首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cause of the correlation between cloud cover and cosmic ray intensity is still a subject of discussion. The atmospheric transparency is the primary signature of the atmospheric state. The ability to use neutron monitor and Cherenkov telescope data in order to study atmospheric processes is demonstrated. The recently designed lead free neutron monitor at the Basic Environmental Observatory Moussala (42.11N, 23.35E, 2925 m a.s.l.) is described. The possibility to use Cherenkov telescope measurements for estimation of atmospheric transparency is demonstrated on the basis of Monte Carlo simulations and experimental data. The Monte Carlo simulations are carried out with CORSIKA code assuming FLUKA and QGSJET II hadron interaction models. Experimental data from Cherenkov telescope are presented. Several physical mechanisms related to the influence of cosmic rays on the cloud cover, respectively, the atmospheric transparency are widely discussed.  相似文献   

2.
We report observations of a noctilucent cloud (NLC) over central Alaska by a ground-based lidar and camera on the night of 9–10 August 2005. The lidar at Poker Flat Research Range (PFRR), Chatanika (65°N, 147°W) measured a maximum integrated backscatter coefficient of 2.4×10?6 sr?1 with a peak backscatter coefficient of 2.6×10?9 m?1 sr?1 corresponding to an aerosol backscatter ratio of 120 at an altitude of 82.1 km. The camera at Donnelly Dome, 168 km southeast of PFRR, recorded an extensive NLC display across the sky with distinct filamentary features corresponding to wave structures measured by the lidar. The occurrence of the maximum integrated backscatter coefficient corresponded to the passage of a bright cloud band to the southwest over PFRR. The camera observations indicate that the cloud band had a horizontal width of 50 km and a length of 150 km. The horizontal scale of the cloud band was confirmed by medium-frequency radar wind measurements that reported mesopause region winds of 30 m/s to the southwest during the period when the cloud band passed over PFRR. Comparison of these measurements with current NLC microphysical models suggests a lower bound on the water vapor mixing ratio at 83 km of 7–9 ppmv and a cloud ice mass of 1.5–1.8×103 kg. Satellite measurements show that this NLC display occurred during a burst of cloud activity that began on 5 August and lasted for 10 days. This cloud appeared 10 days after a launch of the space shuttle. We discuss the appearance of NLCs in August over several years at this lower polar latitude site in terms of planetary wave activity and space shuttle launches.  相似文献   

3.
We present the first measurement of polar mesospheric cloud (PMC) occurrence frequency over the diurnal cycle from a satellite. The observations are made during the 2007 northern hemisphere PMC season by the Spatial Heterodyne IMager for MEsospheric Radicals (SHIMMER), which views the limb near 309 nm typically between 34 and 98 km. The PMC diurnal variation is derived between 50 and 58°N, where local times at the tangent point precess by ~30 min/day allowing for observations between 0330 and 2130 local time during the PMC season. We find that the occurrence frequencies exhibit a strong semidiurnal behavior with peaks near 0600 and 1800 local time and a minimum between 0900 and 1600 during which they are on average an order of magnitude less. The semidiurnal dependence is strongly correlated with concurrent ground-based measurements of meridional winds and temperatures measured at the same latitude. Our results for PMC frequency over the diurnal cycle can be used to help reconcile observations from other satellites that only permit cloud measurements at discrete local times.  相似文献   

4.
The preliminary results of observation of the lightning electrical characteristics during tropical summer thunderstorms locally known as “Nor-Wester”, at a hilly place in North-East India (23.50°N, 91.25°E) are reported here. Some distinct peaks are observed in the VLF range between 1.5 to 6 kHz. Average cloud conductivity is found to be 8.12×10?10 S m?1. Specific characteristics of integrated field intensity of sferics (IFIS) at 14 and 17 kHz are also studied. Average enhancement of electrical activity during thunderstorms is found to be 170 dB kHz?1 compared to the normal weather sferics intensity.  相似文献   

