首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 11 毫秒
1.
Two weathering profiles evolved on peneplain-related granites in Sierra Norte, Córdoba province, were examined. Several weathering levels, of no more than 2 m thickness, were studied in these profiles. They had developed from similar parent rock, which had been exposed to hydrothermal processes of varying intensity. Fracturing is the most notable feature produced by weathering; iron oxides and silica subsequently filled these fractures, conferring a breccia-like character to the rock. The clay minerals are predominantly illitic, reflecting the mineral composition of the protolith. Smaller amounts of interstratified I/S RO type are also present, as well as scarce caolinite+chlorite that originated from the weathering of feldspar and biotite, respectively. The geochemical parameters define the weathering as incipient, in contrast to the geomorphological characteristics of Sierra Norte, which point to a long weathering history. This apparent incompatibility could be due to the probable erosion of the more weathered levels of the ancient peneplains, of which only a few relicts remain. Similar processes have been described at different sites in the Sierras Pampeanas. Reconstruction and dating of the paleosurfaces will make it possible to set time boundaries on the weathering processes studied and adjust the paleographic and paleoclimatic interpretations of this great South American region.  相似文献   

2.
We discuss upper-amphibolite to granulite facies, early Palaeozoic metamorphism and partial melting of aluminous greywackes from the Sierra de Comechingones, SE Sierras Pampeanas of Central Argentina. Consistent P–T estimates, obtained from equilibria involving Al and Ti exchange components in biotite and from more traditional thermobarometric equilibria, suggest that peak metamorphism of the exposed section took place at an essentially constant pressure of 7–8 kbar, and at temperatures ranging from 650 to 950 °C. Mineral compositions record an initial decompression, after peak metamorphism, of c. 1.5 kbar, which was accompanied by a cooling of c. 100 °C. Upper-amphibolite facies gneisses consist of the assemblage Qtz+Pl+Bt+Grt+Rt/Ilm. The transition to the granulite facies is marked by the simultaneous appearance of the assemblage Kfs+Sil and of migmatitic structures, suggesting that the amphibolite to granulite transition in the Sierra de Comechingones corresponds to the beginning of melting. Rocks with structural and/or chemical manifestations of partial melting range from metatexites, to diatexites, to melt-depleted granulites, consisting of the assemblage Grt+Crd+Pl+Qtz+Ilm±Ath. The melting stage overlapped at least partially with decompression, as suggested by the occurrence of cordierite, in both the migmatites and the residual granulites, of two distinct textural types: idiomorphic porphyroblasts (probably representing peritectic cordierite) and garnet-rimming coronas. Metapelitic rocks are unknown in the Sierra de Comechingones. Therefore, it appears most likely that the Al-rich residual assemblages found in the migmatites and residual granulites were formed by partial melting of muscovite- and sillimanite-undersaturated metagreywackes. We propose a mechanism for this that relies on the sub-solidus stabilization of garnet and the ensuing changes in the octahedral Al content of biotite with pressure and temperature.  相似文献   

