首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Summary In this study, trends of annual and seasonal surface air temperature time series were examined for 20 stations in Greece for the period 1955–2001, and satellite data for the period 1980–2001. Two statistical tests based on the least square method and one based on the Mann-Kendall test, which is also capable of detecting the starting year of possible climatic discontinuities or changes, were used for the analysis. Greece, in general, shows a cooling trend in winter for the period 1955–2001, whereas, summer shows an overall warming trend, however, neither is statistically significant. As a result, the overall trend of the annual values is nearly zero. Comparison with corresponding trends in the Northern Hemisphere (NH) shows that temperatures in Greece do not follow the intense warming trends. Satellite data indicate a remarkable warming trend in mean annual, winter and summer in Greece for the period 1980–2001, and a slight warming trend in annual, spring and autumn for the NH. Comparison with the respective trends detected in the surface air temperature for the same period (1980–2001) shows they match each other quite well in both Greece and the NH. The relationship between temperature variability in Greece and atmospheric circulation was also examined using correlation analysis with three circulation indices: the well-known North Atlantic Oscillation Index (NAOI), a Mediterranean Oscillation Index (MOI) and a new Mediterranean Circulation Index (MCI). The MOI and MCI indices show the most interesting correlation with winter temperatures in Greece. The behaviour of pressure and the height of the 500hPa surface over the Mediterranean region supports these results.  相似文献   

2.
Summary Using the methods of running means and integral difference curves, the monthly and annual air temperatures in upper parts of the Bulgarian mountains are studied. Data from seven stations are used, covering the period 1930–1989. Records of mean, minimum and maximum air temperature for January, April, July, and October are analysed. Periods of warming and cooling in separate months of the year are identified. In upper parts of Bulgaria during recent years, the temperature record has shown a trend towards warming in winter and cooling in summer. Mean annual temperatures were observed to decrease between 1962 and 1981.With 5 Figures  相似文献   

3.
西南地区不同地形台阶气温时空变化特征   总被引:2,自引:0,他引:2       下载免费PDF全文
利用西南地区135个站1961—2005年的年、月气温资料,按海拔高差及地形气候特征划分成不同的三级地形台阶及4个分区,分析了不同分区的气温时空变化特征。结果表明:西南地区大部年平均气温表现出明显的增温趋势,上升趋势最显著的地区在西藏高原等高海拔地区,而在四川的东北部及云南北部存在降温中心。各分区四季的增温速率排序与全国平均情况有所不同,依次为冬季、秋季、夏季或春季,且均表现出冬季增温趋势明显大于其他季节的特性。各分区年平均气温20世纪60年代至80年代中期基本表现为明显的下降趋势或无明显的增减趋势,但自1997年以来,均表现出显著的增温趋势。突变检测的结果也表明,各分区年平均气温突变的区域或突变点大部分发生在90年代后期以后,且高海拔地区增温突变启动时间早于其他低海拔地区。  相似文献   

4.
Philip Camill 《Climatic change》2005,68(1-2):135-152
Permafrost covers 25% of the land surface in the northern hemisphere, where mean annual ground temperature is less than 0°C. A 1.4–5.8 °C warming by 2100 will likely change the sign of mean annual air and ground temperatures over much of the zones of sporadic and discontinuous permafrost in the northern hemisphere, causing widespread permafrost thaw. In this study, I examined rates of discontinuous permafrost thaw in the boreal peatlands of northern Manitoba, Canada, using a combination of tree-ring analyses to document thaw rates from 1941–1991 and direct measurements of permanent benchmarks established in 1995 and resurveyed in 2002. I used instrumented records of mean annual and seasonal air temperatures, mean winter snow depth, and duration of continuous snow pack from climate stations across northern Manitoba to analyze temporal and spatial trends in these variables and their potential impacts on thaw. Permafrost thaw in central Canadian peatlands has accelerated significantly since 1950, concurrent with a significant, late-20th-century average climate warming of +1.32 °C in this region. There were strong seasonal differences in warming in northern Manitoba, with highest rates of warming during winter (+1.39 °C to +1.66 °C) and spring (+0.56 °C to +0.78 °C) at southern climate stations where permafrost thaw was most rapid. Projecting current warming trends to year 2100, I show that trends for north-central Canada are in good agreement with general circulation models, which suggest a 4–8 °C warming at high latitudes. This magnitude of warming will begin to eliminate most of the present range of sporadic and discontinuous permafrost in central Canada by 2100.  相似文献   

