首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The Kitakami Massif of the Tohoku district, Northeast Japan, consists mainly of the South Kitakami Belt (Silurian–Cretaceous forearc shallow-marine sediments, granitoids, and forearc ophiolite) and the North Kitakami Belt (a Jurassic accretionary complex). The Nedamo Belt (a Carboniferous accretionary complex) occurs as a small unit between those two belts. An accretionary unit in the Nedamo Belt is lithologically divided into the Early Carboniferous Tsunatori Unit and the age-unknown Takinosawa Unit. In order to constrain the accretionary age of the Takinosawa Unit, detrital zircon U–Pb dating was conducted. The new data revealed that the youngest cluster ages from sandstone and tuffaceous rock are 257–248 Ma and 288–281 Ma, respectively. The Early Triassic depositional age of the sandstone may correspond to a period of intense magmatic activity in the eastern margin of the paleo-Asian continent. A 30–40 my interval between the youngest cluster ages of the sandstone and the tuffaceous rock can be explained by the absence of syn-sedimentary zircon in the tuffaceous rock. The new detrital zircon data suggest that the Takinosawa Unit can be distinguished as an Early Triassic accretionary complex distinct from the Early Carboniferous Tsunatori Unit. This recognition establishes a long-duration northeastward younging polarity of accretionary units, from the Carboniferous to Early Cretaceous, in the northern Kitakami Massif. Lithological features and detrital zircon spectra suggest that the Early Triassic Takinosawa Unit in the Nedamo Belt is comparable with the Hisone and Shingai units in the Kurosegawa Belt in Shikoku. The existence of this Early Triassic accretionary complex strongly supports a pre-Jurassic geotectonic correlation and similarity between Southwest and Northeast Japan.  相似文献   

2.
Abstract The significance of timing and formation of mélange in accretionary prisms, particularly concerning basaltic and related rocks and pelagic sediments, is exemplified in the Sawadani area of the Jurassic Chichibu accretionary complex in Shikoku, southwest Japan. Major and trace element geochemistry of the basaltic and related rocks indicates that all are of a hot-spot origin which produced a seamount. Most of the rocks have a trend of differentiation from an alkalic parental magma. The time relationship between the blocks and matrices of the mélange deduced from radiolarian fossil evidence and macro- to microscopic characteristics of contacts between different lithologies indicates two stages of mixing of materials in the seafloor. The first mixing occurred on the flank of the seamount in the pelagic environments in the Late Permian, and the second occurred on the trench floor or in the accretionary prism after the Early Jurassic. These two stages show respectively the geological phenomena of a seamount within the Izanagi-Kula plate and its incorporation into the Asian continental margin.  相似文献   

3.
Abstract A deep section of accretionary complex, the metamorphosed Susunai Complex, is observed on Sakhalin Is., Russia. High pressure part of pumpellyite-actinolite facies metavolcanics, metacherts and metapelites are well exposed and constitute a tectonic pile preserving primary structures related to underplating of the oceanic crust. Three stages of deformation, D1 through D3, suggest successive deformation during subduction, underplating and exhumation of the complex. Oceanic material in the complex is more abundant than other well documented ancient accretionary complexes (e.g. the Shimanto Belt in southwest Japan and the Ghost Rocks Formation in Alaska), which were shallowly underplated. At Susunai, deep down-stepping of a décollément has scraped off the upper part of the oceanic crust, primarily the pillowed basalt horizon. This down-stepping results from crustal weakening as overpressured water is released from the fractured oceanic crust during metamorphism.  相似文献   

4.
Yuzuru  Yamamoto  Manami  Nidaira  Yasufumi  Ohta  Yujiro  Ogawa 《Island Arc》2009,18(3):496-512
Chaotic rock units exposed in the upper part of the accretionary complex preserve detailed tectonic information related to the periods before, during, and immediately after accretion. Based on the detailed survey in the upper Miocene Miura–Boso accretionary complex, central Japan, three types of chaotic rock units were identified on the basis of the grain sizes and characteristics of blocks and surrounding matrices. The chaotic rock units composed of silt matrices and sandy to pebbly blocks (Type 3) formed by gravity-driven slumping upon the seafloor. The slumping occurred contemporaneously with deposition of the Misaki and Nishizaki Formations within the Izu–Bonin forearc. Vertical variations in the direction of slump vergence represent successive changes from an initially flat seabed to tilting to the northwest and finally to the southeast. Slumping with a northwest vergence indicates landward tilting of the seafloor immediately prior to accretion, whereas vergence to the southeast reflects oceanward tectonic tilting that occurred once the sediments had crossed the deformation front. Other chaotic rock units that have matrices abundant in sand and pebbles (Types 1, 2) formed as a result of subsurface liquefaction and injection associated with large earthquakes that occurred during and after accretion of the sediments. These chaotic rock units are useful in examining surface/subsurface changes such as tectonic tilting of the seafloor and earthquake events during the initial accretion process.  相似文献   