5.
In this paper, we estimated the effective size of ice crystals in cirrus clouds using fall velocity derived from LiDAR (light detection and ranging) measurements at Chung-Li (24.58°N, 121.1°E), Taiwan. Nine shapes of the ice crystals, viz. hexagonal plates, hexagonal columns, rimed long columns, crystals with sector-like branches, broad-branched crystals, stellar crystal with broad arms, side planes, bullet rosettes and assemblages of planar poly-crystals of specific dimensions have been analyzed. The results show that the lidar derived most probable mean effective size of ice crystals is 340±180 μm with a dominant size range of 200–300 μm. The lidar derived mean effective size of cirrus crystals are parameterized in terms of cloud mid-height temperature as well as optical depth. The discussed method will be useful to study the most probable effective size distribution of ice crystals in cirrus cloud.  相似文献   

6.
The major sudden stratospheric warming (SSW) events of 2003–04 and 2005–06 are considered to investigate changes in equatorial convection due to circulation changes associated with the SSW events. It is observed that the SSW events are accompanied by a considerable decrease in Outgoing Longwave Radiation (OLR), a proxy for tropical convection, over equatorial latitudes (15°N–15°S) in the Indonesian sector (90°E–150°E). However, unlike noted by earlier observations, the zonal mean OLR does not show any notable relationship with the SSW events. It can be explained from the latitude–longitude map of potential vorticity (PV) at 100 hPa, which shows a tongue of high PV emanating from high latitudes towards equator and converges in the longitude band of 90°E–150°E on the day of peak warming at 1 hPa in the case of 2003–04 and 10 hPa in the case of 2005–06. The latitude-height map of Eliassen–Palm (EP) vector and its divergence show convergence of EP flux in the upper troposphere at latitudes even lower than 20°N on these days. Further, vertical winds computed from the convergence of momentum flux are upward indicating convective activity at low-latitudes and downward at mid-latitudes.  相似文献   

7.
《Continental Shelf Research》2008,28(18):2574-2583
Horizontal distribution patterns of jack mackerel Trachurus japonicus larvae were investigated extensively in the East China Sea (ECS) along the shelf-break region between 26° and 30°N during February–March based on fine-scale larval sampling in 2002 and 2003. A total of 2363 T. japonicus ranging from 1.2 to 12.4 mm body length (BL) were collected at 310 bongo net sampling stations, of which larvae <10 mm BL accounted for 99.1%. In both years, newly hatched larvae (<3 mm BL) were concentrated in the shelf-break region mainly in the southern part of ECS between 26° and 27°N in warm water of 21–23 °C, suggesting that their primary spawning ground existed in and around this area. With growth, larvae were transported in two different directions, i.e., northward and northeastward, corresponding closely with the direction of the Kuroshio Branch Current north of Taiwan (KBCNT) and the Kuroshio, respectively. Replicate sampling cruises at 2 week intervals were conducted in 2003, and the larval distribution pattern changed significantly between the sampling cruises, suggesting that the transport process fluctuates over relatively short periods in relation to oceanographic processes. The transport speed by the KBCNT was estimated to be 0.13–0.28 knots based on the larval distribution, which is one order of magnitude slower than that by the Kuroshio (1.5–3 knots). Habitat temperature gradually declined with growth in both the Kuroshio and KBCNT, but in the KBCNT it was 1–2 °C lower than in the Kuroshio. Our results suggest that the two different larval transport processes lead to a significant difference in the transport route, habitat conditions (such as temperature and food), and site where young fish recruit to the demersal habitat, which will result in different survival and recruitment processes.  相似文献   

8.
《Continental Shelf Research》2008,28(18):2594-2600
We analyzed the temporal and vertical distribution of biogenic (BSi) and lithogenic (LSi) silica, and diatom abundance in the upwelling center off Concepción, Chile, from April 2004 to May 2005. Measurements were performed at the FONDAP COPAS Time Series Station 18 (36°30.8′S, 73°07.7′W; 88 m water depth), and were combined with primary production estimates and river runoff data to assess the relationships between water column BSi and primary production, and between LSi and river runoff. Throughout the sampling period, water-column-integrated (0–80 m) BSi averaged 252±287 mmol m−2, and was about six times higher than average LSi (44±30 mmol m−2). The highest water column BSi observed during the upwelling season (786±281 mmol m−2) coincided with increments in total diatom abundance, and high integrated chlorophyll a concentration and primary production. In contrast, LSi was nearly two times higher in winter (85±43 mmol m−2) than the annual average, in agreement with the period of substantial discharges from the Itata and Bio-Bio rivers. The observed temporal patterns in BSi and LSi are coincident with primary production-related factors and riverine outflow, respectively, suggesting that the BSi and LSi pools are separate. With respect to the vertical distribution in the water column, most of the BSi and diatoms were found in surface waters (0–30 m depth), whereas LSi was most abundant at depth. Our study attempts to make an inventory of both BSi and LSi in the water column off Concepción, and gives the present-day background information necessary to assess potential future changes in the hydrological cycle that, in turn, may induce modifications in the Si path from the watersheds to the ocean.  相似文献   