3.
Over 20 lamprophyre dykes, varying in width between a few centimeters and several meters, have been identified in central Sierra Norte – Eastern Pampean Ranges, Córdoba, Argentina. Their mineralogy and chemistry indicate that they are part of the calc-alkaline lamprophyres clan (CAL). They contain phenocrysts of magnesiohornblende ± augite set in a groundmass of magnesiohornblende, calcic-plagioclase, alkali feldspar, and opaque minerals, which designate them as spessartite-type lamprophyres. Alteration products include chlorite, calcite and iron oxides after mafic phenocrysts, though some are partially replaced by actinolite. Feldspars are replaced by carbonate and clay minerals.The dykes are relatively primitive, and show restricted major element variation (SiO2 51.1–55.3 wt.%, Al2O3 12–16.6 wt.%, total alkalies 1.5–4.7 wt.%), high Mg# (55–77), high Cr contents (27–988 ppm) and moderate to high Ni contents (60–190 ppm). Lamprophyre LILE (e.g. Rb averages 110 ppm, Sr 211–387 ppm, Ba 203–452 ppm) are high relative to HFSE (e.g., Ta 0.2–1.6 ppm, Nb 4–11 ppm, Y 17–21 ppm), and are enriched in LREE (30–70 times chondrite). They are characterized by relatively high 208Pb/204Pb (38.8–39.9), 207Pb/204Pb (15.7), and 206Pb/204Pb (18.7–20.1), combined with low (epsilon)εNd (−4.69 to −1.52) and a relative moderately high (87Sr/86Sr)i of 0.7055–0.7074. The Rb–Sr whole rock isochron indicates an Early Ordovician age of 485 ± 25 Ma. The calculated TDM (1.7 Ga) suggests that these rocks appear to have originated from a reservoir that was created during a mantle metasomatism event related to the Pampean orogeny.The Sierra Norte lamprophyres show affinities with a subduction-related magma in an active continental margin. Their geochemical and isotopic features suggest a multicomponent source, composed of enriched mantle material variably contaminated by crustal components. The lamprophyric suite emplacement occurred at the dawning stage of the Pampean orogeny, in a regional post-collisional extensional setting developed in the Sierra Norte-Ambargasta batholith (SNAB) in Early Ordovician times.  相似文献   

4.
In the northwest of the Sierras Pampeanas of Córdoba (Central Argentina), in the Tuclame area, rocks called ‘banded schists’ are recognized. They are known since 120 years ago and are one of the most important lithologies of the metamorphic complex in this region. The compositional banding is the most conspicuous structural mesoscopic feature, composed of quartz-rich and mica-rich layers. It is a tectonic banding produced by pressure solution during a compressive event. P–T conditions of 557 ± 25 °C and 3.9 ± 1 kb were obtained for the main metamorphic event. A detailed field checking allowed recognition of the banded schists as decimetric or centimetric xenoliths isolated within the regional migmatites and the anatectic granitoids and as kilometric-scale belts within Sierras de Córdoba and San Luis. The authors have also identified banded schists in the Sierras de Aconquija, Ambato, Ancasti and Guasayán. Other workers recognized them in the Puna, Cumbres Calchaquíes, Sierras de Quilmes and Fiambalá, among the most well known outcrops. The banded schists have systematic petrological features and a distinctive mesoscopic structure that allow their identification and correlation with the other outcrops, which are arranged as a huge belt 2000 km long and 150 km wide, between 64°00′–66°30′W and 25°00′–41°34′S. In this work, all these rocks are proposed to be integrated into the Puncoviscana Basin, since field evidence indicated that the banded schists transitionally pass by transposition to phyllitic rocks typical of this metamorphosed basin, which would cover a region of about 300,000 km2. At present, there is no accurate geochronology available for the metamorphic and deformation events proposed in this work for the Tuclame banded schists. However, considering the regional geological evidence, the great spread of the petrostructural process forming these rocks, the transition between the Puncoviscana Formation and the banded schists, and the earlier idea that the Puncoviscana Formation is the shallowest equivalent of deeper structural levels in the Sierras Pampeanas, we favor for the moment the hypothesis that the banded schists could be part of the oldest evolution of the Pampean orogeny (early Pampean stage) and could represent different structural levels of the same orogen, probably a late Precambrian–early Palaeozoic orogen. The events of migmatization and emplacement of anatectic granitoids could represent a late Pampean stage of early Palaeozoic age. Thus, the Pampean orogeny could have lasted around 30–40 Ma (570–530 Ma).  相似文献   