5.
Tetsuya  Tokiwa 《Island Arc》2009,18(2):306-319
Paleomagnetic studies and hotspot track analyses show that the Kula Plate was subducted dextrally with respect to the Eurasian Plate from the Coniacian to Campanian. However, geological evidence for dextral subduction of the Kula Plate has not been reported from Southwest Japan. Studies of the Coniacian to lower Campanian Miyama Formation of the Shimanto Belt reveal that the mélange fabrics show a dextral sense of shear both at outcrop and microscopic scales. In addition, thrust systems at map-scale also show dextral shearing. Restored shear directions in the mélange indicate dextral oblique subduction of an oceanic plate. This indicates that the Kula Plate subducted dextrally along the eastern margin of Asia during the Coniacian to early Campanian. Combinations with other published kinematic and age constraints suggest that Southwest Japan experienced a change from sinistral to dextral and back to sinistral shear between 89–76 Ma. This history is compatible with global-scale plate reconstructions and places good constraints on the timing of plate boundary interaction with the Cretaceous East Asian margin.  相似文献   

6.
Makoto  Saito 《Island Arc》2008,17(2):242-260
Abstract   Detailed geologic examination of the Eocene accretionary complex (Hyuga Group) of the Shimanto terrane in southeastern Kyushu revealed that the oceanic plate was composed of Paleocene to Lower Eocene mudstone and siliceous mudstone, lower Middle Eocene red mudstone, and mid-Middle Eocene trench-fill turbidite with siltstone breccia, successively overlying the pre-Eocene oceanic plate. This oceanic plate sequence was overlain by Upper Eocene siltstone. Deposition of the lower Middle Eocene red mudstone was accompanied by basalt flows and it is interbedded with continental felsic tuff, which indicates that the basalt and red mudstone were deposited near the trench just before accretion. The Hyuga Group has very similar geological structure to that of the chert–clastic complexes found in the Jurassic accretionary complexes in Japan: that is, a decollement fault formed in the middle of an oceanic plate sequence, and an imbricate structure formed only in the upper part of the sequence. Thus, it appears that the Hyuga Group was formed by the same accretionary process as the Jurassic accretionary complexes. No accretion occurred before the Middle Eocene, and the rapid accretion of the Hyuga Group was commenced by the supply of coarse terrigenous sediments in the mid-Middle Eocene, when the direction of movement of the Pacific Plate changed. The pre-Eocene oceanic basement and lower Middle Eocene volcanic activity suggest that the oceanic plate partly preserved in the Hyuga Group was very similar to the northern part of the present West Philippine Sea Plate.  相似文献   

7.
8.
Noriko  Hasebe  Hiroaki  Watanabe 《Island Arc》2004,13(4):533-543
Abstract   To determine how local geological events contributed to the evolution of accretionary complexes and eventual exposure of rocks with different structural levels, geochronological mapping was carried out using fission track (FT) analysis at the Kii Peninsula, southwest Japan. At this site, the original zonal structure of Cretaceous accretionary complexes parallel to the subduction zone is disturbed by the northward projection of the Shimanto accretionary complex. Twenty-six zircon FT ages were obtained from an area of ∼12 km in an east–west direction and ∼15 km in a north–south direction, and classified into three groups: (i) ages ∼15 Ma (range ∼10–20 Ma), which are distributed along the northwest–southeast valley; (ii) ages of ∼50 Ma in the northwest of the study area; and (iii) ages older than those in Groups 1 and 2. Based on results from eight zircon FT length distributions, the Miocene ages appear to be the result of spatial variations in heat influx and cooling after the regional exhumation of the area, as recorded by FT ages of ∼50 Ma.  相似文献   

