit is a world-class deposit hosted by a ductile shear zone caused by a transpressional terrane collision during Neoproterozoic time. Ore bodies at the deposit include laminated quartz veins and disseminated pyrite-bearing mylonite. Most quartz veins in the shear zone, with and without gold mineralization, were boudinaged during progressive shear deformation with three generations of boudinage structures produced at different stages of progressive deformation. Observations of ore-controlling structures at various scales indicate syn-deformational mineralization. Fluid inclusions from pyrite intergrown with auriferous quartz have 3He/4He ratios of 0.15–0.24 Ra and 40Ar/36Ar ratios 575–3,060. δ18Ofluid values calculated from quartz are 5.5–8.4‰, and δD values of fluid inclusions contained in quartz range between −61‰ and −75‰. The δ13C values of ankerite range from −5.0‰ to −4.2‰, and ankerite δ18O values from 4.4‰ to 8.0‰. The noble gas and stable isotope data suggest a predominant crustal source of ore fluids with less than 5% mantle component. Data also show that in situ fluids were generated locally by pervasive pressure solution, and that widespread dissolution seams acted as pathways of fluid flow, migration, and precipitation. The in situ fluids and fluids derived from deeper levels of the crust were focused by deformation and deformation structures at various scales through solution-dissolution creep, crack-seal slip, and cyclic fault-valve mechanisms during progressively localized deformation and gold mineralization.  相似文献   

3.
The source of metasomatic fluids in iron-oxide–copper–gold districts is contentious with models for magmatic and other fluid sources having been proposed. For this study, δ 18O and δ 13C ratios were measured from carbonate mineral separates in the Proterozoic eastern Mt Isa Block of Northwest Queensland, Australia. Isotopic analyses are supported by petrography, mineral chemistry and cathodoluminescence imagery. Marine meta-carbonate rocks (ca. 20.5‰ δ 18O and 0.5‰ δ 13C calcite) and graphitic meta-sedimentary rocks (ca. 14‰ δ 18O and −18‰ δ 13C calcite) are the main supracrustal reservoirs of carbon and oxygen in the district. The isotopic ratios for calcite from the cores of Na–(Ca) alteration systems strongly cluster around 11‰ δ 18O and −7‰ δ 13C, with shifts towards higher δ 18O values and higher and lower δ 13C values, reflecting interaction with different hostrocks. Na–(Ca)-rich assemblages are out of isotopic equilibrium with their metamorphic hostrocks, and isotopic values are consistent with fluids derived from or equilibrated with igneous rocks. However, igneous rocks in the eastern Mt Isa Block contain negligible carbon and are incapable of buffering the δ 13C signatures of CO2-rich metasomatic fluids associated with Na–(Ca) alteration. In contrast, plutons in the eastern Mt Isa Block have been documented as having exsolved saline CO2-rich fluids and represent the most probable fluid source for Na–(Ca) alteration. Intrusion-proximal, skarn-like Cu–Au orebodies that lack significant K and Fe enrichment (e.g. Mt Elliott) display isotopic ratios that cluster around values of 11‰ δ 18O and −7‰ δ 13C (calcite), indicating an isotopically similar fluid source as for Na–(Ca) alteration and that significant fluid–wallrock interaction was not required in the genesis of these deposits. In contrast, K- and Fe-rich, intrusion-distal deposits (e.g. Ernest Henry) record significant shifts in δ 18O and δ 13C towards values characteristic of the broader hostrocks to the deposits, reflecting fluid–wallrock equilibration before mineralisation. Low temperature, low salinity, low δ 18O (<10‰ calcite) and CO2-poor fluids are documented in retrograde metasomatic assemblages, but these fluids are paragenetically late and have not contributed significantly to the mass budgets of Cu–Au mineralisation.  相似文献   

