首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the potential for mineral precipitation reactions to occur during the excavation, disposal, backfilling and closure of a deep geological repository for the final disposal of spent nuclear fuel was evaluated with the assistance of hydrogeochemical modelling. Four modelling exercises, corresponding to the main expectable geochemical scenarios in the Excavation Damaged Zone (EDZ) throughout repository evolution, were carried out and the times for sealing of the discontinuities owing to mineral precipitation in each of them were evaluated and discussed. The simulations show that mineral precipitation reactions are thermodynamically feasible in most of the studied cases. The main mineral phases potentially responsible for the hydraulic sealing of the EDZ are calcite and ferric oxyhydroxides, being the estimated volumes occupied by the precipitation of calcite between one and three orders of magnitude larger than the volume of precipitating ferric phases. The estimated times for complete sealing of the EDZ may vary between several hundreds to more than 1 million years. The shortest sealing times (less than 3,000 years) are obtained for the mixture of groundwaters from the repository depth with dilute infiltration waters.  相似文献   

2.
3.
Qualitative geological acceptance criteria and quantitative seismological acceptance criteria for radioactive waste disposals are developed. The background material for the initiation of site selection and for its earthquake hazard assessment is discussed. The recent movements of the Earth's surface as well as the other mechanical properties of geological media, hydrological conditions of geological blocks, their groundwater chemistry, geochemical rheology, petrological analyses of rocks, etc., have to be taken into account. A new comprehensive integrated safety analysis of the final underground disposal of spent nuclear fuel has been underway in the Czech Republic since 1991. In accordance with these seismogeological acceptance criteria regions for building underground final radioactive waste disposals are singled out in the Czech Republic.  相似文献   

4.
5.
 Common opinion today is that the only practicable way for the disposal of hazardous waste is in deep-laying bedrock deposits. A set of general site selection criteria for spent nuclear fuel were developed, and are presented and discussed in this paper. Four widespread geological formations in Romania appropriate as geological barriers for underground disposal (salt, granite, volcanic tuff and green schists) were analyzed, and sites were proposed on the basis of the geological criteria defined for each of the four formations. Received: 18 July 1996 · Accepted: 27 September 1996  相似文献   

6.
In the frame of the ENRESA natural analogue programme, the uranium ore from the “Mina Fe” (Salamanca, Spain) has been studied as a natural analogue of radioactive spent fuel behaviour. This uranium mine is hosted in highly fractured schistose rocks, a geological setting that has not been envisaged in the Spanish options for radioactive waste burial. However, some analogies with the processes that might be involved in the evolution of these geological repositories suggested this investigation.

The pitchblende–pyrite–carbonate paragenesis has been studied “in situ” as natural analogue of the nuclear spent fuel behaviour under extremely oxidative dissolution conditions. Similarly, secondary Fe oxyhydroxides and clay minerals have also been considered as relevant analogue materials for the retention of uranium and other analogous trace metals. A multidisciplinary characterisation of the site has been performed in order to study these processes.

Though the intense mining activities in the site hindered precise determination of the original hydrogeological and hydrochemical features of the investigated zone (Boa fault zone), the mineralogy and geochemistry of fracture fillings, mineralisation and associated clayey materials have allowed the geochemical evolution of the system to be established. Three geochemical zones have been clearly differentiated: (i) the oxidised zone, from the surface to approximately 20 m depth, (ii) the redox transition zone, from 20 to 50 m depth, and (iii) the reduced zone, located below the transition zone.

The oxidised zone is characterised by the presence of the typical mineral association resulting from the strong acid conditions caused by the total oxidation of pyrite and other sulphides. The total oxidation, dissolution and leaching of U(IV), as uranyl–sulphate aqueous complexes, prevailed in this oxidised zone. The redox transition zone is characterised by the coexistence of the primary uranium paragenesis, oxidised minerals, as well as numerous secondary solid phases as a result of the physico-chemical changes in the environment. The optimal physico-chemical conditions for the coffinitisation of pitchblende and the co-precipitation of Fe(III)–U(VI) took place in this zone. In the reduced zone, where the primary uranium paragenesis is present, we currently find the necessary physico-chemical conditions to stabilise pitchblende, pyrite and carbonates.