9.
The Taho Formation in western Shikoku Island, Japan, consists of Triassic carbonates that formed on a seamount in the Panthalassic Ocean. In order to investigate the stratigraphy and paleoceanography of this carbonate succession, we analyzed the biostratigraphy and chemostratigraphy of a 17.6 m-thick section of the upper Taho Formation at the stratotype area in Tahokamigumi, Seiyo City. This section comprises bioclastic limestone containing Triassic bivalves, ammonoids, and conodonts. We recognized six conodont zones (in ascending order): the Novispathodus pingdingshanensis, Novispathodus brevissimus, Triassospathodus symmetricus, Triassospathodus homeri, Chiosella timorensis, and Magnigondolella cf. alexanderi zones. Thus, the studied carbonate succession is latest Smithian to Aegean in age. A δ13C profile of this section shows elevated values during the lowest Spathian followed by a gradual negative excursion, a subsequent positive excursion near the Spathian–Aegean boundary, and relatively constant values during the Aegean. The characteristic series of negative and positive excursions correlates with other δ13C records for this period, including the peak of the upper Smithian–lowest Spathian positive excursion (P3), lower to middle Spathian negative excursion (N4), and middle Spathian–lowest Aegean positive excursion (P4). This represents a new high-resolution Spathian–Aegean δ13C record of the Panthalassic Ocean, for which ages are constrained by conodont biostratigraphy. The Taho δ13C profile exhibits a consistent positive offset of ~2 ‰ as compared with those from other regions (i.e., mostly in the Tethyan Ocean). This can be explained by preferential removal of 12C from seawater during photosynthesis and calcification by marine organisms over the platform, and/or the relatively high δ13C values of dissolved inorganic carbon in the Panthalassic Ocean due to less influence of 12C-enriched terrestrial waters and high marine organic production/burial as compared with the more restricted Tethyan Ocean.  相似文献   

10.
Hidetoshi  Hara  Ken-Ichiro  Hisada 《Island Arc》2007,16(1):57-68
Abstract   Micro-thermometry of water-rich fluid inclusions from two syn-tectonic veins sets ( D1 and D2 veins) in the Otaki Group, part of the Cretaceous Shimanto accretionary complex of the Kanto Mountains, central Japan reveals the following tectono-metamorphic evolution. Combining the results of microthermometric analyses of fluid inclusions from D1 veins with an assumed geothermal gradient of 20–50°C/km indicates that the temperature and fluid pressure conditions during D1 were 270–300°C and 140–190 MPa, respectively. Peak metamorphic conditions during the development of D2 slaty cleavage involved temperatures in excess of 300°C and fluid pressures greater than 270 MPa, based on analyses of microthermometry of water-rich fluid inclusions from the D2 vein and illite crystallinity. The estimated fluid pressure increased by approximately 80 MPa from D1 accretionary processes to metamorphism and slaty cleavage development during D2 . Assuming that fluid pressure reached lithostatic pressure, the observed increase in fluid pressure can be accounted for by thrusting of the Jurassic Chichibu accretionary complex over the Cretaceous Shimanto accretionary complex. Following thrusting, both accretionary complexes were subjected to metamorphism during the latest Cretaceous.  相似文献   

11.
Abstract The low grade metamorphic Jurassic accretionary complex in the western part of the Mino-Tanba Belt, Southwest Japan, is a chaotic sedimentary complex which consists of argillaceous matrices with allochthonous blocks of chert, greenstone, siliceous mudstone, terrigenous sandstone and mudstone. The complex is divided into three distinct geologic units, Units I, II and III, with a tectonic boundary (thrust) between them, forming a pile-nappe structure. They have different features for lithologies, fossil age, metamorphic condition and K-Ar age. Microfossil researches revealed that their timings of accretion were in the early Early Jurassic ( ca 195 Ma) for Unit III, in the early Middle Jurassic ( ca 175 Ma) for Unit II and in the latest Late Jurassic (ca 147 Ma) for Unit I. On the other hand, K-Ar age determinations of white mica separated from pelitic rocks of the three units clarified that the subsequent subduction-related metamorphism was 23 million years after the accretion of each unit. These results strongly suggest that the accretionary and metamorphic process had taken place episodically with an interval of 20 to 28 million years during Mesozoic time in the western part of the Mino-Tanba Belt, Southwest Japan.  相似文献   