9.
Determining surface precipitation phase is required to properly correct precipitation gage data for wind effects, to determine the hydrologic response to a precipitation event, and for hydrologic modeling when rain will be treated differently from snow. In this paper we present a comparison of several methods for determining precipitation phase using 12 years of hourly precipitation, weather and snow data from a long-term measurement site at Reynolds Mountain East (RME), a headwater catchment within the Reynolds Creek Experimental Watershed (RCEW), in the Owyhee Mountains of Idaho, USA. Methods are based on thresholds of (1) air temperature (Ta) at 0 °C, (2) dual Ta threshold, −1 to 3 °C, (3) dewpoint temperature (Td) at 0 °C, and (4) wet bulb temperature (Tw) at 0 °C. The comparison shows that at the RME Grove site, the dual threshold approach predicts too much snow, while Ta, Td and Tw are generally similar predicting equivalent snow volumes over the 12 year-period indicating that during storms the cloud level is at or close to the surface at this location. To scale up the evaluation of these methods we evaluate them across a 380 m elevation range in RCEW during a large mixed-phase storm event. The event began as snow at all elevations and over the course of 4 h transitioned to rain at the lowest through highest elevations. Using 15-minute measurements of precipitation, changes in snow depth (zs), Ta, Td and Tw, at seven sites through this elevation range, we found precipitation phase linked to the during-storm surface humidity. By measuring humidity along an elevation gradient during the storm we are able to track changes in Td to reliably estimate precipitation phase and effectively track the elevation of the rain/snow transition during the event.  相似文献   

10.
We analyze the longest temperature series from Prague, Bologna and Uccle. We partition daily minimum and maximum temperatures and their differences in two subsets as a function of high vs low solar activity, using the superimposed epochs method. Differences display patterns with significant amplitudes and time constants ~3 months. These are recognized in all stations and are stable against a change in the analyzed period. Amplitude of variations is ~1 °C. Differences between average annual values corresponding to high vs low activity periods are also ~1 °C. Solar activity may account for these long-term temperature variations. These variations also present local characteristics, which may render identification of a global correlation delicate. We discuss possible physical mechanisms by which solar variation could force climate changes (e.g. through solar activity itself, the EUV part of the solar flux, cosmic rays, the downward ionosphere-earth current density, etc.).  相似文献   

11.
The Geodynamic Observatory Moxa, located in Thuringia/Germany, is dedicated to studies of temporal deformations of the earth's crust and of variations of the gravity field. One of the essential issues with respect to these investigations is the reduction of the hydrological impact on the data of the gravimeters, strainmeters and tiltmeters. In order to optimise the reductions, we investigated the changes in the hydrological conditions in the woody mountain slope above the observatory with time-lapse electrical resistivity tomography (ERT), and analysed the strain and tilt measurements for prominent signatures of pore pressure induced subsurface deformations.Here we present the results for two profiles – parallel and perpendicular to the slope – measured with ERT during 33 campaigns between June 2007 and April 2010. Resistivity changes and variations of apparent soil moisture, inferred from ERT sections, were found to primarily occur in the first two metres of the subsurface. These variations can be related to subsurface flow in the upper two metres induced by precipitation events and snowmelts. Trees close to the profiles only show a minimum impact on the resistivity and soil moisture changes.Furthermore, systematic hydrologically induced deformations can be observed in hodographs of strain and tilt measurements for large precipitation events (> 80 mm) and snowmelts. In the strain data a short-term (< 3 days) dilatational signal is found with an amplitude of 20 nstrain to 60 nstrain and a long-term (> 7 days) compressional signal between 40 nstrain and 180 nstrain. The preferential N–S direction of long-term deformational signals (> 1 week) is also observed in the tilt data. The direction of tilt changes (25 nrad–120 nrad) is nearly parallel to the drainage direction of the nearby Silberleite creek indicating variations of pore pressure gradients during hydrological events.The results of these hydrological studies at the Geodynamic Observatory Moxa can be used for removing the time dependent hydrological signal in strain and tilt data and, thus, better correction algorithms for hydrological impacts can be developed to enhance the value of the data for geodynamic studies.  相似文献   