5.
Summary Spatial and temporal patterns of trends in the diurnal temperature ranges (DTRs) of the 70 stations and the role of maximum and minimum temperatures on the year-to-year variability and the long-term trends of the DTRs in Turkey have been investigated for the period 1929–1999. The principal results of the study are as follows:(i) The daytime maximum temperatures have shown weak warming and cooling in comparison with significant warming of the night-time minimum temperatures in many regions of Turkey and in most seasons. (ii) The DTRs have significantly decreased at most of the urbanised and rapidly urbanising stations throughout the seasons except partly in winter, without showing an apparent north/south (west–east) and land/sea gradient. (iii) Annual and seasonal DTRs of some stations have shown significant increasing trends. Nevertheless, the spatial distribution of significant increasing trends in the DTR series is geographically incoherent across the country in all seasons and annually, as compared with significantly decreased DTRs. (iv) Autumn and summer DTRs have decreased generally at a higher rate than in winter and spring. (v) Changes in the temperature regime of Turkey towards the more temperate and/or warmer climate conditions are most strongly related with the significant night-time warming in spring and summer. (vi) Magnitudes and signs of correlation coefficients and correlation patterns between the DTRs and the maximum and minimum temperatures have revealed that there is an opposite physical control mechanism on the year-to-year variability and the long-term variations and trends in the DTRs, particularly for the annual, spring and summer series. (vii) Significant increases of the night-time temperatures have most likely led to strong decreasing trends in the DTRs of most stations during the spring and summer seasons and annually and of some stations during winter and autumn. (viii) The asymmetric trends and the symmetric, but with different magnitude, trends in the maximum and minimum temperatures resulted in a significant decrease in the DTRs of many stations and are a considerable signal of ongoing changes in the climatic variability of Turkey.  相似文献   

6.
《Atmospheric Research》2005,73(1-2):69-85
This paper reports the results of the analysis of annual mean temperature and precipitation series from 171 meteorological stations distributed over Castile and Leon [Castilla y León in Spanish] in Spain on monthly, seasonal and annual time-scales for a 37-year study period (1961–1997). Various statistical tools were used to detect and characterize significant changes in these series. The magnitude of the trends was derived from the slopes of the regression lines using the least squares method, and the statistical significance was determined by means of nonparametric tests. Positive trends of about 0.33 °C in the annual mean temperature were found for the whole period. Mean temperatures increased in spring and winter, the winter trend being statistically significant. The months of December and March also showed significant trends. Decreases in rainfall were found for three seasons (winter, spring and autumn), with statistically significant trends in March. Summer precipitation showed slight increases over the 37-year period. On this basis, the authors consider that the increase in summer precipitation and the decrease in the range of average temperatures between the warmest and the coldest months of the year (continentality), point towards a trend to a more oceanic climate in Castile and Leon.  相似文献   