12.
Abstract The Jurassic Tamba accretionary complex is divided into two tectono‐stratigraphic suites (Type I and II nappe groups), which are further divided into six complexes (nappes) each of which is characterized by a rock sequence of Late Paleozoic greenstone/limestone, Permian to Jurassic chert and Jurassic terrigenous clastic rocks. The mode of occurrence of the greenstone is divided into two types. The major basal type occurs as a large coherent slab associated with Permian chert and limestone, constituting the basal part of each complex, and the minor mixed type occurs as fragmented allochthonous greenstone blocks and lenses mixed with chert, limestone and sandstone in the Jurassic mudstone matrix. Most of the basal greenstones have uniform geochemical characteristics, which indicate enriched‐mid‐oceanic ridge basalt (MORB) affinity. Their geochemical compositions are akin to the reported Permo‐Carboniferous and Triassic oceanic plateau basalts. Mixed greenstones are divided into two petrochemical types: (i) tholeiitic basalt with normal‐MORB affinity, which is predominant in the uppermost complex of the Type II suite (upper nappe group); and (ii) tholeiitic and alkalic basalts of oceanic island or seamount origin, which are common in all complexes of the Tamba Belt. Geochemical characteristics of the greenstones thus vary in accordance with their occurrences and the structural units to which they belong. This relationship reflects the difference in topographic relief and crustal thickness of the accreted oceanic edifices – the remnants of thick oceanic plateau crust tended to accrete to the continental margin as a large basal greenstone body, whereas thin normal oceanic crust with small seamounts or oceanic islands accreted as mixed greenstones because of their mechanical weakness. The Type II suite (upper nappe group) contains the basal and mixed greenstones, whereas the Type I suite (lower nappe group) includes only mixed greenstones. This distinction may reflect the temporal change of subducting edifices from a thick oceanic plateau to a thin normal oceanic crust, and suggests that the accretion of a large oceanic plateau may be responsible for building accretionary complexes with thick basal greenstones slabs.  相似文献   

13.
To clarify the geological causes of rockslides induced by rainstorms in accretionary complexes, the geology and geomorphology of two large rockslides (volumes > 106 m3) induced by the heavy rainfall of Typhoon Talas in the Shimanto Belt, Kii Mountains, Japan in 2011 are investigated. Our analysis reveals that thrusts with brittle crush zones controlled the occurrence of the rockslides. The properties and distribution of thrusts were poorly constrained before this study. Flooding during the rainstorm removed surface materials along rivers, allowing thorough geological mapping to be performed. Gravitationally deformed slopes were studied using GIS analysis of 1 m digital elevation models (DEMs) and fieldwork, and X‐ray diffraction (XRD) analysis, permeability, and direct shear tests were used to characterize the mineralogy and geotechnical properties of fault gouge. The Kawarabi thrust has a brittle crush zone up to 6 m thick and acts as the sliding surface for both landslides. The thrust dips 34° downslope and is cut by high‐angle faults and joints along one or both sides of each landslide body. Prior to failure, the upper part of the slope contained small scarps, suggesting that the slopes were already gravitationally deformed. The slope instability can be attributed to long‐term river erosion, which has undercut the slope and exposed the thrust at the base of the slope. The groundwater level, monitored in boreholes, suggests that the Kawarabi thrust is a barrier to groundwater flow. The weak and impermeable nature of the thrust played an essential role in the generation of gravitational slope deformation and catastrophic failure during periods of increased rainfall. Thrusts are a common feature of accretionary complexes, including in the Shimanto Belt, and the mechanism of slope failure stated above can be typical of rockslides in accretionary complexes and provide new insights into landslide disaster mitigation.  相似文献   

14.
Hideki  Mukoyoshi  Tetsuro  Hirono  Hidetoshi  Hara  Kotaro  Sekine  Noriyoshi  Tsuchiya  Arito  Sakaguchi  Wonn  Soh 《Island Arc》2009,18(2):333-351
To understand the characteristics of deformation of an out-of-sequence thrust (OST) and the style of fluid flow along it, we investigated the Nobeoka Tectonic Line, which has been interpreted as a deep OST (7–9 km), in the Shimanto accretionary complex, Southwest Japan. The shear zone in the footwall differs significantly in the along-strike direction not only in thickness, which varied from 100 to 300 m, but also in lithology and mineral vein development. These variations might reflect primarily differences in lithology; that is, the sandstone-dominant shear zone with a large amount of mineral veins precipitated in microcracks is relatively thick, whereas the shale-dominant shear zone with a small amount of veins and with textures indicating highly pressurized pore fluid, is thinner. By comparison with characteristics of a shallow OST (3–5 km), we conclude that the shallow OST has experienced repeated brittle failure with rapid slip and focused fluid flow whereas the deep OST has experienced both brittle and ductile deformation, followed by fluid flow of various styles, depending on the lithology.  相似文献   