5.
A deep epithermal vein system hosted in Late Proterozoic to Cambrian granodiorite has been identified in the Sierra Norte de Córdoba, the easternmost range of the Sierras Pampeanas Orientales of Argentina. The vein swarm extends over an area of 3 km2 parallel to a mylonitic belt and formed in fractured granodiorite. Thicknesses of veins are less than 0.5 m and their visible strike length is less than 100 m. Veins are either barren or weakly mineralized in base-metal sulfides. Most veins have mineral associations dominated by calcite and quartz with lesser amounts of chlorite, sericite, pyrite, and minor illite. In other less exposed albite-rich, adularia-bearing veins, chalcopyrite, bornite, galena, sphalerite, chalcocite and covellite may occur. The widespread occurrence of bladed calcite without any petrographic or microthermometric evidence of boiling implies that this particular habit of calcite may also develop under sub-near boiling fluid conditions. Thermometric calculations based on fluid inclusion data, chlorite composition and oxygen isotopes in the quartz–calcite pair, constrain the formation of the system between 300 and 350 °C, at pressures between 42 and 64 MPa (1.5–2.3 km). Stable isotope data suggest that W/R interaction might have been the most probable mechanism of alteration, involving the participation of meteoric fluids; nevertheless, the metallic signature of some weakly mineralized veins as well as intermediate fluid inclusion salinities favor a magmatic input and a mixed origin for the fluids. Textures and mineral associations, as well as the absence of evidence of boiling in fluid inclusions, all suggest that the silica–carbonate vein system formed deeper than typically shallow Au and Ag-bearing boiling solutions. A 485 (±25) Ma lamprophyre dike crosscuts some of these veins locally producing metasomatic reactions and skarn formation, which constrains the age of the hydrothermal system to the Cambrian-Early Ordovician time span.  相似文献   

6.
Provenance studies have been performed utilising major and trace elements, Nd systematics, whole rock Pb–Pb isotopes and zircon U/Pb SHRIMP data on metasedimentary rocks of the Sierra de San Luis (Nogolí Metamorphic Complex, Pringles Metamorphic Complex, Conlara Metamorphic Complex and San Luis Formation) and the Puncoviscana Formation of the Cordillera Oriental. The goal was the characterisation of the different domains in the study area and to give insights to the location of the source rocks. An active continental margin setting with typical composition of the upper continental crust is depicted for all the complexes using major and trace elements. The Pringles Metamorphic Complex shows indications for crustal recycling, pointing to a bimodal provenance. Major volcanic input has to be rejected due to Th/Sc, Y/Ni and Cr/V ratios for all units. The εNd(540 Ma) data is lower for the San Luis Formation and higher for the Conlara Metamorphic Complex, as compared to the other units, in which a good consistency is given. This is similar to the TDM ages, where the metapsammitic samples of the San Luis Formation are slightly older. The spread of data is largest for the Pringles Metamorphic Complex, again implying two different sources. The whole rock 207Pb/206Pb isotopic data lies in between the South American and African sources, excluding Laurentian provenances. The whole rock Pb–Pb data is almost indistinguishable in the different investigated domains. Only the PMC shows slightly elevated 208Pb/204Pb values. Possible source rocks for the different domains could be the Quebrada Choja in the Central Arequipa–Antofalla domain, the Southern domain of the Arequipa–Antofalla basement, the Brazilian shield or southern Africa. Zircon SHRIMP data point to a connection between the Puncoviscana Formation and the Conlara Metamorphic Complex. Two maxima around 600 Ma and around 1000 Ma have been determined. The Nogolí Metamorphic Complex and the Pringles Metamorphic Complex show one peak of detrital zircons around 550 Ma, and only a few grains are older than 700 Ma. The detrital zircon ages for the San Luis Formation show age ranges between 590 and 550 Ma. A common basin can be assumed for the Conlara Metamorphic Complex and the Puncoviscana Formation, but the available data support different sources for the rest of the Complexes of the Sierra de San Luis. These share the diminished importance or the lack of the Grenvillian detrital peak, a common feature for the late Cambrian–early Ordovician basins of the Eastern Sierras Pampeanas, in contrast to the Sierras de Córdoba, the PVF and the Conlara Metamorphic Complex.  相似文献   