4.
A set of sheeted quartz veins cutting 380 Ma monzogranite at Sandwich Point, Nova Scotia, Canada, provide an opportunity to address issues regarding fluid reservoirs and genesis of intrusion-related gold deposits. The quartz veins, locally with arsenopyrite (≤5%) and elevated Au–(Bi–Sb–Cu–Zn), occur within the reduced South Mountain Batholith, which also has other zones of anomalous gold enrichment. The host granite intruded (P = 3.5 kbars) Lower Paleozoic metaturbiditic rocks of the Meguma Supergroup, well known for orogenic vein gold mineralization. Relevant field observations include the following: (1) the granite contains pegmatite segregations and is cut by aplitic dykes and zones (≤1–2 m) of spaced fracture cleavage; (2) sheeted veins containing coarse, comb-textured quartz extend into a pegmatite zone; (3) arsenopyrite-bearing greisens dominated by F-rich muscovite occur adjacent the quartz veins; and (4) vein and greisen formation is consistent with Riedel shear geometry. Although these features suggest a magmatic origin for the vein-forming fluids, geochemical studies indicate a more complex origin. Vein quartz contains two types of aqueous fluid inclusion assemblages (FIA). Type 1 is a low-salinity (≤3 wt.% equivalent NaCl) with minor CO2 (≤2 mol%) and has T h = 280–340°C. In contrast, type 2 is a high-salinity (20–25 wt.% equivalent NaCl), Ca-rich fluid with T h = 160–200°C. Pressure-corrected fluid inclusion data reflect expulsion of a magmatic fluid near the granite solidus (650°C) that cooled and mixed with a lower temperature (400°C), wall rock equilibrated, Ca-rich fluid. Evidence for fluid unmixing, an important process in some intrusion-related gold deposit settings, is lacking. Stable isotopic (O, D, S) analyses for quartz, muscovite and arsenopyrite samples from vein and greisens indicate the following: (1) δ18Oqtz = +11.7‰ to 17.8‰ and δ18Omusc = +10.7‰ to +11.2‰; (2) δDmusc = −44‰ to−54‰; and (3) δ34Saspy = +7.8‰ to +10.3‰. These data are interpreted, in conjunction with fluid inclusion data, to reflect contamination of a magmatic-derived fluid (d18OH2O {\delta^{{{18}}}}{{\hbox{O}}_{{{{\rm{H}}_{{2}}}{\rm{O}}}}}  ≤ +10‰) by an external fluid (d18OH2O {\delta^{{{18}}}}{{\hbox{O}}_{{{{\rm{H}}_{{2}}}{\rm{O}}}}}  ≥ +15‰), the latter having equilibrated with the surrounding metasedimentary rocks. The δ34S data are inconsistent with a direct igneous source based on other studies for the host intrusion (d18OH2O {\delta^{{{18}}}}{{\hbox{O}}_{{{{\rm{H}}_{{2}}}{\rm{O}}}}}  = +5‰) and are, instead, consistent with an external reservoir for sulphur based on δ34SH2S data for the surrounding metasedimentary rocks. Divergent fluid reservoirs are also supported by analyses of Pb isotopes for pegmatitic K-feldspar and vein arsenopyrite. Collectively the data indicate that the vein- and greisen-forming fluids had a complex origin and reflect both magmatic and non-magmatic reservoirs. Thus, although the geological setting suggests a magmatic origin, the geochemical data indicate involvement of multiple reservoirs. These results suggest multiple reservoirs for this intrusion-related gold deposit setting and caution against interpreting the genesis of intrusion-related gold deposit mineralization in somewhat analogous settings based on a limited geochemical data set.  相似文献   

5.
Oxygen isotopic composition of emerald from 62 occurrences and deposits in the world reveals a wide range in δ18O (SMOW) between +6.2 and +24.7‰. The δ18O-values for each deposit are restricted and can be used to determine the origin of emerald from the world's most important producers. The δ18O-value of emerald appears to be a fingerprint of its origin, especially for gems of exceptional quality from Colombia (eastern emerald zone, δ18O = +16.8 ± 0.1‰; western emerald zone, δ18O = +21.2 ± 0.5‰), Afghanistan (δ18O = +13.5 ± 0.1‰), Pakistan (Swat-Mingora districts, δ18O = +15.7 ± 0.1‰), Brazil (Santa Terezinha de Goiás, δ18O = +12.2 ± 0.1‰; Quadrilatero Ferrifero, δ18O = +6.9 ± 0.4‰) and Zimbabwe (Sandawana, δ18O = +7.5 ± 0.5‰). Furthermore, the 18O-composition of emerald appears to be a good marker of its geological environment because the data suggest that host-rock-buffering of fluid δ18O is considerable during fluid-rock interaction. Received: 29 January 1998 / Accepted: 25 March 1998  相似文献   

6.
Isotopic composition of monthly composite precipitation samples from Kozhikode (n = 31), a wet tropic station and Hyderabad (n = 25), a semi-arid station across southern India were studied for a period of four years from 2005 to 2008. During the study period, the Kozhikode station recorded an average rainfall of 3500 mm while the Hyderabad station showed an average rainfall of 790 mm. The average stable isotope values in precipitation at the Kozhikode station were δ 18O = −3.52‰, d-excess = 13.72‰; δ 18O = −2.94‰, d-excess = 10.57‰; and δ 18O = −7.53‰, d-excess = 13.79‰, respectively during the pre-monsoon (March–May), monsoon (June–September) and post-monsoon (October–February) seasons. For the Hyderabad station, the average stable isotope values were δ 18O = −5.88‰, d-excess = 2.34‰; δ 18O = −4.39‰, d-excess = 9.21‰; and δ 18O = −8.69‰, d-excess = 14.29‰, respectively for the three seasons. The precipitation at the two stations showed distinctive isotopic signatures. The stable isotopic composition of precipitation at the Hyderabad station showed significant variations from the global trend while the Kozhikode station almost followed the global value. These differences are mainly attributed to the latitudinal differences of the two stations coupled with the differences in climatic conditions.  相似文献   

