首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In general, a mesoscale cyclonic (anticyclonic) eddy has a colder (warmer) core, and it is considered as a cold (warm) eddy. However, recently research found that there are a number of “abnormal” mesoscale cyclonic (anticyclonic) eddies associated with warm (cold) cores in the South China Sea (SCS). These “abnormal” eddies pose a challenge to previous works on eddy detection, characteristic analysis, eddy-induced heat and salt transports, and even on mesoscale eddy dynamics. Based on a 9-year (2000–2008) numerical modelling data, the cyclonic warm-core eddies (CWEs) and anticyclonic cold-core eddies (ACEs) in the SCS are analyzed. This study found that the highest incidence area of the “abnormal” eddies is the northwest of Luzon Strait. In terms of the eddy snapshot counting method, 8 620 CWEs and 9 879 ACEs are detected, accounting for 14.6% and 15.8% of the total eddy number, respectively. The size of the “abnormal” eddies is usually smaller than that of the “normal” eddies, with the radius only around 50 km. In the generation time aspect, they usually appear within the 0.1–0.3 interval in the normalized eddy lifespan. The survival time of CWEs (ACEs) occupies 16.3% (17.1%) of the total eddy lifespan. Based on two case studies, the intrusion of Kuroshio warm water is considered as a key mechanism for the generation of these “abnormal” eddies near the northeastern SCS.  相似文献   

2.
Observations of Eddies in the Japan Basin Interior   总被引:1,自引:0,他引:1  
Eddy features in the Japan Basin have been studied by combining satellite-derived sea surface temperature (SST) images and WOCE drifter tracks with recent current meter data from a deep mooring in the interior of the Basin. SST images indicate that anticyclonic eddies often appear around the Subpolar Front in cold seasons and move into the northern cold water region entraining warm water of the frontal zone. The anti-cyclonic eddies "visualized" by the entrained warm water and trajectories of some drifters are typically 30 km in radius and have rotational speeds of 0.15 to 0.3 m/s at the surface. On the other hand, the current meter data of 3-year duration show that vertically coherent eddy-like currents of the order of 0.1 m/s occur every year in cold seasons in the deep (1000 to 3000 m) layer of the Japan Basin interior. An important finding is that available time series of SST patterns are well correlated to the vertically coherent deep currents. This correlation suggests that the anticyclonic eddies indicated by both SST images and drifter tracks are actually barotropic or quasi-barotropic, extending from the surface to the bottom. It is argued that the unique current features in the deep layer of the Japan Basin can be explained in terms of barotropic eddies. A brief discussion is also made of the possible source of the eddy kinetic energy. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
The origins and evolutions of two anticyclonic eddies in the northeastern South China Sea (SCS) were examined using multi-satellite remote sensing data, trajectory data of surface drifting buoys, and in-situ hydrographic data during winter 2003/2004. The results showed that buoy 22918 tracked an anti-cyclonic warm-core eddy (AE1) for about 20 days (December 4–23, 2003) in the northeastern SCS, and then escaped from AE1 eventually. Subsequently to that, buoy 22517 remained within a different anti-cyclonic warm-core eddy (AE2) for about 78 days (from January 28 to April 14, 2004) in the same area. It drifted southwestward for about 540 km, and finally entered into the so-called “Luzon Gyre”. Using inference from sea level anomaly (SLA), sea surface temperature (SST), geostrophic currents and the buoys’ trajectories, it is shown that both eddies propagated southwestward along the continental slope of the northern SCS. The mean speeds of AE1 and AE2 movements were 9.7 cm/s and 10.5 cm/s, respectively, which are similar to the phase speed of Rossby waves in the northern SCS. The variation of instantaneous speeds of the eddy movement and intensity of anticyclonic eddy may suggest complex interactions between an anticyclonic eddy and its ambient fluids in the northern SCS, where the eddy propagated southwestward with Rossby waves. Furthermore, SLA and SST images in combination with the temperature and salinity profiles obtained during a cruise suggested that AE1 was generated in the interior SCS and AE2 was shed from the “Kuroshio meander”.  相似文献   