12.
The results of experiments which characterise the optically stimulated luminescence (OSL) signals of an ash sample (BI07-TL-05) from Barren Island are presented. The infrared stimulated luminescence signal decreases to 5% of its initial value when preheated at 150 °C for 10 s, suggesting that the infrared stimulated luminescence signal associated with the 290–390 nm emission in this sample arises from a single trap evicted by heating to 150 °C. The post-IR blue stimulated luminescence emission has greater thermal stability and arises from traps which are emptied by heating to temperatures between 120 °C and 240 °C. Dose recovery experiments demonstrate that a laboratory dose can be reliably determined to within 5% for the post-IR blue stimulated luminescence signal. However, the fading rate for the post-IR blue stimulation is high, and the g-value is estimated to be (9.6 ± 3.5)% per logarithmic decade for BI07-TL-05.  相似文献   

13.
The Narmada–Son Lineament (NSL) Zone is the second most important tectonic feature after Himalayas, in the Indian geology. Magnetotelluric (MT) studies were carried out in the NSL zone along a 130 km long NNE-SSW trending profile. The area of investigation extends from Edlabad (20°46′16″; 75°59′05″) in the South to Khandwa (21°53′51″; 76°18′05″) in the North. The data shows in general the validity of a two-dimensional (2D) approach. Besides providing details on the shallow crustal section, the 2D modeling results resolved four high conductive zones extending from the middle to deep crust, spatially coinciding with the major structural features in the area namely the Gavligarh, Tapti, Barwani-Sukta and Narmada South faults. The model for the shallow section has brought out a moderately resistive layer (30–150 Ω m) representing the exposed Deccan trap layer, overlying a conductive layer (10–30 Ω m) inferred to be the subtrappean Gondwana sediments, the latter resting on a high resistive basement/upper crust. The Deccan trap thickness varies from around a few hundred meters to as much as 1.5 km along the traverse. A subtrappean sedimentary basin like feature is delineated in the northern half of the traverse where a sudden thickening of subtrappean sediments amounting to as much as 2 km is noticed. The high resistive upper crust is relatively thick towards the southern end and tends to become thinner towards the middle and northern part of the traverse. The lower crustal segment is conductive over a major part of the profile. Considering the generally enhanced heat flow values in the NSL region, coupled with characteristic gravity highs and enhanced seismic velocities coinciding with the mid to lower crustal conductors delineated from MT, presence of zones of high density mafic bodies/intrusives with fluids, presumably associated with magmatic underplating of the crust in the zone of major tectonic faults in NSL region are inferred.  相似文献   

14.
We have investigated the fate of Staphylococcus aureus by starving the cells and maintaining them in natural seawater at 22 and 4 °C. At 22 °C, cells developed a long-term survival state where about 0.037% of the initial population remained culturable over more than 7 months, whereas at 4 °C, bacteria lost culturability and transiently entered into the viable but non-culturable state (VBNC). However, after 22 days of entry into the VBNC state, the number of viable cells detected via the direct viable count method decreased significantly. We show here that mutational inactivation of catalase (KatA) or superoxide dismutase (SodA) rendered strains hypersensitive to seawater stress at 4 °C and consequently, part of the seawater lethality on S. aureus at low temperature is mediated by reactive oxygen species (ROS) during microcosm-survival process. Shifting the temperature from 4 to 22 °C of totally non-culturable wild-type cells induced a partial recovery of the population. However, deficiencies in catalase or superoxide dismutase prevent resuscitation ability.  相似文献   