7.
Metamorphism of Grenvillian age (ca. 1.2 Ga; U–Pb zircon dating) is recognized for the first time in the Western Sierras Pampeanas (Sierra de Maz). Conditions reached granulite facies (ca. 780 °C and ca. 780 MPa). Comparing geochronological and petrological characteristics with other outcrops of Mesoproterozoic basement, particularly in the northern and central Arequipa-Antofalla craton, we suggest that these regions were part of a single continental crustal block from Mesoproterozoic times, and thus autochthonous or parautochthonous to Gondwana.  相似文献   

8.
Because the Hercynian overprint was extremely weak, the Sierra de Córdoba (southeastern Ossa-Morena Zone, OMZ) provides an excellent opportunity to study the tectonic evolution of sequences deposited close to the Late Neoproterozoic–Early Palaeozoic boundary. In order to put constraints on the sources and geodynamic significance of the Late Proterozoic magmatism, a representative set of 18 igneous rocks, and 3 interbedded sedimentary rocks from the San Jerónimo Formation have been studied for major and trace element geochemistry and for the Sm–Nd isotopic systematics. The igneous rocks are generally porphyritic to microporphyritic andesites, with abundant plagioclase (±amphibole) phenocrysts. With the exception of two intrusive rocks, possibly not related to the Late Proterozoic episode, all the samples display positive Nd550 Ma values, ranging from +2.9 to +7.6. Most of them, with +4<Nd550 Ma<+6, exhibit LREE enrichment, high La/Nb ratios, and elevated Zr/Nb ratios ranging from 21 to 32. There is no obvious correlation between the shape of REE patterns, La/Nb ratios and Nd550 Ma values, precluding simple models of late-stage interaction with typical crustal components having low Nd and high LREE/HREE and La/Nb ratios. Based on their major element composition and enriched, continental crust-like trace element characteristics, combined with distinctly positive Nd initial values, the Córdoba andesites document an episode of crustal growth through the addition of calc-alkaline magmas, extracted from a mantle reservoir which was strongly depleted in LREE on a time-integrated basis. The occurrence of interlayered sediments of continental provenance (negative Nd values) does not favour a purely ensimatic arc setting, remote from continental land masses, for this subduction-related magmatism, but the geochemical data suggest an active margin environment located on relatively juvenile crust. In any case, the Córdoba andesites document the addition of materials chemically similar to the bulk continental crust which were extracted from mantle sources with strong time-integrated LREE depletion. Therefore, they provide evidence for crustal growth related to Cadomian orogenic events during Late Proterozoic times.  相似文献   

9.
Melt must transfer through the lower crust, yet the field signatures and mechanisms involved in such transfer zones (excluding dykes) are still poorly understood. We report field and microstructural evidence of a deformation‐assisted melt transfer zone that developed in the lower crustal magmatic arc environment of Fiordland, New Zealand. A 30–40 m wide hornblende‐rich body comprising hornblende ± clinozoisite and/or garnet exhibits 'igneous‐like' features and is hosted within a metamorphic, two‐pyroxene–pargasite gabbroic gneiss (GG). Previous studies have interpreted the hornblende‐rich body as an igneous cumulate or a mass transfer zone. We present field and microstructural characteristics supporting the later and indicating the body has formed by deformation‐assisted, channelized, reactive porous melt flow. The host granulite facies GG contains distinctive rectilinear dykes and garnet reaction zones (GRZ) from earlier in the geological history; these form important reaction and strain markers. Field observations show that the mineral assemblages and microstructures of the GG and GRZ are progressively modified with proximity to the hornblende‐rich body. At the same time, GRZ bend systematically into the hornblende‐rich body on each side of the unit, showing apparent sinistral shearing. Within the hornblende‐rich body itself, microstructures and electron back‐scatter diffraction mapping show evidence of the former presence of melt including observations consistent with melt crystallization within pore spaces, elongate pseudomorphs of melt films along grain boundaries, minerals with low dihedral angles as small as <10° and up to <60°, and interconnected 3D melt pseudomorph networks. Reaction microstructures with highly irregular contact boundaries are observed at the field and thin‐section scale in remnant islands of original rock and replaced grains, respectively. We infer that the hornblende‐rich body was formed by modification of the host GG in situ due to reaction between an externally derived, reactive, hydrous gabbroic to intermediate melt percolating via porous melt flow through an actively deforming zone. Extensive melt–rock interaction and metasomatism occurred via coupled dissolution–precipitation, triggered by chemical disequilibrium between the host rock and the fluxing melt. As a result, the host plagioclase and pyroxene became unstable and were reacted and dissolved into the melt, while hornblende and to a lesser extent clinozoisite and garnet grew replacing the unstable phases. Our study shows that hornblendite rocks commonly observed within deep crustal sections, and attributed to cumulate fractionation processes, may instead delineate areas of deformation‐assisted, channelized reactive porous melt flow formed by melt‐mediated coupled dissolution–precipitation replacement reactions.  相似文献   