7.
With the surface air temperature (SAT) data at 37 stations on Central Yunnan Plateau (CYP) for 1961–2010 and the Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) nighttime light data, the temporal-spatial patterns of the SAT trends are detected using Sen’s Nonparametric Estimator of Slope approach and MK test, and the impact of urbanization on surface warming is analyzed by comparing the differences between the air temperature change trends of urban stations and their corresponding rural stations. Results indicated that annual mean air temperature showed a significant warming trend, which is equivalent to a rate of 0.17 °C/decade during the past 50 years. Seasonal mean air temperature presents a rising trend, and the trend was more significant in winter (0.31 °C/decade) than in other seasons. Annual/seasonal mean air temperature tends to increase in most areas, and higher warming trend appeared in urban areas, notably in Kunming city. The regional mean air temperature series was significantly impacted by urban warming, and the urbanization-induced warming contributed to approximately 32.3–62.9 % of the total regional warming during the past 50 years. Meantime, the urbanization-induced warming trend in winter and spring was more significant than that in summer and autumn. Since 1985, the urban heat island (UHI) intensity has gradually increased. And the urban temperatures always rise faster than rural temperatures on the CYP.  相似文献   

8.
利用喜马拉雅山脉中段南、北两侧6个气象站1971-2007年逐月气温、降水资料,分析了该地区气候变化趋势、异常及突变特征。结果表明:喜马拉雅山脉中段南、北两侧年、季平均气温均呈明显上升趋势,冬半年升温幅度大于夏半年。年及夏半年平均气温均为随年代升高趋势,而冬半年气温在20世纪80年代较70年代略偏低,90年代后又逐渐升高。21世纪前7 a升温最为显著,较20世纪70年代升高0.6~1.1℃。1997年该地区南侧年平均气温发生突变,突变后增温趋势更加明显。20世纪90年代末以来,异常偏暖年份出现的几率明显增加,且南侧多于北侧。喜马拉雅山脉中段北侧年及冬夏半年降水均呈增多趋势。南侧年和夏半年降水呈减少趋势,冬半年为增多趋势。降水异常出现在20世纪80、90年代,21世纪后降水出现异常的概率明显减少。近40 a,北侧气候具有暖湿化趋势;南侧冬半年与之类似,但夏半年及全年呈暖干化趋势。  相似文献   

9.
北京地区城市热岛强度变化对区域温度序列的影响   总被引:57,自引:2,他引:55  
初子莹  任国玉 《气象学报》2005,63(4):534-540
通过对北京地区20个台站1961~2000年月平均温度资料的对比分析,证实热岛效应对城市气象站记录的地表平均气温的绝对影响随时间显著增大,近20 a尤为突出,但其相对影响即热岛增温对全部增暖的贡献却呈下降趋势。近40 a来,北京地区的国家基本、基准站平均温度距平序列与被认为不受城市热岛影响的郊区站平均温度距平序列差异明显,由于热岛效应加强因素引起的国家基本、基准站平均年温度变化速率为0.16℃/(10 a),对整个时期全部增温的贡献达到71%;近20 a来热岛效应加强因素使北京地区国家基本、基准站年平均温度每10 a增暖0.33℃,对该时期全部增温的贡献达到49%。城市热岛效应加强因素对国家基本、基准站季节平均温度上升的贡献在夏、秋季高,冬季最小。本文的结果说明,目前根据国家基本、基准站资料建立的全国或较大区域平均温度序列可能在很大程度上保留着城市化的影响,有必要做进一步的检验和订正。  相似文献   