15.
New multibeam mapping and whole-rock geochemistry establish the first order definition of the modern submarine Kermadec arc between 30° and 35° S. Twenty-two volcanoes with basal diameters > 5 km are newly discovered or fully-mapped for the first time; Giggenbach, Macauley, Havre, Haungaroa, Kuiwai, Ngatoroirangi, Sonne, Kibblewhite and Yokosuka. For each large volcano, edifice morphology and structure, surficial deposits, lava fields, distribution of sector collapses, and lava compositions are determined. Macauley and Havre are large silicic intra-oceanic caldera complexes. For both, concentric ridges on the outer flanks are interpreted as recording mega-bedforms associated with pyroclastic density flows and edifice foundering. Other stratovolcanoes reveal complex histories, with repeated cycles of tectonically controlled construction and sector collapse, extensive basaltic flow fields, and the development of summit craters and/or small nested calderas.Combined with existing data for the southernmost arc segment, we provide an overview of the spatial distribution and magmatic heterogeneity along ∼780 km of the Kermadec arc at 30°–36°30′ S. Coincident changes in arc elevation and lava composition define three volcano–tectonic segments. A central deeper segment at 32°20′–34°10′ S has basement elevations of > 3200 m water-depth, and relatively simple stratovolcanoes dominated by low-K series, basalt–basaltic andesite. In contrast, the adjoining arc segments have higher basement elevations (typically < 2500 m water-depth), multi-vent volcanic centres including caldera complexes, and erupt sub-equal proportions of dacite and basalt–basaltic andesite. The association of silicic magmas with higher basement elevations (and hence thicker crust), coupled with significant inter- and intra-volcano heterogeneity of the silicic lavas, but not the mafic lavas, is interpreted as evidence for dehydration melting of the sub-arc crust. Conversely, the crust beneath the deeper arc segments is thinner, initially cooler, and has not yet reached the thermal requirements for anatexis. Silicic calderas with diameters > 3 km coincide with the shallower arc segments. The dominant mode of large caldera formation is interpreted as mass-discharge pyroclastic eruption with syn-eruptive collapse. Hence, the shallower arc segments are characterized by both the generation of volatile-enriched magmas from crustal melting and a reduced hydrostatic load, allowing magma vesiculation and fragmentation to initiate and sustain pyroclastic eruptions. Proposed initiation parameters for submarine pyroclastic eruptions are water-depths < 1000 m, magmas with 5–6 wt.% water and > 70 wt.% SiO2, and a high discharge rate.  相似文献   

16.
Our study gives new constraints on the response of Atlantic Meridional Overturning Circulation (AMOC) export to various forcings during the Last Glacial Inception. The decay corrected excess sedimentary (231Pa/230Th) activity ratio (hereafter referred to as (Pa/Th)) has been measured over that period in two deep cores from the Western (SU90-11, 44°04′N, 40°01′W, 3645 m) and Eastern (MD01-2446, 39°03′N, 12°37′W, 3547 m) basins of the North Atlantic. Both records display significant changes despite the relatively short half-life of 231Pa (~ 32 kyr) compared to the period we investigate. The (Pa/Th) variability does not correlate to changes in local opal flux normalized to 230Th. Moreover, the (Pa/Th) profiles display a high degree of coherency with indirect proxies of AMOC activity such as the benthic foraminifera δ13C and the mid-latitude summer Sea Surface Temperature in nearby reference cores. These additional pieces of evidence support our interpretation of the (Pa/Th) as reflecting AMOC export. The (Pa/Th) repeatedly underwent rapid changes during the Last Glacial Inception associated with the extension of ice rafted detritus in the North Atlantic, highlighting the control of ice-sheet dynamics through freshwater forcing on AMOC export. AMOC export remains large during periods of ice-sheet growth and its decreases lag the Northern Hemisphere summer insolation forcing. AMOC modulation appears driven by ice-sheet dynamics, itself driven by the seasonal insolation gradient between low and high Northern Hemisphere latitudes and the associated intensity of the meridional oceanic and atmospheric circulation.  相似文献   