4.
Seven-year(2005–2011) Synthetic Aperture Radar(SAR) images are applied to study oceanic eddies in the East China Sea. It is found that most of these eddies detected from the SAR images are less than 10 km, which are submesoscale eddies. Seasonal differences are evident in the distribution of eddies, with the highest and the lowest number of eddies noted in summer and winter, respectively. Since slick streaks in SAR images look dark, an eddy identified due to the slicks is referred to as "black eddy". As a result of wave-current interactions in the zones of current shear, it can be seen that an eddy exhibits a bright curve, the eddy is called "white eddy". During the seven years, 95 black eddies and 50 white eddies are identified in the study area. Black eddies are found in the whole study area while white eddies are mainly distributed in the vicinity of the Kuroshio Current. This study suggests that the distribution of the white eddy is denser around the Kuroshio because of the strong shear in the Kuroshio region. In terms of the eddy sizes, white eddies are generally smaller than black eddies.  相似文献   

5.
黑潮在冬季常以流套的方式入侵南海,并多伴随着反气旋涡的脱落,脱落的反气旋涡将黑潮高温、高盐水带入南海,影响南海东北部水文要素和声速场的空间分布,目前尚未有对黑潮流套脱落反气旋涡声学效应的研究。利用2009~2020年卫星高度计数据和再分析数据,在南海东北部选取了6个冬季黑潮流套脱落反气旋涡,研究了其水文和声场结构,并应用Bellhop高斯射线模型仿真给出了其对声传播的影响。结果表明:(1)6个黑潮脱落反气旋涡平均半径为110~135km,垂向深度可达1 000~1 200 m,最大旋转速度为0.4~0.6 m/s。反气旋涡中心暖水下沉,温度异常均为正异常,暖核位置位于100~250 m处,最大正异常达到2.5°C。中心盐度异常呈现负-正-负的三核结构。反气旋涡在100~900 m深度声速为正异常,最大正异常超过8 m/s,出现在400 m左右。(2)声波从涡外穿过涡旋和从涡内向外传播,当地形不会影响声线的反转时,会聚区的位置发生后移,后移的距离在5~10 km;当地形阻碍声线的反转时,声线与地形接触的位置不同,会聚区可能出现前移或后移,后移最大为29km,前移最大可达23km。(3)当...  相似文献   

6.
Mesoscale eddies, particularly anticyclonic ones, are dominant features in the Kuril Basin of the Okhotsk Sea. In 1999, both surface drifter and hydrographic observations caught the same anticyclonic eddy northwest of Bussol’ Strait, which has a diameter of ∼100 km, typical surface velocity of 0.2–0.3 m s−1, and less dense core extending to a depth of ∼1200 m. Based on an idea that the generation of mesoscale eddies is caused by strong tidal mixing in and around Kuril Straits, we have conducted a series of three-dimensional numerical model experiments, in which strong tidal mixing is simply parameterized by increasing coefficients of vertical eddy viscosity and diffusivity along the eastern boundary. Initially, a regular series of disturbances with a wavelength of ∼70 km starts to develop. The disturbances can be clearly explained by a linear instability theory and regarded as the baroclinic instability associated with the near-surface front formed in the region between the enhanced mixing and offshore regions. In the mature phase, the disturbances grow large enough that some eddies pinch off and advect offshore (westward), with the scale of disturbances increasing gradually. Typical eddy scale and its westward propagation speed are ∼100 km and ∼0.6 km day−1, respectively, which are consistent with the observations by satellites. The westward propagation can be explained partly due to nonlinear effect of self-offshore advection and partly due to the β-effect. With the inclusion of the upper ocean restoring, the dominance of anticyclonic eddy, extending from surface to a depth of ∼1200 m, can be reproduced.  相似文献   