10.
中国均一化日平均温、最高温和最低温序列1960-2008   总被引:8,自引:0,他引:8       下载免费PDF全文
Inhomogeneities in the daily mean/maximum/ minimum temperature (Tm/Tmax/Tmin) series from 1960- 2008 at 549 National Standard Stations (NSSs) in China were analyzed by using the Multiple Analysis of Series for Homogenization (MASH) software package. Typical biases in the dataset were illustrated via the cases of Beijing (B J), Wutaishan (WT), Urumqi (UR) and Henan (HN) stations. The homogenized dataset shows a mean warming trend of 0.261/0.193/0.344℃/decade for the annual series of Tm/Tmax/Tmin, slightly smaller than that of the original dataset by 0.006/0.009/0.007℃/decade. However, considerable differences between the adjusted and original datasets were found at the local scale. The adjusted Tmin series shows a significant warming trend almost everywhere for all seasons, while there are a number of stations with an insignificant trend in the original dataset. The adjusted Tm data exhibit significant warming trends annually as well as for the autumn and winter seasons in northern China, and cooling trends only for the summer in the middle reaches of the Yangtze River and parts of central China and for the spring in southwestern China, while the original data show cooling trends at several stations for the annual and seasonal scales in the Qinghai, Shanxi, Hebei, and Xinjiang provinces. The adjusted Tmax data exhibit cooling trends for summers at a number of stations in the mid-lower reaches of the Yangtze and Yellow Rivers and for springs and winters at a few stations in southwestern China, while the original data show cooling trends at three/four stations for the annual/autumn periods in the Qinghai and Yunnan provinces. In general, the number of stations with a cooling trend was much smaller in the adjusted Tm and Tmax dataset than in the original dataset. The cooling trend for summers is mainly due to cooling in August. The results of homogenization using MASH appear to be robust; in particular, different groups of stations with consideration of elevation led to minor effects i  相似文献   

11.
利用1960—2009年咸宁市3个地面气象站气象资料,统计分析近50 a来该区域气温、降水等主要气候要素的年变化、四季变化及年代际变化的趋势特征。结果表明:近50 a研究区气温有上升趋势,气候倾向率为0.23℃/10 a,年平均气温在20世纪90年代末发生突变。春秋季平均气温分别在2002年和1999年发生突变,夏季平均气温在2006年发生突变,冬季平均气温在1990年发生突变。春季与秋季平均气温的变化较一致,冬季平均气温对全球变暖响应最敏感,春季与秋季对气候变暖的响应较敏感,而夏季对气候变暖的响应最为迟缓。近50 a咸宁市年降水量呈波动但无明显增降的趋势,其中春夏两季变化趋势较为一致并有下降的趋势,且春夏降水量的变化主导着年降水量的变化;而冬季降水量有上升的趋势。通过对气温与降水变化趋势的比较,发现冬季对气候变化的响应最显著,其余季节无明显相关性。  相似文献   

12.
1960-2009年咸宁市气候变化特征分析   总被引:1,自引:0,他引:1       下载免费PDF全文
利用1960-2009年咸宁市3个地面气象站气象资料,统计分析近50 a来该区域气温、降水等主要气候要素的年变化、四季变化及年代际变化的趋势特征。结果表明:近50 a研究区气温有上升趋势,气候倾向率为0.23℃/10a,年平均气温在20世纪90年代末发生突变。春秋季平均气温分别在2002年和1999年发生突变,夏季平均气温在2006年发生突变,冬季平均气温早在1990年发生突变。春季与秋季平均气温的变化比较一致,冬季平均气温对全球变暖响应最敏感,春秋与秋季对气候变暖的响应是比较敏感,而夏季对气候变暖的响应最为迟缓。近50 a年降水量呈波动但无明显增降的趋势,其中春夏两季变化趋势较为一致并有下降的趋势,且春夏降水量的变化主导着年降水量的变化;而冬季降水量有上升的趋势。通过对气温与降水变化趋势的比较,发现冬季对气候变化的响应最显著、其余季节无明显相关性。  相似文献   

13.
赤峰地区近50a气候变化诊断分析   总被引:1,自引:1,他引:1  
利用线性回归、累积距平和多项式回归法,对赤峰地区1951—1990年12个气象台站的月、季、年平均气温、最高气温、最低气温序列进行连续性变化趋势分析,确定该区域的气候变化趋势。应用Mann-Kendall法和滑动t检验法检验气温序列变化的不连续性,确定突变时间。结果表明:赤峰地区12个月的平均气温均有升温趋势,增温幅度从0.56℃/10a到0.15℃/10a,其中2月份最强。季节增温最显著的是冬季,其次是秋季和春季,夏季最弱。年平均气温增温率是0.28℃/10a,1988年是变暖的第一年,突变时间在1993年;年平均最低气温增温率是0.29℃/10a,1988年是变暖的第一年,突变时间在1988年;年平均最高气温增温率是0.26℃/10a,1993年是变暖的第一年,突变时间在1993—1996年附近;平均最低气温和最高气温的变暖时间具有不对称性。  相似文献   