15.
We describe the mode of occurrence and geochemical characteristics of basalts, in the Khangai–Khentei belt in Mongolia, overlain by Middle Paleozoic radiolarian chert in an extensive accretionary complex. These basalts are greatly enriched in K, Ti, Fe, P, Rb, Ba, Th, and Nb in comparison to the composition of the mid‐ocean ridge basalts, indicative of within‐plate alkaline type. Ti/Y vs Nb/Y and MnO/TiO2/P2O5 ratios of the basalts also suggest within‐plate affinities. Considering the geochemical characteristics as well as the conformable relationship with the overlying radiolarian chert, the alkaline basalts were clearly not continental but formed a pelagic oceanic island. The mode of occurrence and geochemistry of the basalts show that the alkaline basaltic volcanic activity had taken place to form an oceanic island in the Paleozoic pelagic region sufficiently far from continents to allow radiolarian ooze accumulation.  相似文献   

16.
Abstract Recent geological investigations of the Isua Supracrustal Belt (3.8 Ga), southern West Greenland, have suggested that it is the oldest accretionary complex on earth, defined by an oceanic plate‐type stratigraphy and a duplex structure. Plate history from mid‐oceanic ridge through plume magmatism to subduction zone has been postulated from analysis of the reconstructed oceanic plate stratigraphy in the accretionary complex. Comparison between field occurrence of greenstones in modern and ancient accretionary complexes reveals that two types of tholeiitic basalt from different tectonic settings, mid‐oceanic ridge basalt (MORB) and oceanic island basalt (OIB), occur. This work presents major, trace and rare earth element (REE) compositions of greenstones derived from Isua MORB and OIB, and of extremely rare relict igneous clinopyroxene in Isua MORB. The Isua clinopyroxenes (Cpx) have compositional variations equivalent to those of Cpx in modern MORB; in particular, low TiO2 and Na2O contents. The Isua Cpx show slightly light (L)REE‐depleted REE patterns, and the calculated REE pattern of the host magma is in agreement with that of Isua MORB. Analyses of 49 least‐altered greenstones carefully selected from approximately 1200 samples indicate that Isua MORB are enriched in Al2O3, and depleted in TiO2, FeO*, Y and Zr at the given MgO content, compared with Isua OIB. In addition, Isua MORB show an LREE‐depleted pattern, whereas Isua OIB forms a flat REE pattern. Such differences suggest that the Early Archean mantle had already become heterogeneous, depending on the tectonic environment. Isua MORB are enriched in FeO compared with modern MORB. Comparison of Isua MORB with recent melting experiments shows that the source mantle had 85–87 in Mg? and was enriched in FeO. Potential mantle temperature is estimated to be approximately 1480°C, indicating that the Early Archean mantle was hotter by at most approximately 150°C than the modern mantle.  相似文献   

17.
The hemipelagic mudrocks of the Nankai accretionary prism, Japan, contain hydrothermal deposits associated with a relict spreading center in the Shikoku Basin. Initial work on core samples from Ocean Drilling Program site 808 found several samples with elevated concentrations of calcium, magnesium, iron and manganese, at depths of between 1060 and 1111 m below sea floor. However, the origin of these sediments was uncertain, due to a lack of data. There was no recorded evidence of whether these elevated concentrations were present throughout this interval of core, or if they were present as discrete layers with the background hemipelagic mudrocks in between. In the present study the core was resampled, and the sediments with anomalous chemical compositions were found to be present in discrete layers. This fact, along with a detailed interpretation of their geochemistry, has allowed them to be identified as hydrothermal sediments, associated with the relict spreading center in the Shikoku Basin. The lower (older) two layers display a chemical composition typical of umbers, while the upper (younger) two layers are metalliferous mudrocks typical of deposits found further from the spreading center.  相似文献   