17.
The Rb–Sr decay system is one of the most widely used geochronometers for obtaining ages and cooling rates of terrestrial magmatic, metamorphic, and hydrothermal events. It has also been extensively applied to date extraterrestrial, early solar system events. The accuracy of Rb–Sr ages, however, strongly depends on the accuracy of the 87Rb decay constant (λ87Rb). We determined λ87Rb relative to the decay constants of 235U and 238U by comparing Rb–Sr ages of minerals with U–Pb ages obtained from the same intrusion. Comparison of U–Pb emplacement ages with high-precision Rb–Sr mineral ages from three rapidly cooled igneous rocks covering an age range of ca. 2.5 Ga yields an unweighted mean λ87Rb of 1.393 ± 0.004 × 10?11 yr?1 (i.e., ± 0.3%), corresponding to a half-life of 49.76 × 109 years. Because this decay constant is 2% lower than the presently recommended one, many previously published ages are 2% too young and the resulting geologic interpretations may need revision.  相似文献   

18.
The Solar Occultation For Ice Experiment (SOFIE) was launched onboard the Aeronomy of Ice in the Mesosphere (AIM) satellite on 25 April 2007, and began science observations on 14 May 2007. SOFIE conducts solar occultation measurements in 16 spectral bands that are used to retrieve vertical profiles of temperature, O3, H2O, CO2, CH4, NO, and polar mesospheric cloud (PMC) extinction at wavelengths from 0.330 to 5.006 μm. SOFIE performs 15 sunset measurements at latitudes from 65° to 85°S and 15 sunrise measurements from 65° to 85°N each day. This work describes the SOFIE instrument, measurement approach, and retrieval results for the northern summer of 2007.  相似文献   

19.
The lack of high resolution precipitation data has posed great challenges to the study and management of extreme rainfall events. Satellite-based rainfall products with large areal coverage provide a potential alternative source of data where in situ measurements are not available. However, the mismatch in scale between these products and model requirements has limited their application and demonstrates that satellite data must be downscaled before being used. This study developed a statistical spatial downscaling scheme based on the relationships between precipitation and related environmental factors such as local topography and pre-storm meteorological conditions. The method was applied to disaggregate the Tropical Rainfall Measuring Mission (TRMM) 3B42 products, which have a resolution of 0.25° × 0.25°, to 1 × 1 km gridded rainfall fields. The TRMM datasets in accord with six rainstorm events in the Xiao River basin were used to validate the effectiveness of this approach. The downscaled precipitation data were compared with ground observations and exhibited good agreement with r2 values ranging from 0.612 to 0.838. In addition, the proposed approach provided better results than the conventional spline and kriging interpolation methods, indicating its promise in the management of extreme rainfall events. The uncertainties in the final results and the implications for further study were discussed, and the needs for additional rigorous investigations of the rainfall physical process prior to institutionalizing the use of satellite data were highlighted.  相似文献   

20.
The Oligocene to present evolution of the North Patagonian Andes is analyzed linking geological and geophysical data in order to decipher the deformational processes that acted through time and relate them to basin formation processes. Seismic reflection profiles reveal the shallow structure of the retroarc area where contractional structures, associated with Oligocene to early Miocene inverted extensional depocenters, are partially onlapped by early to late Miocene synorogenic deposits. From the construction of five structural cross sections along the retroarc area between 40° and 43°30′ S, constrained by surface, gravity and seismic data, a shortening gradient is observed along Andean strike. The highest shortening of 18.7 km (15.34%) is determined near 41°30′ S coincidentally with maximum mean topographic values on the eastern Andean slope, where basement blocks were uplifted in the orogenic front area, and the deepest and broadest synorogenic depocenters were formed towards the foreland. Additionally, eastward shifting of Miocene calc-alkaline rocks occurred at these latitudes, which is interpreted as indicative of a change in the subduction parameters at this time. Deep crustal retroarc structure is evaluated through inversion of gravity models that made possible to infer Moho attenuated zones. These coincide with the occurrence of younger than 5 Ma within-plate volcanics as well as with crustal thermal anomalies suggested by shallowing of the Curie isotherm calculated from magnetic data. Younger volcanism and thermal anomalies are explained by slab steepening since early Pliocene, after a mild-shallow subduction setting in the middle to late Miocene, age of the main compressive event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号