10.
Dating and forward modelling of the fission-track data of apatite samples from the Dereli– ebinkarahisar region, south of Giresun in the Eastern Turkish Pontides, provides quantitative data on the regional tectonics resulting from the closure of neo-Thetys and the collision of Eurasia and Gondwana. The age vs. elevation profiles identified Senonian (80.7±3.2 to 62.4±2.5 Ma) slow uplift and denudation, interpreted as the result of the diapiric ascent of subduction-related plutons above the neo-Tethyan subduction zone beneath the Eurasian continent. This was followed by rapid differential uplift during the Palaeocene–Early Eocene (57.4±2.4 to 47.8±2.4 Ma), which juxtaposed granitoid units of different ages, compositions, and emplacement levels in the crust, and is thought to be related to the collision between the Pontide (Eurasian) and Anatolide (Gondwana) basements. The modelling results must be interpreted with caution, but appear to indicate a period of Mio-Pliocene (ca. 5 Ma) reheating related to volcanism associated with the westward escape of the Anatolian plate and uplift from the Pliocene (ca. 3.5 Ma) up to the present.  相似文献   

11.
The exposed residual crust in the Eastern Ghats Province records ultrahigh temperature (UHT) metamorphic conditions involving extensive crustal anatexis and melt loss. However, there is disagreement about the tectonic evolution of this late Mesoproterozoic–early Neoproterozoic orogen due to conflicting petrological, structural and geochronological interpretations. One of the petrological disputes in residual high Mg–Al granulites concerns the origin of fine‐grained mineral intergrowths comprising cordierite + K‐feldspar ± quartz ± biotite ± sillimanite ± plagioclase. These intergrowths wrap around porphyroblast phases and are interpreted to have formed by the breakdown of primary osumilite in the presence of melt trapped in the equilibration volume by the melt percolation threshold. The pressure (P)–temperature (T) evolution of four samples from three localities across the central Eastern Ghats Province is constrained using phase equilibria modelling in the chemical system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 (NCKFMASHTO). Results of the modelling are integrated with published geochronological results for these samples to show that the central Eastern Ghats Province followed a common P–T–t history. This history is characterized by peak UHT metamorphic conditions of 945–955 °C and 7.8–8.2 kbar followed by a slight increase in pressure and close‐to‐isobaric cooling to the conditions of the elevated solidus at 940–900 °C and 8.5–8.3 kbar. In common with other localities from the Eastern Ghats Province, the early development of cordierite before osumilite and the peak to immediate post‐peak retrograde reaction between osumilite and melt to produce the intergrowth features requires that the prograde evolution was one of contemporaneous increasing pressure with increasing temperature. This counter‐clockwise (CCW) evolution is evaluated for one sample using inverse phase equilibria modelling along a schematic P–T path of 150 °C kbar?1 starting from the low P–T end of the prograde P–T path as constrained by the phase equilibria modelling. The inverse modelling is executed by step‐wise down temperature reintegration of sufficient melt into the residual bulk chemical composition at the P–T point of the 1 mol.% melt isopleth at each step, representing the melt remaining on grain boundaries after each prograde drainage event, to reach the melt connectivity transition (MCT) of 7 mol.%. The procedure is repeated until a plausible protolith composition is recovered. The result demonstrates that clastic sedimentary rocks that followed a CCW P–T evolution could have produced the observed mineral assemblages and microstructures preserved in the central Eastern Ghats Province. This study also highlights the role of melt during UHT metamorphism, particularly its importance to both chemical and physical processes along the prograde and retrograde segments of the P–T path. These processes include: (i) an increase in diffusive length scales during the late prograde to peak evolution, creating equilibration volumes larger than a standard thin section; (ii) the development of retrograde mineral assemblages, which is facilitated if some melt is retained post‐peak; (iii) the presence of melt as a weakening mechanism and the advection of heat by melt, allowing the crust to thicken; and (iv) the effect of melt loss, which makes the deep crust both denser and stronger, and reduces heat production at depth, limiting crustal thickening and facilitating the transition to close‐to‐isobaric cooling.  相似文献   