7.
The Tuwaishan, Baoban, Erjia, Bumo and other gold deposits in western Hainan occur in Precambrian metamorphic clastic rocks and are structurally controlled by the Gezhen shear zone. Fluid inclusion studies have been carried out of the gold deposits mentioned above. The homogenization temperatures of the whole fluid inclusion population range from 140°C to 370°C, indicating that gold was precipitated mainly at 240–250°C. The salinities are within the range of 2.0–9.2 wt% NaCl equiv. and the pressure of formation of the deposits was estimated at about 270×105−500×105Pa, corresponding to a depth of about 1.1–2.0 km under lithostatic confinement. Chemical studies show that the ore fluid is of the Na+(K+)-Ca2+-Cl(F) type. Theδ 18O andδD values of the fluid vary from −2.7‰- +4.4‰ and −50‰–−87‰ Evidence developed from fluid inclusions and geological setting indicates that the ore fluid was a mixture of magmatic and meteoric-hydrothermal waters. Changes in chemical composition andδ 18O andδD of fluid inclusions from one ore field to another seem to be related with regional tectonism, metamorphism and magmatism.  相似文献   

8.
The Jervois region of the Arunta Inlier, central Australia, contains para- and orthogneisses that underwent low-pressure amphibolite facies metamorphism (P = 200–300 MPa, T = 520–600 °C). Marble layers cut by metre-wide quartz + garnet ± epidote veins comprise calcite, quartz, epidote, clinopyroxene, grandite garnet, and locally wollastonite. The marbles also contain locally discordant decimetre-thick garnet and epidote skarn layers. The mineral assemblages imply that the rocks were infiltrated by water-rich fluids (XCO2 = 0.1–0.3) at ∼600 °C. The fluids were probably derived from the quartz-garnet vein systems that represent conduits for fluids exsolved from crystallizing pegmatites emplaced close to the metamorphic peak. At one locality, the marble has calcite (Cc) δ18O values of 9–18‰ and garnet (Gnt) δ18O values of 10–14‰. The δ18O(Gnt) values are only poorly correlated with δ18O(Cc), and the δ18O values of some garnet cores are higher than the rims. The isotopic disequilibrium indicates that garnet grew before the δ18O values of the rock were reset. The marbles contain  ≤15% garnet and, for water-rich fluids, garnet-forming reactions are predicted to propagate faster than O-isotopes are reset. The Sm-Nd and Pb-Pb ages of garnets imply that fluid flow occurred at 1750–1720 Ma. There are no significant age differences between garnet cores and rims, suggesting that fluid flow was relatively rapid. Texturally late epidote has δ18O values of 1.5–6.2‰ implying δ18O(H2O) values of 2–7‰. Waters with such low-δ18O values are probably at least partly meteoric in origin, and the epidote may be recording the late influx of meteoric water into a cooling hydrothermal system. Received: 29 April 1996 / Accepted: 12 March 1997  相似文献   

9.
The Marcona–Mina Justa deposit cluster, hosted by Lower Paleozoic metaclastic rocks and Middle Jurassic shallow marine andesites, incorporates the most important known magnetite mineralization in the Andes at Marcona (1.9 Gt at 55.4% Fe and 0.12% Cu) and one of the few major iron oxide–copper–gold (IOCG) deposits with economic Cu grades (346.6 Mt at 0.71% Cu, 3.8 g/t Ag and 0.03 g/t Au) at Mina Justa. The Middle Jurassic Marcona deposit is centred in Ica Department, Perú, and the Lower Cretaceous Mina Justa Cu (Ag, Au) prospect is located 3–4 km to the northeast. New fluid inclusion studies, including laser ablation time-of-flight inductively coupled plasma mass spectrometry (LA-TOF-ICPMS) analysis, integrated with sulphur, oxygen, hydrogen and carbon isotope analyses of minerals with well-defined paragenetic relationships, clarify the nature and origin of the hydrothermal fluid responsible for these contiguous but genetically contrasted deposits. At Marcona, early, sulphide-free stage M-III magnetite–biotite–calcic amphibole assemblages are inferred to have crystallized from a 700–800°C Fe oxide melt with a δ18O value from +5.2‰ to +7.7‰. Stage M-IV magnetite–phlogopite–calcic amphibole–sulphide assemblages were subsequently precipitated from 430–600°C aqueous fluids with dominantly magmatic isotopic compositions (δ34S = +0.8‰ to +5.9‰; δ18O = +9.6‰ to +12.2‰; δD = −73‰ to −43‰; and δ13C = −3.3‰). Stages M-III and M-IV account for over 95% of the magnetite mineralization at Marcona. Subsequent non-economic, lower temperature sulphide–calcite–amphibole assemblages (stage M-V) were deposited from fluids with similar δ34S (+1.8‰ to +5.0‰), δ18O (+10.1‰ to +12.5‰) and δ13C (−3.4‰), but higher δD values (average −8‰). Several groups of lower (<200°C, with a mode at 120°C) and higher temperature (>200°C) fluids can be recognized in the main polymetallic (Cu, Zn, Pb) sulphide stage M-V and may record the involvement of modified seawater. At Mina Justa, early magnetite–pyrite assemblages precipitated from a magmatic fluid (δ34S = +0.8‰ to +3.9‰; δ18O = +9.5‰ to +11.5‰) at 540–600°C, whereas ensuing chalcopyrite–bornite–digenite–chalcocite–hematite–calcite mineralization was the product of non-magmatic, probably evaporite-sourced, brines with δ34S ≥ +29‰, δ18O = 0.1‰ and δ13C = −8.3‰. Two groups of fluids were involved in the Cu mineralization stage: (1) Ca-rich, low-temperature (approx. 140°C) and high-salinity, plausibly a basinal brine and (2) Na (–K)-dominant with a low-temperature (approx. 140°C) and low-salinity probably meteoric water. LA-TOF-ICPMS analyses show that fluids at the magnetite–pyrite stage were Cu-barren, but that those associated with external fluids in later stages were enriched in Cu and Zn, suggesting such fluids could have been critical for the economic Cu mineralization in Andean IOCG deposits.  相似文献   