7.
Closed loop mesoscale eddies were identified and tracked in the Ulleung Basin of the southwestern Japan/East Sea (JES) using the winding-angle (WA) methodology, for mapping the absolute geostrophic currents into surface streamlines of flow. The geostrophic velocity used here was the sum of the Archiving, Validation and Interpretation of Satellite Oceanographic data (AVISO), time variable velocity and the 1992–2007 mean geostrophic velocity. Local sampling bias was removed using the drifter observations. This WA methodology of deriving the Lagrangian path lines that drifters followed over a 7-day period was validated by individual drifter tracks and it demonstrated closed looping eddy motions. The WA method demonstrated that less than 6% of the closed streamlines appeared when drifters did not show a closed loop in their vicinity, compared to 30% of the excess detection rate by the Okubo–Weiss method of locating closed loop structures. Three groups of eddies were identified: (1) Coastal Cold and Warm Eddies, which appeared in the area between the coast of southern Korea and the East Korean Warm Current (EKWC), when a southward coastal current was present, (2) Frontal Cold and Warm Eddies, which were formed in the region of the seaward extension of the meandering EKWC, north of Ulleung Island and (3) Ulleung Warm Eddies (UWE) and Dok Cold Eddies (DCE), which appeared during meanders of the EKWC, in the Ulleung Basin. No seasonal concentration for eddy generation and eddy population was found. The average radius of eddies was about 38–60 km. These were born, moved in an erratic pattern and then died in the vicinity where the EKWC separated from the coast and formed a large meander. The time-mean large meander formed meridionally concentrated bands of positive and negative relative vorticity. The cyclonic (cold) eddies tend to reside within the band of positive time-mean relative vorticity, and the anticyclonic (warm) eddies reside within the bands of negative relative vorticity. Six UWE and four warm eddies, in the Yamato Basin (about 10% of warm eddies), were sustained longer than a year. Because the large meander of the EKWC appeared to be controlled by topography, and the JES is a nearly enclosed basin with rapid flow-out to the east through the narrow Tsugaru Strait, there was little eddy energy propagation to the west. The warm eddies in the southwestern part of the JES appeared to be interacting very locally with the mean flow.  相似文献   

8.
为了探究东海黑潮周边涡旋分布、形成机理及运动规律,基于法国国家空间研究中心(CNES)卫星海洋学存档数据中心(AVISO)的中尺度涡旋数据集展开了研究。首先,统计了近27年东海黑潮周边的涡旋分布,发现在黑潮弯曲海域产生了650个涡旋,在黑潮中段海域产生了271个涡旋,其中直径100~150 km之间的涡旋数量最多,涡旋振幅主要集中在2~6 cm。其次,分析了东海黑潮的运动路径和涡运动过程,结果表明,黑潮气旋式弯曲海域内侧易产生气旋涡,且移动路径较长,如台湾东北海域黑潮流轴气旋式弯曲处产生的涡旋,其平均位移达到了87.6 km;当反气旋式弯曲海域内侧产生反气旋涡时,涡旋往往做徘徊运动。黑潮中段海域的涡旋呈现出气旋涡在黑潮主轴西侧、反气旋涡在黑潮主轴东侧的极性对称分布特征,两类涡都沿黑潮主轴向东北方向移动。最后,结合再分析的流场、海面高度数据,讨论了涡旋运动规律和生成机制。黑潮弯曲处涡旋的生成与黑潮流体边界层分离有关,奄美大岛南部到冲绳岛西侧的黑潮逆流对黑潮中段海域涡的极性对称分布起到了关键作用,涡旋在运动过程中通常经历生长、成熟和衰变三个阶段。  相似文献   

9.
自黑潮脱落并由吕宋海峡进入中国南海的中尺度涡(简称脱落涡旋)对黑潮与南海的水体交换、热量及物质输送等过程均有十分重要的作用.基于1993—2013年OFES(OGCM for the Earth Simulator)模式数据产品,分析研究了脱落涡旋的统计特征及其温盐流三维结构,并与卫星观测结果进行对比分析.OFES模式...  相似文献   

10.
Two anticyclonic subsurface eddies (SSEs) are detected from the in-situ hydrography data of the southern South China Sea (SCS) during 15–25 October 2011. Both SSEs have the lens-shaped water bodies below the thermocline. Their maximum swirl speed appears at the depth of lens׳ core, which is also characterized by a dump in the TS diagram. These eddies do not have an enclosed saline-water or warm-water body in its lens׳ core, which is different from those SSEs reported in other seas. These SSEs should be locally generated by the horizontal shear of the Southeast Vietnam Offshore Current. In the SSE generation site of the southern SCS, there is an upper-layer anticyclonic eddy (AE2) that is right above the SSE (SE2). After leaving its generation site, the eddy loses its energy source and starts to weaken. In this case, the eddy will decay quickly in the upper layer due to the restraint of the thermocline, and finally evolves into a pure subsurface eddy (i.e. SE4).  相似文献   