The physico-chemical conditions of the oxidised zone are not relevant to disposal conditions. In the transition zone, two main geochemical processes take place: (i) the coffinitisation of pitchblende, which may be an important process for the stability of spent fuel in reducing conditions, and (ii) the co-precipitation of the Fe(III) and U(VI) as oxyhydroxides, another relevant mechanism for the retention of uranium. The physico-chemical conditions that prevail below 50 m depth should be sufficient to stabilise a spent nuclear fuel repository, in the same way as they have been able to preserve the 34-Ma-old uranium deposit of the Mina Fe.  相似文献   


7.
The Swedish Nuclear Fuel and Waste Management Company has recently submitted an application for a license to construct a final repository for spent nuclear fuel, at approximately 500?m depth in crystalline bedrock. Migration pathways through the geosphere barrier are geometrically complex, with segments in fractured rock, deformation zones, backfilled tunnels, and near-surface soils. Several simplifications of these complex migration pathways were used in the assessments of repository performance that supported the license application. Specifically, in the geosphere transport calculations, radionuclide transport in soils and tunnels was neglected, and deformation zones were assumed to have transport characteristics of fractured rock. The effects of these simplifications on the projected performance of the geosphere barrier system are addressed. Geosphere performance is shown to be sensitive to how transport characteristics of deformation zones are conceptualized and incorporated into the model. Incorporation of advective groundwater travel time within backfilled tunnels reduces radiological dose from non-sorbing radionuclides such as I-129, while sorption in near-surface soils reduces radiological doses from sorbing radionuclides such as Ra-226. These results help quantify the degree to which geosphere performance was pessimistically assessed, and provide some guidance on how future studies to reduce uncertainty in geosphere performance may be focused.  相似文献   

8.
9.
Present strategies for the long-term disposal of high-level nuclear wastes are based on the construction of repositories hundreds of meters below the earth surface. Although the surrounding host-rocks are relatively isolated from the light at the earth surface they are by no means lifeless. Microorganisms rule the deep part of the biosphere and it is well established that their activity can alter chemical and physical properties of these environments. Microbial processes can directly and indirectly affect radionuclide migration in multiple ways. Within 6th FP IP FUNMIG the interplay between microbial biofilms and radionuclides and the effect of microbially induced redox transformations of Fe on radionuclide mobility have been investigated. For the first time, formation of U(V) as a consequence of microbial U(VI) reduction in a multi-species biofilm was detected in vivo by combining laser fluorescence spectroscopy and confocal laser scanning microscopy. Furthermore, it was demonstrated that addition of U(VI) can lead to increased respiratory activity in a biofilm. Increased respiration in a biofilm can create microenvironments with lower redox potential, and hence induce reduction of radionuclides. Transient mobilization of U was observed in experiments with Fe oxides containing adsorbed U(VI) in which the activity of SO4-reducing organisms was mimicked by sulfide addition. Faster reaction of sulfide with Fe oxides compared to U(VI) reduction, and decreasing U(VI) adsorption due to the transformation of Fe oxides into FeS can explain the observed intermittent U mobilization. The presented research on microbe-radionuclide interactions performed within FUNMIG addresses only a few aspects of the potential role of microorganisms in the performance assessment of nuclear waste repositories. For this reason, additionally, this article provides a cursory overview of microbial processes which were not studied within the FUNMIG project but are relevant in the context of performance assessment. The following aspects are presented: (a) the occurrence and metabolic activity of microorganisms of several proposed types of host-rocks, (b) the potential importance of microorganisms in the near-field of nuclear waste repositories, (c) indirect effects of microbial processes on radionuclide mobility in the repository far-field, (d) binding of radionuclides to microbial biomass, (e) microbial redox transformations of radionuclides, and (f) the implementation of microbial processes in reactive transport models for radionuclide migration.  相似文献   

10.
Scoping calculations were performed in order to assess the influence of radiogenic heat on the performance of the rock mass around a nuclear fuel waste repository. The full coupling between the thermal, mechanical and hydrological processes involved was considered by using the finite element code, FRACON, developed through an extension of Biot's classical theory of soil consolidation. By considering the full T---H---M coupling, several important safety features, which would otherwise be omitted in uncoupled analyses, were detected in the present study. In particular, it was shown that the heat-induced pore pressure increase around the repository has the potential to significantly increase the rate of groundwater flow, and affect the structural integrity of the rock mass.  相似文献   