18.
Gaoping  Shen  Hiroshi  Ujilé Katsuo  Sashida 《Island Arc》1996,5(2):156-165
Abstract The pre-Neogene basement of the central Ryukyu Island Arc shows zonal structures analogous to those of the outer belt of southwest Japan. The innermost terrane (Iheya Zone) consists of isoclinally folded beds dipping northwestward; the anticlinal cores are composed mainly of Permian chert, whereas the synclinal parts are represented by Jurassic to Cretaceous sandstone-rich alternating siliceous shale and chert, bearing appropriate radiolarian fossils. At the east-central area of Ie Island, the basement rocks are exposed as a 172 m high peak, Tattyu. The flank area of Tattyu is composed of latest Jurassic to Berriasian siliceous shale and chert as part of an accretionary prism, while most of Tattyu is composed of a continuous and very compact sequence of Norian through Kimmeridgian (?) bedded chert which is rather gently inclined. Beyond an unexposed part below the Norian chert, Guadalupian chert is recognized. It is inferred that this pelagic chert (Tattyu sequence) was off-scraped and thrust on to the accretionary prism which developed on its flank area in an accretion process after the Early Cretaceous.  相似文献   

19.
Immediately before the extinction of the end‐Guadalupian (Middle Permian; ca 260 Ma), a significant change to the global carbon cycle occurred in the superocean Panthalassa, as indicated by a prominent positive δ13C excursion called the Kamura event. However, the causes of this event and its connection to the major extinction of marine invertebrates remain unclear. To understand the mutual relationships between these changes, we analyzed the sulfur isotope ratio of the carbonate‐associated sulfate (CAS) and HCl‐insoluble residue, as well as the carbon isotope ratio of bulk organic matter, for the Middle‐Upper Permian carbonates of an accreted mid‐oceanic paleo‐atoll complex from Japan, where the Kamura event was first documented. We detected the following unique aspects of the stable carbon and sulfur isotope records. First, the extremely high δ13C values of carbonate (δ13Ccarb) over +5 ‰ during the Capitanian (late Guadalupian) were associated with large isotopic differences between carbonate and organic matter (Δ13C = δ13Ccarb ? δ13Corg). We infer that the Capitanian Kamura event reflected an unusually large amount of dissolved organic matter in the expanded oxygen minimum zone at mid‐depth. Second, the δ34S values of CAS (δ34SCAS) were inversely correlated with the δ13Ccarb values during the Capitanian to early Wuchiapingian (early Late Permian) interval. The Capitanian trend may have appeared under increased oceanic sulfate conditions, which were accelerated by intense volcanic outgassing. Bacterial sulfate reduction with increased sulfate concentrations in seawater may have stimulated the production of pyrite that may have incorporated iron in pre‐existing iron hydroxide/oxide. This stimulated phosphorus release, which enhanced organic matter production and resulted in high δ13Ccarb. Low δ34SCAS values under high sulfate concentrations were maintained and the continuous supply of sulfate cannot by explained only by the volcanic eruption of the Emeishan Trap, which has been proposed as a cause of the extinction. The Wuchiapingian δ34SCAS–δ13Ccarb correlation, likely related to low sulfate concentration, may have been caused by the removal of oceanic sulfate through the massive evaporite deposition.  相似文献   

20.
The main tectono‐stratigraphic unit (Shirataki unit) of the Sanbagawa metamorphic complex in central Shikoku is characterized by abundant mafic schist layers that show the mid‐ocean ridge basalt (MORB) affinity. These MORB‐derived schist layers are absent in a southern (structurally lower) domain within the unit. Instead, sporadic occurrences of small metabasite lenses that contain relict igneous minerals (Ti‐rich augite and kaersutite) indicative of alkali basalt magmatism are newly recognized in the southern domain. Compositions of relict clinopyroxene in metabasalt are useful to identify the tectonic setting and origin of the protolith basalt, and those in each unit of the Sanbagawa metamorphic complex are presented. The metamorphic grade of the Shirataki unit generally increases structurally upwards in the southern side of the highest‐grade zone, and metamorphic zonation is subparallel to lithostratigraphic succession. The protolith assemblage of the Shirataki unit shows a distinct change from the southern low‐grade domain (lower Shirataki subunit) composed of terrigenous sedimentary rocks (mudstone and sandstone) with minor alkali basalt to the northern higher‐grade domain (upper Shirataki subunit) consisting of terrigenous and pelagic sedimentary rocks with abundant MORB. The youngest detrital zircon U–Pb ages (ca 95–90 Ma) suggest that both domains have Late Cretaceous depositional ages at the trench. Progressive peeling of oceanic plate stratigraphy during subduction can account for the observed change of lithological association in the Shirataki unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号