首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
2.
高放废物地质处置黏土岩处置库围岩研究现状   总被引:2,自引:0,他引:2  
世界上很多国家都对处置库的可能围岩进行了详细研究。通过对比,认为花岗岩、黏土岩、岩盐比较适合作为处置库围岩,而黏土岩由于具有自封闭性、渗透率低等其他岩石类型不可比拟的优点,因而将黏土岩作为高放废物地质处置库围岩越来越受到各国的关注。文章同时介绍了瑞士、法国、比利时等国家在黏土岩中所进行的大量研究,均认为在黏土岩中处置高放废物和乏燃料是安全的。文章还对黏土岩处置库概念设计、黏土岩处置库围岩地下实验室研究,以及我国开展黏土岩处置库研究的意义等进行了综述。  相似文献   

3.
SKB (Svensk Kärnbränslehantering AB) is responsible for all handling, transport and storage of the nuclear wastes outside the Swedish nuclear power stations. According to Swedish law, SKB is responsible for an R&D-programme needed to take care of the radwastes. The programme comprises, among others, a general supportive geo-scientific R&D and the Äspö Hard Rock Laboratory (HRL) for more in-situ specific tasks.

Sweden is geologically located in the Fennoscandian shield which is dominated by gneisses and granitoids of Precambrian age. The Swedish reference repository concept thus considers an excavated vault at ca. 500 m depth in crystalline rocks. In this concept (KBS-3), copper canisters with high level waste will be emplaced in deposition holes from a system of tunnels. Blocks of highly compacted swelling bentonite clay are placed in the holes leaving ample space for the canisters. At the final closure of the repository, the galleries are backfilled with a mixture of sand and bentonite. This repository design aims to make the disposal system as redundant as possible. Although the KBS-3 concept is the reference concept, alternative concepts and/or repository lay-outs are also studied. The main alternative, currently under development at SKB, is disposal in boreholes with depths of 4–5 km. The geoscientific research will to a great extent be guided by the demands posed by the performance and safety assessments, as well as the constuctability issues. Some main functions of the geological barrier are fundamental for the long-term safety of a repository. These are: bedrock mechanical stability, a chemically stable environment as well as a slow and stable groundwater flux. The main time-table for the final disposal of long-lived radioactive waste in Sweden foresees the final selection of the disposal system and site during the beginning of next decade.  相似文献   


4.
我国高放废物地质处置库场址筛选总体技术思路探讨   总被引:1,自引:0,他引:1  
综合对比瑞典、加拿大、芬兰和美国等国高放废物地质处置库场址筛选技术思路,分析国外高放废物地质处置库场址筛选过程中取得的经验、教训,总结了我国处置库选址工作取得的成果和存在的问题。在综合研究基础上,分析提出我国高放废物地质处置库场址筛选总体技术思路,包括应遵循的原则、工作范围、目标和总体技术步骤等,以利于今后处置库选址工作更系统、规范和统一。  相似文献   

5.
6.
Forsmark in Sweden has been proposed as the site of a geological repository for spent high-level nuclear fuel, to be located at a depth of approximately 470 m in fractured crystalline rock. The safety assessment for the repository has required a multi-disciplinary approach to evaluate the impact of hydrogeological and hydrogeochemical conditions close to the repository and in a wider regional context. Assessing the consequences of potential radionuclide releases requires quantitative site-specific information concerning the details of groundwater flow on the scale of individual waste canister locations (1–10 m) as well as details of groundwater flow and composition on the scale of groundwater pathways between the facility and the surface (500 m to 5 km). The purpose of this article is to provide an illustration of multi-scale modeling techniques and the results obtained when combining aspects of local-scale flows in fractures around a potential contaminant source with regional-scale groundwater flow and transport subject to natural evolution of the system. The approach set out is novel, as it incorporates both different scales of model and different levels of detail, combining discrete fracture network and equivalent continuous porous medium representations of fractured bedrock.  相似文献   

7.
The impact of periglacial and glacial climate conditions on groundwater flow in fractured crystalline rock is studied by means of groundwater flow modeling of the Forsmark site, which was recently proposed as a repository site for the disposal of spent high-level nuclear fuel in Sweden. The employed model uses a thermal-hydraulically coupled approach for permafrost modeling and discusses changes in groundwater flow implied by the climate conditions found over northern Europe at different times during the last glacial cycle (Weichselian glaciation). It is concluded that discharge of particles released at repository depth occurs very close to the ice-sheet margin in the absence of permafrost. If permafrost is included, the greater part discharges into taliks in the periglacial area. During a glacial cycle, hydraulic gradients at repository depth reach their maximum values when the ice-sheet margin passes over the site; at this time, also, the interface between fresh and saline waters is distorted the most. The combined effect of advances and retreats during several glaciations has not been studied in the present work; however, the results indicate that hydrochemical conditions at depth in the groundwater flow model are almost restored after a single event of ice-sheet advance and retreat.  相似文献   