11.
Satellite altimeter sea level data from 1993 to 2008 are used to analyze the interaction of nonlinear Rossby eddies with the Kuroshio at the Luzon Strait (LS). The sea level anomaly data show that the west Pacific (WP) is a source of nonlinear Rossby eddies, and the South China Sea (SCS) is a sink. The LS serves as a gateway between the two. The scale analysis indicates that eddies with a radius larger than 150 km are strong enough to significantly alter the Kuroshio and are able to modify the local circulation pattern. Statistical analysis indicates that the probability for eddies to penetrate through the Kuroshio may reach at least 60%. A case study of an anticyclonic mesoscale eddy passing through the LS in June–July 2004 indicates that the Kuroshio behaves as an unsteady flow with its stream path frequently modified, in a way of cutting off, meandering and branching during its interaction with the eddy. We therefore suggest that nonlinear Rossby eddies may play a significant role in modification of the local circulation system near the LS and in exchanges of the mass, momentum and energy between the WP and the SCS.  相似文献   

12.
This is a study about the spreading of newly formed deep waters following open ocean deep convection in the Northwestern Mediterranean Sea. The main results are from the SOFARGOS large scale float experiment initiated in 1994–1995. During the SOFARGOS project, CTD stations and Lagrangian observations of ocean currents were carried out in the Gulf of Lion from December 1994 to July 1995. Hydrological observations confirmed that deep water formation occurred very early during winter 1994–1995 (late December, early January) in conjunction with atmospheric cooling, deep convection penetrating down to 2000 m in the so-called Medoc area. Numerous eddies (both anticyclonic and cyclonic) drifted away from the convection area and advected newly formed deep waters far away from the source region. In particular, compact anticyclones appeared to be the most coherent (long-lived) eddies and capable of transporting newly formed Western Mediterranean Deep Waters several hundreds of kilometers away from the convection area. Characterized by an inner core of about 5 km in radius, these eddies are submesoscale features in the outer domain and appear as key elements of the open ocean convection processes. During their long journeys, these eddies interacted with larger scale features such as the Northern Boundary Current, the North Balearic Front, topographic Rossby waves, and Sardinian eddies. These interactions influenced the long-term behavior of the eddies (mean drift, composition) and represented an important part of (1) the spreading phase following deep convection and (2) the large scale thermohaline circulation.  相似文献   

13.
The spatial scales of mesoscale eddies are of importance to understand physio-biogeochemical processes in the East/Japan Sea. Chlorophyll-a concentration images from the Geostationary Ocean Color Imager (GOCI) revealed numerous eddies during the phytoplankton bloom in spring. These eddies were manually digitized to obtain geolocation information at the peripheries from GOCI images and then least-square fitted to each ellipse. The elliptic elements were the geolocation position of the eddy center, the rotation angle from due east, the eccentricity, the lengths of the semi-major and semi-minor axes, and the mean radius of the ellipse. The spatial scales of eddies had a mean radii ranging from 10 km to 75 km and tended to be smaller in the northern region. The scales revealed a linear trend of about ?7.26 km/°N as a function of the latitude. This tendency depended on the latitudinal variation of the internal Rossby radius of deformation, which originates from the substantial difference in the density structure of the water column. The scales from the sea surface temperature image were larger by 1.30 times compared to those from ocean color image. This implies that physical processes along the periphery of the eddy affect the nutrient dynamics.  相似文献   