10.
The oxygen isotope ratios (δ18O) of most igneous zircons range from 5 to 8‰, with 99% of published values from 1345 rocks below 10‰. Metamorphic zircons from quartzite, metapelite, metabasite, and eclogite record δ18O values from 5 to 17‰, with 99% below 15‰. However, zircons with anomalously high δ18O, up to 23‰, have been reported in detrital suites; source rocks for these unusual zircons have not been identified. We report data for zircons from Sri Lanka and Myanmar that constrain a metamorphic petrogenesis for anomalously high δ18O in zircon. A suite of 28 large detrital zircon megacrysts from Mogok (Myanmar) analyzed by laser fluorination yields δ18O from 9.4 to 25.5‰. The U–Pb standard, CZ3, a large detrital zircon megacryst from Sri Lanka, yields δ18O = 15.4 ± 0.1‰ (2 SE) by ion microprobe. A euhedral unzoned zircon in a thin section of Sri Lanka granulite facies calcite marble yields δ18O = 19.4‰ by ion microprobe and confirms a metamorphic petrogenesis of zircon in marble. Small oxygen isotope fractionations between zircon and most minerals require a high δ18O source for the high δ18O zircons. Predicted equilibrium values of Δ18O(calcite-zircon) = 2–3‰ from 800 to 600°C show that metamorphic zircon crystallizing in a high δ18O marble will have high δ18O. The high δ18O zircons (>15‰) from both Sri Lanka and Mogok overlap the values of primary marine carbonates, and marbles are known detrital gemstone sources in both localities. The high δ18O zircons are thus metamorphic; the 15–25‰ zircon values are consistent with a marble origin in a rock-dominated system (i.e., low fluid(external)/rock); the lower δ18O zircon values (9–15‰) are consistent with an origin in an external fluid-dominated system, such as skarn derived from marble, although many non-metasomatized marbles also fall in this range of δ18O. High δ18O (>15‰) and the absence of zoning can thus be used as a tracer to identify a marble source for high δ18O detrital zircons; this recognition can aid provenance studies in complex metamorphic terranes where age determinations alone may not allow discrimination of coeval source rocks. Metamorphic zircon megacrysts have not been reported previously and appear to be associated with high-grade marble. Identification of high δ18O zircons can also aid geochronology studies that seek to date high-grade metamorphic events due to the ability to distinguish metamorphic from detrital zircons in marble.  相似文献   