8.
M. Langer 《Engineering Geology》1993,34(3-4):159-167
The problem of waste disposal in Germany has been solved by using a combination of above-ground and underground disposal. Site selection criteria and precise criteria for the performance assessment of various types of waste disposal are available. In view of long-term safety of disposal, it is necessary to include geological and hydrogeological viewpoints in addition to purely engineering viewpoints.

In particular, the geotechnical site-specific safety assessment is described, as defined by the government in “Technical Regulations on Wastes” (TA-Abfall) in the section “Underground Disposal”. This safety assessment must cover the entire system comprising waste, cavern/mine and surrounding rock. For this purpose geo-mechanical models have to be developed.

According to the multi-barrier principle, the geological setting must be able to contribute significantly to isolation of the waste over longer periods. The assessment of the integrity of the geological barrier can only be performed by making calculations with validated geomechanical models.

Various engineering geological data are required for the selection of a site, for the design and construction of a repository, and for a safety analysis for the post-operational phase. These data can only be attained by the execution of a comprehensive site-specific geomechanical exploration and investigation program. The planning and design of an underground repository in rock salt layers are described, as an example for the various steps of this type of safety assessment.  相似文献   


9.
《Geochimica et cosmochimica acta》1999,63(19-20):2919-2928
Construction of the entrance tunnel to the Äspö Hard Rock Laboratory, a prototype repository in Sweden for research into the geological disposal of spent nuclear fuel, has resulted in increased transport of organic carbon from the surface into the groundwater. This increased input of organic matter has induced accelerated oxidation of organic carbon associated with reduction of iron(III) minerals as the terminal electron acceptor in microbial respiration. Hydrochemical modeling of major solute ions at the site indicates an apparent first-order decay constant for organic carbon of 3.7 ± 2.6/yr. This rapid turnover is not accompanied by an equivalent mobilization of ferrous iron. Thermodynamic calculation of iron mineral solubility suggests that ferrous clay minerals may form in hydraulically transmissive fractures. The conditional potentials for the oxidation–reduction of such phases coincide with measured redox potentials at the site. The calculated potential is sufficiently low so that such phases would provide reducing capacity against future intrusion of O2 into the groundwater, thus buffering a repository against oxic corrosion of the engineered barriers.  相似文献   

10.
11.
数据资源是高放废物地质处置库选址、安全评价、工程建设等研发的重要基础,该领域数据具有典型的大数据特性,其开发利用是一项长期、系统的科学工程。文章对我国高放废物地质处置数据资源集成开发策略、方法和现状进行了简要介绍,阐述了高放废物地质处置研发过程中产生的各类科学数据的具体特性,提出建立我国高放废物地质处置大数据平台的规划设想,重点介绍了处置库预选区地学信息集成开发现状。  相似文献   

12.
Qualitative geological acceptance criteria and quantitative seismological acceptance criteria for radioactive waste disposals are developed. The background material for the initiation of site selection and for its earthquake hazard assessment is discussed. The recent movements of the Earth's surface as well as the other mechanical properties of geological media, hydrological conditions of geological blocks, their groundwater chemistry, geochemical rheology, petrological analyses of rocks, etc., have to be taken into account. A new comprehensive integrated safety analysis of the final underground disposal of spent nuclear fuel has been underway in the Czech Republic since 1991. In accordance with these seismogeological acceptance criteria regions for building underground final radioactive waste disposals are singled out in the Czech Republic.  相似文献   

13.
For the last 15 a, SKB (the Swedish Nuclear Fuel and Waste Management Company) has been using the Äspö Hard Rock Laboratory (HRL) as the main test site for the development of suitable tools and methods for the final disposal of spent nuclear fuel. Major achievements have been made in the development of a new groundwater modelling technique. The technique described in this paper is used within the ongoing site investigations of Forsmark and Simpevarp in Sweden.  相似文献   