12.
The Tromaí Intrusive Suite is the predominant exposed unit of the São Luís cratonic fragment in northern Brazil. The suite forms batholiths and stocks of granitoids that were emplaced between 2168 ± 4 Ma and 2149 ± 4 Ma and intruded a 2240 ± 5 Ma old metavolcano-sedimentary sequence. The batholiths are composed of a variety of petrographic types that have been grouped in three sub-units, based on the predominant petrographic type, and named Cavala Tonalite, Bom Jesus Granodiorite, and Areal Granite, from the more primitive to the more evolved phases, in addition to subordinate shallow felsic intrusions. The Tromaí Suite is an expanded magmatic association comprising minor mafic rocks to predominantly intermediate and felsic, low- to high-K, and metaluminous to weakly peraluminous granitoids that follow a Na-enriched calc-alkaline trend. Combined rock association, geochronology, Nd isotopes, and geochemical signature indicate that the Tromaí Suite formed from magmas derived from juvenile protoliths modified by fractional crystallization. The juvenile protoliths included ocean plate, mantle wedge, and minor sediments. The data also indicate an intra-oceanic arc setting that possibly transitioned to a continental margin and that the Tromaí Intrusive Suite records the main accretionary stage of the Rhyacian orogen (ca. 2.24–2.15 Ma) that culminated with a collision stage at about 2.1 Ga and gave rise to the present day São Luís cratonic fragment. This time interval is coincident with the main period of crustal growth in the South American Platform and in the Paleoproterozoic terranes of the West African Craton. The beginning of this period is also coincident with the end of a period in which only minor amounts of juvenile crust is found worldwide.The Negra Velha Granite is a distinct unit that forms a few stocks that intruded the granitoids of the Tromaí Suite between 2076 and 2056 Ma ago. Negra Velha is an association of monzogranite and subordinate quartz–monzonite and syenogranite with an alkaline signature that shows high Rb–Sr–Ba enrichments, resembling shoshonitic associations. This granite represents the post-orogenic phase of the Rhyacian orogenesis.  相似文献   