11.
Migmatites produced by low-pressure anatexis of basic dykes are found in a contact metamorphic aureole around a pyroxenite–gabbro intrusion (PX2), on Fuerteventura. Dykes outside and inside the aureole record interaction with meteoric water, with low or negative δ18O whole-rock values (+0.2 to −3.4‰), decreasing towards the contact. Recrystallised plagioclase, diopside, biotite and oxides, from within the aureole, show a similar evolution with lowest δ18O values (−2.8, −4.2, −4.4 and −7.6‰, respectively) in the migmatite zone, close to the intrusion. Relict clinopyroxene phenocrysts preserved in all dykes, retain typically magmatic δ18O values up to the anatectic zone, where the values are lower and more heterogeneous. Low δ18O values, decreasing towards the intrusion, can be ascribed to the advection of meteoric water during magma emplacement, with increasing fluid/rock ratios (higher dyke intensities towards the intrusion acting as fluid-pathways) and higher temperatures promoting increasing exchange during recrystallisation. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Two kinds of mylonite series rocks, felsic and mafic, have been recognized in the NW-striking shear zone of the Jiapigou gold belt. During ductile deformation, a large amount of fluid interacted intensively with the mylonite series rocks: plagioclases were sericitized and theAn values declined rapidly, finally all of them were transformed to albites; dark minerals were gradually replaced by chlorites (mostly ripidolite). Meanwhile, large-scale and extensive carbonation also took place, and the carbonatization minerals varied from calcite to dolomite and ankerite with the development of deformation. The δ13C values of the carbonates are −3.0‰ – −5.6‰ suggesting a deep source of carbon. The ductile deformation is nearly an iso-volume one (f v≈1). With the enhancement of shear deformation, SiO2 in the two mylonite series rocks was depleted, while volatile components suchs as CO2 and H2O, and some ore-forming elements such as Au and S were obviously enriched. But it is noted that the enrichment of Au in both the mylonite series rocks did not reach the paygrade of gold. The released SiO2 from water-rock interactions occurred in the form of colloids and absorbed gold in the fluid. When brittle structures were formed locally in the ductile shear zone, the ore-forming fluids migrated to the structures along microfractures, and preciptated auriferous quartz because of reduction of pressure and temperature. Fluid inclusion study shows that the temperature and pressure of the ore-forming fluids are 245–292°C and 95.4–131.7 MPa respectively; the salinity is 12.88–16.33wt% NaCl; the fluid-phase is rich in Ca2+, K+, Na+, Mg2+, F and Cl, while the gaseous phases are rich in CO2 and CH4. The δD and δ18O, values of the ore-forming fluid are −84.48‰ – −91.73‰ and −0.247‰ – +2.715‰ respectively, suggesting that the fluid is composed predominantly of meteoric water. This project is financially supported by the National Natural Science Foundation of China (No. 9488010).  相似文献   

13.
 Hydrogen and oxygen isotope analyses have been made of hydrous minerals in gabbros and basaltic xenoliths from the Eocene Kap Edvard Holm intrusive complex of East Greenland. The analyzed samples are of three types: (1) primary igneous hornblendes and phlogopites that crystallized from partial melts of hydrothermally altered basaltic xenoliths, (2) primary igneous hornblendes that formed during late–magmatic recrystallization of layered gabbroic cumulates, and (3) secondary actinolite, epidote and chlorite that formed during subsolidus alteration of both xenoliths and gabbros. Secondary actinolite has a δ18O value of −5.8‰ and a δD value of −158‰. These low values reflect subsolidus alteration by low–δ18O, low–δD hydrothermal fluids of meteoric origin. The δD value is lower than the −146 to −112‰ values previously reported for amphiboles from other early Tertiary meteoric–hydrothermal systems in East Greenland and Scotland, indicating that the meteoric waters at Kap Edvard Holm were isotopically lighter than typical early Tertiary meteoric waters in the North Atlantic region. This probably reflects local climatic variations caused by formation of a major topographic dome at about the time of plutonism and hydrothermal activity. The calculated isotopic composition of the meteoric water is δD=−110 ± 10‰, δ18O ≈−15‰. Igneous hornblendes and phlogopites from pegmatitic pods in hornfelsed basaltic xenoliths have δ18O values between −6.0 and −3.8‰ and δD values between −155 and −140‰. These are both much lower than typical values of fresh basalts. The oxygen isotope fractionations between pegmatitic hornblendes and surrounding hornfelsic minerals are close to equilibrium fractionations for magmatic temperatures, indicating that the pegmatites crystallized from low–δ18O partial melts of xenoliths that had been hydrothermally altered and depleted in 18O prior to stoping. The pegmatitic minerals may have crystallized with low primary δD values inherited from the altered country rocks, but these values were probably overprinted extensively by subsolidus isotopic exchange with low–δD meteoric–hydrothermal fluids. This exchange was facilitated by rapid self–diffusion of hydrogen through the crystal structures. Primary igneous hornblendes from the plutonic rocks have δ18O values between +2.0 and +3.2‰ and δD values between −166 and −146‰. The 18O fractionations between hornblendes and coexisting augites are close to equilibrium fractionations for magmatic temperatures, indicating that the hornblendes crystallized directly from the magma and subsequently underwent little or no oxygen exchange. The hornblendes may have crystallized with low primary δD values, due to contamination of the magma with altered xenolithic material, but the final δD values were probably controlled largely by subsolidus isotopic exchange. This inference is based partly on the observation that coexisting plagioclase has been extensively depleted in 18O via a mineral–fluid exchange reaction that is much slower than the hydrogen exchange reaction in hornblende. It is concluded that all hydrous minerals in the study area, whether igneous or secondary, have δD values that reflect extensive subsolidus isotopic equilibration with meteoric–hydrothermal fluids. Received: 22 March 1994 / Accepted: 26 January 1995  相似文献   