14.
Three-dimensional, large-scale models for groundwater flow and solute transport are used for the low-temperature, fractured crystalline rock sites in Sweden that are being considered for the geological disposal of spent nuclear fuel. It has been suggested that comparisons between measured and simulated present-day hydrochemical data provide a means to constrain the complex influences of past climatic events and to improve the ability to understand the palaeohydrogeological evolution of the physical system studied. Here the authors demonstrate how the integration of multidisciplinary data and models from one of the sites in Sweden (Forsmark) can aid the appraisal of the hydrochemical conditions at 8000 BC, which is the selected starting point for the palaeohydrogeological modelling of the hydrochemical conditions in the Fennoscandian Shield during the Holocene (last 10 ka). Since a firm understanding of the evolution of the hydrochemical conditions is important for the long-term safety assessment, recognition of the initial hydrochemical conditions is essential for the overall build-up of confidence in the modelling process.  相似文献   

15.
16.
Effects on groundwater flow of abandoned engineered structures in relation to a potential geological repository for spent high-level nuclear fuel in fractured crystalline rock at the Forsmark site, Sweden, are studied by means of numerical modeling. The effects are analyzed by means of particle tracking, and transport-related performance measures are calculated. The impacts of abandoned, partially open repository tunnels are studied for two situations with different climate conditions: a “temperate” climate case with present-day boundary conditions, and a generic future “glacial” climate case with an ice sheet covering the repository. Then, the impact of abandoned open boreholes drilled through the repository is studied for present-day climate conditions. It is found that open repository tunnels and open boreholes can act as easy pathways from repository level to the ground surface; hence, they can attract a considerable proportion of particles released in the model at deposition hole positions within the repository. The changed flow field and flow paths cause some changes in the studied performance measures, i.e., increased flux at the deposition holes and decreased transport lengths and flow-related transport resistances. However, these effects are small and the transport resistance values are still high.  相似文献   

17.
地质系统热-水-力耦合作用的随机建模初步研究   总被引:2,自引:0,他引:2  
热-水-力(THM)耦合作用是岩石力学与环境地质中的重要基础理论问题,核废料地质处置库周围的缓冲材料和围岩中的热-水-力耦合现象将影响其力学稳定性、热传导性和渗透性,进而影响放射性核素在裂隙岩体中的迁移规律。核废料或放射性废料的地下深埋处置是国际上正在研究的永久性隔离的有效方法之一。因此,对核废料地质处置法安全性评估的一个重要内容就是对裂隙岩体中力学稳定性与构造应力、地下水渗流及热载荷等的耦合作用之数值模拟和评估。这已成为当前刻不容缓的重要的环境影响评价课题。笔者研究了温度场-渗流场-应力场中热传导系数和渗透率以及岩体力学参数的空间变异性,用实验方法研究三场耦合效应及裂隙岩体的场性能等效处理,试图建立热-水-力耦合作用的随机性数学模型及可视化数值模拟方法,为核废料地质处置安全性评估提供直观的新方法。  相似文献   

18.
According to the present concept for final storage of spent nuclear fuel in Sweden, the spent fuel, encapsulated in copper or copper/steel canisters, will be placed in tunnels in a deep rock formation. The canisters will be surrounded by compacted bentonite clay acting as a buffer material. In connection with a safety analysis of such a storage facility, the total solubility of certain elements (e.g., uranium) as well as the transport properties (e.g., retardation due to sorption on mineral surfaces) of the long-lived radionuclides released from the canister have to be predicted or measured. The chemical conditions, governing the solubility and speciation of trace elements encountered in and around the repository depend on interactions between the ground water and the engineering materials in the repository and a production of oxidants due to radiolysis in the spent fuel. In the present study the speciation and solubility of uranium and neptunium in a bentonite-ground water system and in ground waters with compositions measured at a site at äspö, SE Sweden, have been calculated. The calculations have been carried out using a recent version of the geochemical computer code PHREEQE and the database HATCHES 5.0. Predictions of the uranium and neptunium concentrations in the ground water in the vicinity of a damaged high level waste repository have also been performed. The uranium concentration in the water in the bentonite barrier is predicted to be of the same order of magnitude or lower than that found in some granitic ground waters. For neptunium the calculations are uncertain due to the small amount of experimentally determined thermodynamic data and few verifications under the conditions (pH - Eh - carbonate concentration) considered. The predicted concentrations (ca 10–12 m, corresponds to ca 0.006 Bq/l) may be regarded as high, considering the high toxicity of neptunium and its long half-life.  相似文献   

19.
20.
 Common opinion today is that the only practicable way for the disposal of hazardous waste is in deep-laying bedrock deposits. A set of general site selection criteria for spent nuclear fuel were developed, and are presented and discussed in this paper. Four widespread geological formations in Romania appropriate as geological barriers for underground disposal (salt, granite, volcanic tuff and green schists) were analyzed, and sites were proposed on the basis of the geological criteria defined for each of the four formations. Received: 18 July 1996 · Accepted: 27 September 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号