14.
2000年夏季南海环流的改进逆方法计算   总被引:12,自引:3,他引:9  
基于2000年8月航次在南海调查资料,采用改进逆方法,并结合TOPEX/ERS分析的SSH分布,获得以下的主要结果:(1)南海中部和西南部环流系统主要受反气旋环流所支配.主要有越南东南反气旋涡W1,其水平尺度约为300km,垂向深度可达1000m以深,流速很强,其最大流速为79cm/s左右,还有暖涡W2以及吕宋岛西南反气旋涡环流系统W3.其次,在反气旋涡W1与W2之间还存在气旋式涡C1.其水平尺度比暖涡W1小得多,流速也较强.两涡W1与C1之间存在一支南向流,它们组成一个准偶极子.(2)在暖涡W1的西侧存在西边界流,即北向射流,其流速很强,约在12°N流向转向东北.(3)南海北部环流系统主要受气旋环流所支配.在断面N2附近及以北存在一个气旋式环流系统.其次,在海南岛东南存在一个尺度不大的反气旋环流系统.(4)南海东南部环流系统主要受气旋环流所支配.主要有在巴拉望岛以西存在尺度较大的气旋环流系统,以及暖涡W1东南存在一个气旋环流系统.其次,在加里曼丹岛西北还存在范围不大的反气旋环流.(5)比较1998年夏季航次与2000年夏季航次时计算结果,虽然它们在定量上有些变化与差别,但在定性上它们的环流结构有十分相似之处.这表明,南海环流具有明显的季节特性.(6)比较2000年夏季南海水文结构,流函数分布以及TOPEX/ERS的SSH分布,它们在定性上十分吻合.  相似文献   

15.
To quantitatively investigate the water mass transport of mesoscale eddies,the mass transport induced by a simulated anticyclonic eddy in the South China Sea wa...  相似文献   

16.
Surface distribution (0–100 m) of zooplankton biomass and specific aminoacyl-tRNA synthetases (AARS) activity, as a proxy of structural growth, were assessed during winter 2002 and spring 2004 in the Labrador Sea. Two fronts formed by strong boundary currents, several anticyclonic eddies and a cyclonic eddy were studied. The spatial contrasts observed in seawater temperature, salinity and fluorescence, associated with those mesoscale structures, affected the distributions of both zooplankton biomass and specific AARS activity, particularly those of the smaller individuals. Production rates of large organisms (200–1000 μm) were significantly related to microzooplankton biomass (63–200 μm), suggesting a cascade effect from hydrography through microzooplankton to large zooplankton. Water masses defined the biomass distribution of the three dominant species: Calanus glacialis was restricted to cold waters on the shelves while Calanus hyperboreus and Calanus finmarchicus were widespread from Canada to Greenland. Zooplankton production was up to ten-fold higher inside anticyclonic eddies than in the surrounding waters. The recent warming tendency observed in the Labrador Sea will likely generate weaker convection and less energetic mesoscale eddies. This may lead to a decrease in zooplankton growth and production in the Labrador basin.  相似文献   

17.
基于南海东北部1998~2019年的多源卫星遥感数据和风场再分析数据, 较系统地分析了南海东北部涡旋内部叶绿素a浓度的分布特征, 通过量化统计和涡心坐标系参数合成等方法探究了中尺度涡对叶绿素a浓度变化的影响规律及潜在机制。结果表明: (1)南海东北部约有60%的中尺度涡旋内部存在叶绿素a浓度增加和减少的现象。(2)南海东北部中尺度涡内部叶绿素a扰动受到涡旋抽吸和涡致Ekman抽吸机制的共同调控, 其中约有38% (39%)的暖(冷)涡内涡旋抽吸的贡献更大, 21% (24%)的暖(冷)涡内涡致Ekman抽吸的贡献更大。(3)南海东北部中尺度涡生命周期内的海表叶绿素a浓度变化存在显著的阶段性差异, 在冷暖涡的生成期, 涡旋抽吸的作用更为显著, 而在冷暖涡的顶峰和消亡期, 涡致Ekman抽吸的作用更为明显。上述研究结果有助于理解南海东北部初级生产力对中尺度涡的响应过程与机理, 对认识海洋物理-生物耦合过程具有一定的参考价值和研究意义。  相似文献   