11.
12.
In order to demonstrate the feasibility of geological disposal of spent CANDU fuel in Canada, a safety assessment was performed for a hypothetical repository in the Canadian Shield. The assessment shows that the maximum long term radionuclide release from such repository would meet international criteria for dose rate; however, uncertainties in the assumed evolution of the repository were identified. Such uncertainties could be resolved by the consideration of coupled Thermal-Hydro-Mechanical-Chemical (THMC) processes. In Task A of the DECOVALEX-THMC project, THM models were developed within the framework of the theory of poroelasticity. Such model development was performed in an iterative manner, using experimental data from laboratory and field tests. The models were used to perform near-field simulations of the evolution of the repository in order to address the above-mentioned uncertainties. This paper presents the definition and rationale of task A and the results of the simulations. From a repository safety point of view, the simulations predict that the maximum temperature would be well below the design target of 100°C; however, the stress on the container can marginally exceed the design value of 15 MPa. However, the most important finding from the simulations is that a rock damage zone could form around the emplacement borehole. Such damage zone can extend a few metres from the walls of the emplacement holes, with permeability values that are orders of magnitude higher than the initial values. The damage zone has the potential to increase the radionuclide transport flux from the geosphere; the effect of such an increase should be taken into account in the safety assessment and mitigated if necessary by the provision of sealing systems. Prepared for publication in Environmental Geology. DECOVALEX-THMC Special Issue.  相似文献   

13.
14.
15.
Granite with extremely low permeability has been selected to host a repository of spent nuclear fuel in the Czech Republic. Three boreholes were drilled in a test site of the Podlesi granite stock in the Krusne hory Mts. The holes were located 10 m apart. After hydraulic tests, four sections in one of the boreholes were separated by packers at depth of 69-111, 111-161, 161-220 and 220-300 m. Samples of groundwater from each section were periodically collected for chemical and isotopic analysis. Groundwater from fractures in the granite stock does not belong to a single and uniform groundwater body in spite of that the granite is chemically and mineralogically homogeneous. There are three water bodies, which are only partly hydraulically connected. They are: (1) The groundwater in the oxidation zone to a depth of about 111 m. (2) The groundwater of the zone of hydrolysis of alumosilicates from 111 to 220 m. (3) The groundwater of the zone of hydrolysis of alumosilicates below the depth of 220 m from a different fracture system than the water from the above sections. The total dissolved solids of water increase with depth. The Ca-SO4 component predominates in the near surface water body while Na-HCO3 component predominates in the two deeper water bodies. Water from the oxidation zone contains higher concentrations of iron and other trace metals. The chemical composition of water in the three water bodies changed during the 14 months of sampling. No steady state was reached during this time. The changes displayed systematic trends. The ratio Ca/Na increased and the ratio HCO3/SO4 decreased with time in the shallow water body. In contrast, the ratio CafNa decreased and HCO3/SO4 fluctuated without an obvious trend in the deeper water bodies. An unusually high concentration of dissolved organic carbon (DOC) was found in the lowest section of the test borehole. The concentration of DOC was 150 mg/L at the beginning of sampling. The isotopic composition was δ^13C=-27.6 ‰. The concentration of DOC dropped both towards the surface and with time.  相似文献   

16.
Numerical simulation of gas migration driven by compressible two-phase partially miscible flow in porous media is of major importance for safety assessment of deep geological repositories for long-lived high-level nuclear waste. We present modeling of compositional liquid and gas flow for numerical simulations of hydrogen migration in deep geological radioactive waste repository based on persistent primary variables. Two-phase flow is considered, with incompressible liquid and compressible gas, which includes capillary effects, gas dissolution, and diffusivity. After discussing briefly the existing approaches to deal with phase appearance and disappearance problem, including a persistent set of variables already considered in a previous paper (Bourgeat et al., Comput Geosci 13(1):29–42, 2009), we focus on a new variant of the primary variables: dissolved hydrogen mass concentration and liquid pressure. This choice leads to a unique and consistent formulation in liquid saturated and unsaturated regions, which is well adapted to heterogeneous media. We use this new set of variable for numerical simulations and show computational evidences of its adequacy to simulate gas phase appearance and disappearance in different but typical situations for gas migration in an underground radioactive waste repository.  相似文献   