14.
Stable and radiogenic isotope composition of stratiform Cu–Co–Zn mineralization and associated sedimentary rocks within the Boléo district of the Miocene Santa Rosalía basin, Baja California Sur, constrains the evolution of seawater and hydrothermal fluids and the mechanisms responsible for sulfide and oxide deposition. Stable isotope geochemistry of limestone and evaporite units indicates a strong paleogeographic influence on the chemistry of the water column. Near-shore limestone at the base of the Boléo Formation is characterized by modified marine carbon (δ 13CPDB=−6.0 to +4.4‰) and oxygen (δ 18OSMOW=+19.5 to +26.2‰) isotope composition due to the influx of 13C- and 18O-depleted fluvial water. Sulfate sulfur isotope composition (δ 34SCDT=+17.21 to +22.3‰ and δ 18OSMOW=+10.7 to +13.1‰) for basal evaporite and claystone facies are similar to Miocene seawater. Strontium isotopes are less radiogenic than expected for Miocene seawater due to interaction with volcanic rocks. Low S/C ratios, high Mn contents and sedimentological evidence indicate the basin water column was oxidizing. The oxygenated basin restricted sulfide precipitation to within the sedimentary pile by replacement of early diagenetic framboidal pyrite and pore-space filling by Cu–Co–Zn sulfides to produce disseminated sulfides. Quartz–Mn oxide oxygen isotope geothermometry constrains mineralization temperature between 18 and 118°C. Sulfur isotopes indicate the following sources of sulfide: (1) bacterial sulfate reduction within the sedimentary pile produced negative δ 34S values (<−20‰) in framboidal pyrite; and (2) bacterial sulfate reduction at high temperature (80–118°C) within the sedimentary pile during the infiltration of the metal-bearing brines produced Cu–Co–Zn sulfides with negative, but close to 0‰, δ 34S values. Isotope modeling of fluid-rock reaction and fluid mixing indicates: (1) sedimentary and marine carbonates (δ 13C=−11.6 to −3.2‰ and δ 18O=+19.0 to +21.8‰) precipitated from basin seawater/pore water that variably mixed with isotopically depleted meteoric waters; and (2) hydrothermal calcite (δ 13C=−7.9 to +4.3‰ and δ 18O=+22.1 to +25.8‰) formed by dissolution and replacement of authigenic marine calcite by downward-infiltrating metalliferous brine and brine-sediment exchange, that prior to reaction with calcite, had mixed with isotopically depleted pore water. The downward infiltration of metalliferous brine is inferred from lateral and stratigraphic metal distributions and from the concentration of Cu sulfides along the upper contact of pyrite-bearing laminae. The co-existence and textural relationships among framboidal pyrite, base metal sulfides, carbonate and Mn–Fe oxides (including magnetite) within mineralized units are consistent with carbonate replacement and high-temperature bacterial reduction within the sedimentary pile occurring simultaneously below a seawater column under predominantly oxygenated conditions.  相似文献   