18.
We have studied the relation between the hydrography, the composition and horizontal structure of the larval fish community, and the horizontal distribution patterns of larval fish abundances in an area characterised by strong mesoscale oceanographic activity, located between the Canary Islands and the African coast (the Canaries Coastal Transition Zone), during August 1999. Upwelling, upwelling filaments, cyclonic and anticyclonic eddies and island wakes are typical mesoscale features of the northwest African coast in summer. A single upwelling filament off Cabo Juby was joined in mid-August by a second that originated about 100 km to the north. The two filaments flowed together and merged 100 km offshore. The merged filament was partially entrained around a cyclonic eddy, trapped between the Canary Islands and the African coast, and interacted with cyclonic and anticyclonic eddies shed from Gran Canaria. Mesoscale oceanographic features strongly influenced the horizontal distributions of fish larvae. Eddies acted as a mechanism of concentration, while upwelling filaments were dispersive, transporting larvae from the African neritic zone into oceanic areas and towards the Canary archipelago. This transport was the major cause of the predominance of neritic larvae in the composition of the larval fish community of the area. The results also suggest: (1) that anchovy larvae are good indicators of the offshore displacement of upwelled water; (2) that the alternation between anchovy and sardine as species dominant in the larval fish community of the area during summer depends upon the water temperature in the African upwelling region, anchovy dominating at higher temperature; (3) that a coupling of anchovy and sardine spawning with the mesoscale oceanographic structure formed by the upwelling filaments and trapped eddy overcomes the negative effect that Ekman transport has on their populations.  相似文献   

19.
During the autumn–winter of 1996–1997, drifting buoy trajectories and infrared satellite images provided new information on the characteristics of several mesoscale phenomena generated by the Algerian Current (AC) in the western Mediterranean Sea. A mesoscale event, as defined by previous studies, consists of a meander of the current associated with a surface anticyclonic eddy inside its crest, a transitory surface cyclonic eddy (Ec) upstream from the crest, and a deep anticyclonic eddy just below the meander. Most events propagate eastward along the coast at a few km per day until they are forced, mainly by the topography at the entrance to the channel of Sardinia, to detach from the coast and propagate seaward. They thus become open-sea anticyclonic eddies and generally complete an anticlockwise circuit in the Algerian basin. Surface buoys were launched upstream from an event and across it near 1°E. They made it possible to characterise the anticyclonic and cyclonic surface eddy features, and for the first time clearly showed the meander, which is in general not well depicted with images. It has thus been definitely demonstrated that most of the AC (speeds of several tens of cm/s) crosses the relatively slowly propagating events. As usual, the event we sampled reached a mature stage characterised by a vanishing of the Ec, and increased up to ∼100 km. Its arrest and decrease before it reached the channel of Sardinia, which is not so usual, was contemporaneous to the reappearance of the Ec and could be related to the growing of another coastal eddy upstream. At the entrance to the channel of Sardinia (near 7–8°E), the trajectories and images also documented another event which was larger (up to ∼120 km) and in the phase of detachment. Since the buoys drifted alternately to the west and to the east between this event and the coast, it is clear that an event can detach only temporarily and allow part of the AC to flow eastward directly. As indicated by infrared images, the definitive detachment occurred after all the buoys escaped from the event. The whole in situ and satellite data set is fully consistent with all the previous observations of the AC mesoscale variability, and quantitatively supports the proposed hypotheses for the event structure. It is consistent with laboratory experiments and some results of numerical models of coastal instability processes.  相似文献   

20.
The expansion of wind fields observed at fixed times (four times daily) in complex empirical orthogonal functions is performed for the Japan Sea area (34°–53° N, 127°–143° E). The wind fields are taken from the 1998–2004 NCEP/NCAR Reanalysis data with better spatial resolution (1° × 1°) than the standard product, which are publicly available on the Internet. Major modes of wind variability in the Japan Sea area are identified. The modes determine a general direction of air-mass transport throughout a year, zonal and meridional modulation, and a cyclonic and an anticyclonic eddy component. Objective classification of wind fields with respect to the prevailing flow direction is performed, and wind stress and wind-curl patterns are obtained for major events in the cold and warm periods of the year. The pattern obtained can be used in hydrodynamic numerical models of the general circulation of the Japan Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号