13.
The major and trace elements and Sr–Nd–Pb isotopes of the host rocks and the mafic microgranular enclaves (MME) gathered from the Dölek and Sariçiçek plutons, Eastern Turkey, were studied to understand the underlying petrogenesis and geodynamic setting. The plutons were emplaced at  43 Ma at shallow depths ( 5 to 9 km) as estimated from Al-in hornblende geobarometry. The host rocks consist of a variety of rock types ranging from diorite to granite (SiO2 = 56.98–72.67 wt.%; Mg# = 36.8–50.0) populated by MMEs of gabbroic diorite to monzodiorite in composition (SiO2 = 53.21–60.94 wt.%; Mg# = 44.4–53.5). All the rocks show a high-K calc-alkaline differentiation trend. Chondrite-normalized REE patterns are moderately fractionated and relatively flat [(La/Yb)N = 5.11 to 8.51]. They display small negative Eu anomalies (Eu/Eu = 0.62 to 0.88), with enrichment of LILE and depletion of HFSE. Initial Nd–Sr isotopic compositions for the host rocks are εNd(43 Ma) = − 0.6 to 0.8 and mostly ISr = 0.70482–0.70548. The Nd model ages (TDM) vary from 0.84 to 0.99 Ga. The Pb isotopic ratios are (206Pb/204Pb) = 18.60–18.65, (207Pb/204Pb) = 15.61–15.66 and (208Pb/204Pb) = 38.69–38.85. Compared with the host rocks, the MMEs are relatively homogeneous in isotopic composition, with ISr ranging from 0.70485 to 0.70517, εNd(43 Ma) − 0.1 to 0.8 and with Pb isotopic ratios of (206Pb/204Pb) = 18.58–18.64, (207Pb/204Pb) = 15.60–15.66 and (208Pb/204Pb) = 38.64–38.77. The MMEs have TDM ranging from 0.86 to 1.36 Ga. The geochemical and isotopic similarities between the MMEs and their host rocks indicate that the enclaves are of mixed origin and are most probably formed by the interaction between the lower crust- and mantle-derived magmas. All the geochemical data, in conjunction with the geodynamic evidence, suggest that a basic magma derived from an enriched subcontinental lithospheric mantle, probably triggered by the upwelling of the asthenophere, and interacted with a crustal melt that originated from the dehydration melting of the mafic lower crust at deep crustal levels. Modeling based on the Sr–Nd isotope data indicates that  77–83% of the subcontinental lithospheric mantle involved in the genesis. Consequently, the interaction process played an important role in the genesis of the hybrid granitoid bodies, which subsequently underwent a fractional crystallization process along with minor amounts of crustal assimilation, en route to the upper crustal levels generating a wide variety of rock types ranging from diorite to granite in an extensional regime.  相似文献   

14.
Three types of fluid inclusions have been identified in olivine porphyroclasts in the spinel harzburgite and lherzolite xenoliths from Tenerife: pure CO2 (Type A); carbonate-rich CO2–SO2 mixtures (Type B); and polyphase inclusions dominated by silicate glass±fluid±sp±silicate±sulfide±carbonate (Type C). Type A inclusions commonly exhibit a “coating” (a few microns thick) consisting of an aggregate of a platy, hydrous Mg–Fe–Si phase, most likely talc, together with very small amounts of halite, dolomite and other phases. Larger crystals (e.g. (Na,K)Cl, dolomite, spinel, sulfide and phlogopite) may be found on either side of the “coating”, towards the wall of the host mineral or towards the inclusion center. These different fluids were formed through the immiscible separations and fluid–wall-rock reactions from a common, volatile-rich, siliceous, alkaline carbonatite melt infiltrating the upper mantle beneath the Tenerife. First, the original siliceous carbonatite melt is separated from a mixed CO2–H2O–NaCl fluid and a silicate/silicocarbonatite melt (preserved in Type A inclusions). The reaction of the carbonaceous silicate melt with the wall-rock minerals gave rise to large poikilitic orthopyroxene and clinopyroxene grains, and smaller neoblasts. During the metasomatic processes, the consumption of the silicate part of the melt produced carbonate-enriched Type B CO2–SO2 fluids which were trapped in exsolved orthopyroxene porphyroclasts. At the later stages, the interstitial silicate/silicocarbonatite fluids were trapped as Type C inclusions. At a temperature above 650 °C, the mixed CO2–H2O–NaCl fluid inside the Type A inclusions were separated into CO2-rich fluid and H2O–NaCl brine. At T<650 °C, the residual silicate melt reacted with the host olivine, forming a reaction rim or “coating” along the inclusion walls consisting of talc (or possibly serpentine) together with minute crystals of NaCl, KCl, carbonates and sulfides, leaving a residual CO2 fluid. The homogenization temperatures of +2 to +25 °C obtained from the Type A CO2 inclusions reflect the densities of the residual CO2 after its reactions with the olivine host, and are unrelated to the initial fluid density or the external pressure at the time of trapping. The latter are restricted by the estimated crystallization temperatures of 1000–1200 °C, and the spinel lherzolite phase assemblage of the xenolith, which is 0.7–1.7 GPa.  相似文献   