15.
Tourmalines from the Habachtal emerald deposit in the Eastern Alps formed together with emerald in a ductile shear zone during blackwall metasomatism between pelitic country rocks and a serpentinite body. Electron microprobe and secondary ion mass spectrometric (SIMS) analyses provide a record of chemical and B-isotope variations in tourmalines which represent an idealized profile from metapelites into the blackwall sequence of biotite and chlorite schists. Tourmaline is intermediate schorl-dravite in the country rock and become increasingly dravitic in the blackwall zones, while F and Cr contents increase and Al drops. Metasomatic tourmaline from blackwall zones is typically zoned optically and chemically, with rim compositions rich in Mg, Ti, Ca and F compared with the cores. The total range in δ11B values is −13.8 to −5.1‰ and the within-sample variations are typically 3–5‰. Both of these ranges are beyond the reach of closed-system fractionation at the estimated 500–550°C conditions of formation, and at least two boron components with contrasting isotopic composition are indicated. A key observation from tourmaline core analyses is a systematic shift in δ11B from the country rock (−14 to −10‰) to the inner blackwall zones (−9 to −5‰). We suggest that two separate fluids were channeled and partially mixed in the Habachtal shear zone during blackwall alteration and tourmaline-emerald mineralization. A regional metamorphic fluid carried isotopically light boron as observed in the metapelite country rocks. The other fluid is derived from the serpentinite association and has isotopically heavier boron typical for MORB or altered oceanic crust. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Peraluminous granitoids provide critical insight as to the amount and kinds of supracrustal material recycled in the central Sierra Nevada batholith, California. Major element concentrations indicate Sierran peraluminous granitoids are high-SiO2 (68.9–76.9) and slightly peraluminous (average molar Al2O3/(CaO + Na2O + K2O)=1.06). Both major and trace element trends mimic those of other high-silica Sierran plutons. Garnet (Grt) in the peraluminous plutons is almandine–spessartine-rich and of magmatic origin. Low grossular contents are consistent with shallow (<4 kbar) depths of garnet crystallization. Metasediments of the Kings Sequence commonly occur as wallrocks associated with the plutons, including biotite schists that are highly peraluminous (A/CNK=2.25) and have high whole rock (WR) δ18O values (9.6–21.8‰, average=14.5±2.9‰, n=26). Ultramafic wallrocks of the Kings–Kaweah ophiolite have lower average δ18O (7.1±1.3‰, n=9). The δ18O(WR) of the Kings Sequence is variable from west to east. Higher δ18O values occur in the west, where quartz in schists is derived from marine chert; values decrease eastward as the proportion of quartz from igneous and metamorphic sources increases. Peraluminous plutons have high δ18O(WR) values (9.5–13‰) consistent with supracrustal enrichment of their sources. However, relatively low initial 87Sr/86Sr values (0.705–0.708) indicate that the supracrustal component in the source of peraluminous magmas was dominantly altered ocean crust and/or greywacke. Also, plutons lack or have very low abundances (<1% of grains) of inherited zircon (Zrc) cores. Average δ18O(Zrc) is 7.9‰ in peraluminous plutons, a higher value than in coeval metaluminous plutons (6–7‰). Diorites associated with peraluminous plutons also have high δ18O(Zrc), 7.4–8.3‰, which is consistent with the diorites being derived from a similar source. Magmatic garnet has variable δ18O (6.6–10.5‰, avg.=7.9‰) due to complex contamination and crystallization histories, evidenced by multiple garnet populations in some rocks. Comparison of δ18O(Zrc) and δ18O(Grt) commonly reveals disequilibrium, which documents evolving magma composition. Minor (5–7%) contamination by high δ18O wallrocks occurred in the middle and upper crust in some cases, although low δ18O wallrock may have been a contaminant in one case. Overall, oxygen isotope analysis of minerals having slow oxygen diffusion and different times of crystallization (e.g., zircon and garnet), together with detailed textural analysis, can be used to monitor assimilation in peraluminous magmas. Moreover, oxygen isotope studies are a valuable way to identify magmatic versus xenocrystic minerals in igneous rocks. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

17.
Gold Bar is one of several Carlin-type gold mining districts located in the Battle Mountain–Eureka trend, Nevada. It is composed of one main deposit, Gold Bar; five satellite deposits; and four resources that contain 1.6 Moz (50 t) of gold. All of the deposits and resources occur at the intersection of north-northwest- and northeast-trending high-angle faults in slope facies limestones of the Devonian Nevada Group exposed in windows through Ordovician basin facies siliciclastic rocks of the Roberts Mountains allochthon. Igneous intrusions and magnetic anomalies are notably absent. The Gold Bar district contains a variety of discordant and stratabound jasperoid bodies, especially along the Wall Fault zone, that were mapped and studied in some detail to identify the attributes of those most closely associated with gold ore and to constrain genetic models. Four types of jasperoids, J0, J1, J2, and J3, were distinguished on the basis of their geologic and structural settings and appearance. Field relations suggest that J0 formed during an early event. Petrographic observations, geochemistry, and δ18O values of quartz suggest it was overprinted by the hydrothermal event that produced ore-related J1, J2, and J3 jasperoids and associated gold deposits. The greater amount of siliciclastic detritus present in J0 jasperoids caused them to have higher δ18O values than J1,2,3 jasperoids hosted in underlying limestones. Ore-related jasperoids are composed of main-ore-stage replacements and late-ore-stage open-space filling quartz with variable geochemistry and an enormous range of δ18O values (24.5 and −3.7‰). Jasperoids hosted in limestones with the most anomalous Au, Ag, Hg, ±(As, Sb, Tl) concentrations and the highest δ18O values are associated with the largest deposits. The 28‰ range of jasperoid δ18O values is best explained by mixing between an 18O-enriched fluid and an 18O-depleted fluid. The positive correlation between the sizes of gold deposits and the δ18O composition of jasperoids indicates that gold was introduced by the 18O-enriched fluid. The lowest calculated δ18O value for water in equilibrium with late-ore-stage quartz at 200°C (−15‰) and the measured δD value of fluid inclusion water extracted from late-ore-stage orpiment and realgar (−116‰) indicate that the 18O-depleted fluid was composed of relatively unexchanged meteoric water. The source of the 18O-enriched ore fluid is not constrained. The δ34S values of late-ore-stage realgar, orpiment, and stibnite (5.7–15.5‰) and barite (31.5–40.9‰) suggest that H2S and sulfate were derived from sedimentary sources. Likewise, the δ13C and δ18O values of late-stage calcite (−4.8 to 1.5‰ and 11.5 to 17.4‰, respectively) suggest that CO2 was derived from marine limestones. Based on these data and the apparent absence of any Eocene intrusions in the district, Gold Bar may be the product of a nonmagmatic hydrothermal system.  相似文献   