17.
The “Mina Fe” U deposit (Salamanca, Spain) has been studied in the context of Enresa’s programme for U-mine sites restoration and also as a natural analogue for processes in high-level nuclear waste (HLNW) geological disposal. The investigations encompassed an array of geoscience disciplines, such as structural geology, mineralogy, hydrogeology and elemental and isotopic geochemistry and hydrogeochemistry of the site. Based on the obtained results, a conceptual mineralogical and geochemical model was performed integrating the main geochemical processes occurring at the site: the interaction between oxidised and slightly acidic water with pyrite, pitchblende, calcite and dolomite, as essential minerals of the U fracture-filling mineralisation, and hydroxyapatite from the host rock, as the main source of P. This conceptual model has been tested in a systematic numerical model, which includes the main kinetic (pyrite and pitchblende dissolution) and equilibrium processes (carbonate mineral dissolution, and goethite, schoepite and autunite secondary precipitation). The results obtained from the reactive-transport model satisfactorily agree with the conceptual model previously established. The assumption of the precipitation of coffinite as a secondary mineral in the system cannot be correctly evaluated due to the lack of hydrochemical data from the reducing zone of the site and valid thermodynamic and kinetic data for this hydrated U(IV)-silicate. This precipitation can also be hampered by the probable existence of dissolved U(IV)-organic matter and/or uranyl carbonate complexes, which are thermodynamically stable under the alkaline and reducing conditions that prevail in the reducing zone of the system. Finally, the intense downwards oxic and acidic alteration in the upper part of the system is of no relevance for the performance assessment of a HLNW disposal. However, the acidic and oxidised conditions are quickly buffered to neutral–alkaline and reducing at very shallow depths, of relevance for the performance assessment of a HLNW repository, even in a natural or artificially perturbed geological environment as “Mina Fe”.  相似文献   

18.
Forsmark in Sweden has been proposed as the site of a geological repository for spent high-level nuclear fuel, to be located at a depth of approximately 470 m in fractured crystalline rock. The safety assessment for the repository has required a multi-disciplinary approach to evaluate the impact of hydrogeological and hydrogeochemical conditions close to the repository and in a wider regional context. Assessing the consequences of potential radionuclide releases requires quantitative site-specific information concerning the details of groundwater flow on the scale of individual waste canister locations (1–10 m) as well as details of groundwater flow and composition on the scale of groundwater pathways between the facility and the surface (500 m to 5 km). The purpose of this article is to provide an illustration of multi-scale modeling techniques and the results obtained when combining aspects of local-scale flows in fractures around a potential contaminant source with regional-scale groundwater flow and transport subject to natural evolution of the system. The approach set out is novel, as it incorporates both different scales of model and different levels of detail, combining discrete fracture network and equivalent continuous porous medium representations of fractured bedrock.  相似文献   

19.
Effects on groundwater flow of abandoned engineered structures in relation to a potential geological repository for spent high-level nuclear fuel in fractured crystalline rock at the Forsmark site, Sweden, are studied by means of numerical modeling. The effects are analyzed by means of particle tracking, and transport-related performance measures are calculated. The impacts of abandoned, partially open repository tunnels are studied for two situations with different climate conditions: a “temperate” climate case with present-day boundary conditions, and a generic future “glacial” climate case with an ice sheet covering the repository. Then, the impact of abandoned open boreholes drilled through the repository is studied for present-day climate conditions. It is found that open repository tunnels and open boreholes can act as easy pathways from repository level to the ground surface; hence, they can attract a considerable proportion of particles released in the model at deposition hole positions within the repository. The changed flow field and flow paths cause some changes in the studied performance measures, i.e., increased flux at the deposition holes and decreased transport lengths and flow-related transport resistances. However, these effects are small and the transport resistance values are still high.  相似文献   

20.
The candidate repository for high-level nuclear waste in the Gorleben salt dome, Germany, is expected to host 8,550 tonnes of uranium in burnt fuel. It has been proposed that 5,440 waste containers be deposited at a depth of about 800?m. There is 260?C280?m of siliciclastic cover sediments above the proposed repository. The potential groundwater contamination in the siliciclastic aquifer is simulated with the TOUGHREACT and TOUGH2-MP codes for a three-dimensional model with 290,435 elements. Two deterministic cases are simulated. The single-phase case considers the transport of radionuclides in the liquid phase only. The two-phase case accounts for hydrogen gas generated by the corrosion of waste containers and release of gaseous C-14. The gas release via a backfilled shaft is assumed to be steady (non-explosive). The simulation period is 2,000,000 years for the single-phase case and 7,000 years for the two-phase case. Only the radioactive dose in the two-phase case is higher than the regulatory limit (0.1?mSv/a).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号