15.
The Eastern Tianshan Orogenic Belt (ETOB) in NW China is composed of the Dananhu–Tousuquan arc belt, the Kanggurtag belt, the Aqishan–Yamansu belt and the Central Tianshan belt from north to south. These tectonic belts have formed through arc–continent or arc–arc collisions during the Paleozoic. A number of Fe(‐Cu) deposits in the Aqishan–Yamansu belt, including the Heifengshan, Shuangfengshan and Shaquanzi Fe(‐Cu) deposits, are associated with Carboniferous–Early Permian volcanic rocks and are composed of vein‐type magnetite ores. Metallic minerals are dominated by magnetite and pyrite, with minor chalcopyrite. Calcite, chlorite, and epidote are the dominant gangue minerals. Pyrite separates of ores from those three deposits have relatively high and variable Re contents ranging from 3.7 to 184 ppb. All pyrite separates have very low common Os, allowing us calculation of single mineral model ages for each sample. Pyrite separates from the Heifengshan Fe deposit have an 187Re–187Os isochron age of 310 ± 23 Ma (MSWD = 0.04) and a weighted mean model age of 302 ± 5 Ma (MSWD = 0.17). Those from the Shuangfengshan Fe deposit have an isochron age of 295 ± 7 Ma (MSWD = 0.28) and a weighted mean model age of 292 ± 5 Ma (MSWD = 0.33). The Shaquanzi Fe‐Cu deposit has pyrite with an isochron age of 295 ± 7 Ma (MSWD = 0.26) and a weighted mean model age of 295 ± 6 Ma (MSWD = 0.23). Pyrite separates from these Fe(‐Cu) deposits have δ34SCDT ranging from ?0.41‰ to 4.7‰ except for two outliers. Calcite from the Heifengshan Fe deposit and Shaquanzi Fe‐Cu deposit have similar C and O isotope compositions with δ13CPDB and δ18OSMOW ranging from ?5.5‰ to ?1.0‰ and from 10‰ to 12.7‰, respectively. These stable isotopic data suggest that S, C, and O are magmatic‐hydrothermal in origin. The association of low‐Ti magnetite and Fe/Cu‐sulfides resembles those of Iron–Oxide–Copper–Gold (IOCG) deposits elsewhere. Our reliable Re–Os ages of pyrite suggest that the Fe(‐Cu) deposits in the Aqishan–Yamansu belt formed at ~296 Ma, probably in a back‐arc extensional environment.  相似文献   

16.
The left-lateral strike-slip shearing along the Ailao Shan–Red River (ASRR) shear zone in the Southeastern Tibet, China, has been widely advocated to be a result of the Indian–Eurasian plate collision and post-collisional processes. The Diancang Shan (DCS) massif, which occurs at the northwestern extension of the Ailao Shan massif, is a typical high-grade metamorphic complex aligned along the ASRR tectonic belt. Structural and microstructural analysis of the plutonic intrusions in the DCS revealed different types of granitic intrusions spatially confined to the shear zone and temporally related to the left-lateral shearing along the ASRR shear zone in the DCS massif. The combined structural and geochronological results of SHRIMP-II and LA-ICP-MS zircon U/Pb isotopic dating have revealed successive magmatic intrusions and crystallization related to the Oligo-Miocene shearing in the DCS massif. The pre-, early- and syn-kinematic emplacements are linked to regional high-temperature deformation (lower amphibolite facies) at relatively deep crustal levels. The zircon U/Pb geochronological results suggest that the left-lateral ductile shearing along the ASRR shear zone was initiated at ca. 31 Ma, culminated between ca. 27 and 21 Ma resulting in high-temperature metamorphic conditions and slowed down at ca. 20 Ma at relatively low-temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号