14.
利用1998-2012年635个气象站点的观察数据,对我国气温的时空变化趋势及其区域差异进行了分析和突变检验,结果表明:近15年来我国年平均气温呈现波动式下降的特点,但下降趋势不显著;全国绝大部分地区年均和四季气温在0.05显著水平未检测出显著的变化趋势,但Z值显示,气温存在不显著的变化倾向:青藏高原区年均气温存在上升倾向,而其他地区多呈下降倾向;春季气温呈上升和下降倾向的区域约各占一半,夏季绝大部分地区气温有上升倾向,而秋季和冬季大部分地区气温则呈现不显著下降趋势。典型站点的分析发现,显著变暖的站点气温基本都存在暖突变,而显著变冷的站点只有约27%的站气温存在冷突变。暖突变年份主要分布在于2005-2006年,冷突变年份多在2009-2011年。  相似文献   

15.
Portions of the southern and southeastern United States, primarily Mississippi, Alabama, and Georgia, have experienced century-long (1895–2007) downward air temperature trends that occur in all seasons. Superimposed on them are shifts in mean temperatures on decadal scales characterized by alternating warm (1930s–1940s, 1990s) and cold (1900s; 1960s–1970s) regimes. Regional atmospheric circulation and SST teleconnection indices, station-based cloud cover and soil moisture (Palmer drought severity index) data are used in stepwise multiple linear regression models. These models identify predictors linked to observed winter, summer, and annual Southeastern air temperature variability, the observed variance (r2) they explain, and the resulting prediction and residual time series. Long-term variations and trends in tropical Pacific sea temperatures, cloud cover, soil moisture and the North Atlantic and Arctic oscillations account for much of the air temperature downtrends. Soil moisture and cloud cover are the primary predictors of 59.6 % of the observed summer temperature variance. While the teleconnections, cloud cover and moisture data account for some of the annual and summer Southeastern cooling trend, large significant downward trending residuals remain in winter and summer. Comparison is made to the northeastern United States where large twentieth century upward air temperature trends are driven by cloud cover increases and Atlantic Multidecadal Oscillation (AMO) variability. Differences between the Northeastern warming and the Southeastern cooling trends in summer are attributable in part to the differing roles of cloud cover, soil moisture, the Arctic Oscillation and the AMO on air temperatures of the 2 regions.  相似文献   

16.
On the basis of the mean annual and seasonal temperatures from 30 meteorological stations in the Jinsha River Basin (JRB) from 1961 to 2008, the temperature trends are analyzed by using Mann–Kendall test and linear trend analysis. There is an increasing trend in mean annual and seasonal temperatures during this period, and the increasing trends in winter seem more significant than those in the other three seasons. The mean annual temperature has increased by 0.0158°C/year during the last 48 years. There are more than 70% of stations exhibiting increasing trends for annual and seasonal temperatures. The increasing trends in the headwater and upper reaches are more dominant than those in the middle and lower reaches. The largest increase magnitude occurred in the low temperature area, while the largest decrease magnitude occurred in the high temperature area. The decreasing trends are mainly characterized for the maximum temperature time series, and summer is the only season showing a slight and insignificant increasing trend. All the time series showed a statistically significant increasing trend at the level of α?=?0.05 for the minimum temperature time series. As a whole, the increasing magnitude of the minimum temperature is significantly greater than the decreasing magnitude of the maximum temperature.  相似文献   