18.
The relationships between the δ18O of quartz veins and veinlets pertaining to the main stage of gold mineralization at the Sukhoi Log deposit and metasomatically altered host slates are estimated. The oxygen isotopic composition of veined quartz and host slates is not uniform. The δ18O of quartz veins from the Western, Central, and Sukhoi Log areas of the deposit vary from +16 to + 18 ‰. The δ18O range of metasomatically altered slates in the Western and Sukhoi Log areas attains 6 ‰. The δ18O of quartz veins are always higher than those of host slates by 3–7‰. The regular difference in the δ18O between quartz veins and host slates indicates that the oxygen isotopic composition of the ore-bearing fluid forming the system of quartz veins and veinlets at the Sukhoi Log deposit could have formed as a result of interaction with silicate rocks, for instance, terrigenous slates enriched in δ18O. Such interaction, however, took place at deeper levels of the Sukhoi Log deposit. It is suggested that the fluid phase participating in the formation of the vein and veinlet system had initially high δ18O(>+10‰) due to interaction with the rocks enriched in δ18O at a low fluid/rock ratio. The oxygen isotope data indicate that the fluid participating in the formation of gold mineralization at the Sukhoi Log deposit was not in equilibrium with igneous rocks at high temperatures.  相似文献   

19.
Early carbonate cements in the Yanchang Formation sandstones are composed mainly of calcite with relatively heavier carbon isotope (their δ^18O values range from -0.3‰- -0.1‰) and lighter oxygen isotope (their δ^18O values range from -22.1‰- -19.5‰). Generally, they are closely related to the direct precipitation of oversaturated calcium carbonate from alkaline lake water. This kind of cementation plays an important role in enhancing the anti-compaction ability of sandstones, preserving intragranular volume and providing the mass basis for later disso- lution caused by acidic fluid flow to produce secondary porosity. Ferriferous calcites are characterized by relatively light carbon isotope with δ^13C values ranging from -8.02‰ to -3.23‰, and lighter oxygen isotope with δ^18O values ranging from -22.9‰ to -19.7‰, which is obviously related to the decarboxylation of organic matter during the late period of early diagenesis to the early period of late diagenesis. As the mid-late diagenetic products, ferriferous cal- cites in the study area are considered as the characteristic authigenic minerals for indicating large-scaled hydrocarbon influx and migration within the clastic reservoir. The late ankerite is relatively heavy in carbon isotope with δ^13C values ranging from -1.92‰ to -0.84‰, and shows a wide range of variations in oxygen isotopic composition, with δ^18O values ranging from -20.5‰ to -12.6‰. They are believed to have nothing to do with decarboxylation, but the previously formed marine carbonate rock fragments may serve as the chief carbon source for their precipitation, and the alkaline diagenetic environment at the mid-late stage would promote this process.  相似文献   

20.
Oxygen isotope ratios have been measured by ion microprobe and millimeter-scale dental drill along detailed sampling traverses across the boundary between periclase-bearing (δ18O = 11.8‰) and periclase-free (δ18O = 17.2‰) marble layers in the periclase (Per) zone of the Alta Stock aureole, Utah. These data define a steep, coherent gradient in δ18O that is displaced a short distance (~4 cm) into the periclase-free (Cal + Fo) layer. SEM and ion microprobe analyses show two isotopically and texturally distinct types of calcite at the grain scale. Clear (well polished) calcite grains are isotopically homogeneous (within analytical uncertainty; ±0.27‰, 2SD). More poorly polished (pitted), texturally retrograde ‘turbid’-looking calcite has lower and more variable δ18O values, and replaces clear calcite along fractures, cleavage traces or grain boundaries. Despite significant lowering of the δ18O values in calcite throughout both layers during prograde metamorphism, ion microprobe analyses indicate that individual clear calcite grains are now isotopically homogeneous across the entire gradient in δ18O. Diffusion calculations indicate that conservative time scales required for isotopic homogenization of calcite grains by volume diffusion, 30,000–62,000 years at 575–600°C, exceed significantly the timescale (~1,250 years) estimated for the prograde development of the δ18O gradient at the boundary between these two marble layers. The ion microprobe data and these diffusion calculations suggest instead that surface reaction mechanisms accompanying recrystallization are responsible for the observed oxygen isotope homogeneity of these calcite grains. Thus, the ion microprobe data are consistent with the formation of calcite in oxygen isotope exchange equilibrium with infiltrating fluid during prograde reaction and recrystallization. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号