17.
Summary In this study, the trends of annual and seasonal precipitation time series were examined on the basis of measurements of 22 surface stations in Greece for the period 1955–2001, and satellite data during the period 1980–2001. For this purpose, two statistical tests based on the least square method and one based on the Mann-Kendall test, which is also capable of detecting the starting year of possible climatic discontinuities or changes, are applied. Greece, in general, presents a clear significant downward trend in annual precipitation for the period 1955–2001, which is determined by the respective decreasing trend in winter precipitation. Both winter and annual series exhibit a downward trend with a starting year being 1984. Satellite-derived precipitation time series could be an alternative means for diagnosing the variability of precipitation in Greece and detecting trends provided that they have been adjusted by surface measurements in the wider area of interest. The relationship between precipitation variability in Greece and atmospheric circulation was also examined using correlation analysis with three circulation indices: the well-known North Atlantic Oscillation Index (NAOI), a Mediterranean Oscillation Index (MOI) and a new Mediterranean Circulation Index (MCI). NAOI is the index that presented the most interesting correlation with winter, summer and annual precipitation in Greece, whereas the MOI and MCI were found to explain a significant proportion of annual and summer precipitation variability, respectively. The observed downward trend in winter and annual precipitation in Greece is linked mainly to a rising trend in the hemispheric circulation modes of the NAO, which are connected with the Mediterranean Oscillation Index.  相似文献   

18.
1958—2009年本溪地区气候变化特征   总被引:3,自引:4,他引:3       下载免费PDF全文
以本溪地区4个站点数据为基础,同时选取气温和降水2个主要的气象要素指标,采用线性倾向估计、Mann-Kendall和累积距平法,对1958—2009年本溪地区的气候变化进行探讨。结果表明:近52 a来,本溪地区年和春、秋季及冬季平均气温均呈明显的增温趋势。夏季虽有增温趋势,但是不显著。本溪地区春和冬季降水量均呈弱增加趋势,而年夏季及秋季降水量均呈下降趋势。总体来说,近52 a来本溪地区降水量呈下降趋势。本溪地区年和各季平均气温均先后在20世纪80年代末发生了突变。20世纪80年代以来,本溪地区相对进入了明显的暖期。年和各季的降水量均没有发生突变。  相似文献   

19.
《大气与海洋》2013,51(2):243-256
Abstract

Trends and variations in daily temperature and precipitation indices in southern Québec are examined for the period 1960–2005. The indices are based on daily temperature and daily precipitation which have been recently adjusted at 53 climatological stations. The adjustments were made for site relocation, changes in observing programs, known instrument changes and measurement program deficiencies. The results show that the surface air temperature has increased in southern Québec over 1960–2005. Significant warming is evident in the western, southern and central parts of the province but the increasing trends become smaller toward the east. The warming is greater during the winter although many significant increasing trends are found in the summer. The analysis of the temperature extremes strongly indicates the occurrence of more nights with extreme high temperatures in all seasons. The temperature indices also suggest an increase in the number of thaw/frost days during the winter (days with maximum temperature above 0°C and minimum temperature below 0°C), a decrease in the length of the frost season, an increase in the length of the growing season, a decrease in heating degree days and an increase in cooling degree days. The precipitation indices show an increase in the annual total rainfall although many stations indicate decreasing trends during the summer. The number of days with rain has increased over the region whereas the number of days with snow and the total snow amounts have decreased over the past 46 years.  相似文献   

20.
This study analyzes the mean maximum and minimum temperature trends on a monthly, seasonal, and annual timescale by applying various statistical tools to data from 476 Spanish weather stations during the period between 1961 and 2006. The magnitude of the trends was derived from the slopes of the regression lines using the least squares method, and the nonparametric Mann–Kendall test was used to determine the statistical significance of the trends. Temperature significantly increased in over 60% of the country in March, June, spring, and summer in the case of maximum temperatures and in March, May, June, August, spring, and summer for minimum temperatures. At the annual resolution, temperatures significantly increased in over 90% of Spain with a rise of around 0.3°C/decade. The maximum temperature increased at a higher rate than the minimum temperature from midsummer to early winter as well as in winter, spring, and summer and also on an annual basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号