首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The horizontal pullout capacity of a group of two vertical strip anchor plates placed along the same vertical plane in sand, has been determined by using the lower bound finite element limit analysis. The effect of vertical spacing (S) between the anchor plates on the magnitude of the total group horizontal failure load (PuT) has been determined for different combinations of H/B, δ/ϕ and ϕ. The magnitude of PuT has been obtained in terms of a group efficiency factor, ηγ, with respect to the failure load for a single vertical plate with the same H/B. The magnitude of ηγ becomes maximum corresponding to a certain critical S/B, which has been found to lie between 0.5 and 0.8. The value of ηγ for a given S/B has been found to become larger for greater values of H/B, ϕ, and δ.  相似文献   

2.
By using the lower bound finite elements limit analysis, the pullout capacity of an inclined strip anchor plate embedded in a cohesionless soil medium has been computed with an inclusion of pseudo-static horizontal earthquake body forces. The variation of the pullout capacity factor (F γ ) with changes in horizontal earthquake acceleration co-efficient (α h ) has been computed by varying the inclination angle (β) of the anchor plate between 0° and 90°. The results clearly reveal that the pullout capacity factor (F γ ) decreases significantly with an increase in the value of α h . The reduction in the pullout resistance due to seismic forces (1) becomes much more extensive for a vertical anchor plate as compared to the horizontal anchor, (2) decreases generally with increases in the soil friction angle (?) and (3) increases with an increase in friction angle between soil and anchor plate (δ). The developments of the failure zone around the anchor plate were also examined by varying α h and β. The results obtained from the analysis compare well with the solutions reported in literature.  相似文献   

3.
针对土层锚杆应力分布的复杂性,进行室内模型试验,利用所得数据,绘制了拉力型锚杆和压力型锚杆杆体全长上的应变分布曲线、同列锚杆锚固段末端点以及坡面处的应变分布曲线。在所得曲线的基础上,对坡体中锚杆的应力分布特征以及变化规律进行了分析及讨论,从而对其工作性能和加固机理进行初步研究。介绍了锚杆上剪应力分布的理论解,并将试验结果与理论分析结果进行了对比,两者基本吻合,验证了本试验结果的合理性和可靠性。  相似文献   

4.
Vertical plate anchors provide an economical solution to safely resist the large horizontal forces experienced by the foundation of different structures such as bulkheads, sheet piles, retaining walls and so forth. This paper develops a multivariate adaptive regression spline (MARS) model-based approach for the determination of horizontal pullout capacity (P u ) of vertical plate anchors buried in cohesionless soil by utilizing experimental results reported by different researchers. Based on the collection of forty different pullout experimental test results reported in the literature for anchors buried in loose to dense cohesionless soil with an embedment ratio ranges from 1 to 5, a predictive approach for P u of vertical plate anchors has been developed in terms of non-dimensional pullout coefficient (M γq ). The capability of the proposed MARS model for estimating the values of M γq is examined by comparing the results obtained in the present study with those methods available in the literature. Using different statistical error measure criteria, this study indicates that the present approach is efficient in estimating the horizontal pullout capacity of vertical plate anchors as compared to other methods. The sensitivity analysis indicates that the embedment ratio (H/h, where H = embedment depth of anchor, and h = height of anchor) and internal friction angle (?) of soil mass are the two most important parameters for the evaluation of non-dimensional pullout coefficient (M γq ) using the proposed MARS model.  相似文献   

5.
The horizontal pullout capacity of a group of two rigid strip plate anchors embedded along the same vertical plane in clays, under undrained condition, has been determined. An increase of cohesion with depth has also been incorporated. The analysis has been performed by using an upper bound finite element limit analysis in combination with linear optimization. For different clear spacing (S) between the anchors, the efficiency factor (η) has been determined to evaluate the group failure load for different values of (1) embedment ratio (H/B), (2) the normalized rate (m) which accounts for a linear increase of cohesion with depth, and (3) normalized unit weight (γH/co). The magnitude of the group failure load (1) becomes maximum corresponding to a certain spacing (Scr) between the anchors, and (2) increases with an increase in the γH/co up to a certain value before attaining a certain maximum magnitude. The value of Scr/B has been found to vary generally between 0.7 and 1.2. The maximum magnitude of η, associated with the critical spacing, (1) increases generally with increases in H/B, and (2) decreases with an increase in m. For a greater spacing between the anchors, the analysis reveals the development of a local shear zone around the lower anchor plate. The numerical results developed are expected to be useful for purpose of design.  相似文献   

6.
为了研究上海地区土层锚杆的群锚效应,本文以明德林(Mindlin)解为基础,通过引用根据试验所得的锚杆非线性传递函数,对软地层中斜拉锚杆的长度、间距、入土深度、压浆等因素对群锚效应的影响进行了探讨,得出一些有价值的结果。  相似文献   

7.
Effect of Geotextile Ties on Uplift Capacity of Anchors Embedded in Sand   总被引:1,自引:0,他引:1  
This paper presents the results of experimental investigation on the effect of geotextile ties on uplift capacity of anchors embedded in sand. Uplift capacity of anchor increases with increase in embedment depth to base diameter (H/D) ratio irrespective of type of anchor. With the introduction of tie to anchors, uplift capacity of anchors increases and optimum number of layers of ties is found to be 2. A non linear power model has been developed to predict the uplift capacity at any settlement (Q R) of anchors with tie in terms of uplift capacity at any settlement (Q URs) of anchor without tie, H/D ratio, number of layers of tie and displacement to base diameter ratio (Δ/D). The model is applicable for predicting Q R having the values of Q RS, H/D, N and Δ/D in the range of 0.257 ≤ Q URs ≤ 1.420, 1.5 ≤ H/D ≤ 3.0, 1 ≤ N ≤ 4, 0.8 ≤ Δ/D ≤ 8.  相似文献   

8.
支护结构中锚杆的受力在一定程度上反映了作用在支护结构上的土压力大小.对锚杆受力进行原位监测,通过对数据进行研究、分析,可以了解土压力的大小和分布规律,这对于优化深基坑支护结构设计具有重要的实际意义.以某基坑工程为依托,对锚杆在张拉锁定及工作过程中的实际受力情况进行了全程监测,通过FLAC数值模拟分析,研讨了作用于支护结构上的土压力计算问题.  相似文献   

9.
10.
Geotechnical and Geological Engineering - Soft clay soil extends in many areas all over the world. The construction on soft clay is one of the most important problems in engineering practice. When...  相似文献   

11.
上海软土的归一化性状研究   总被引:2,自引:0,他引:2  
在各向等压固结不排水三轴试验和K_0团结不排水三轴试验的基础上,探讨上海软土的归一化性状,得出一些结论可供进一步研究参考。  相似文献   

12.
Clays treated with lower cement contents often exhibit behaviour similar to stiff clays with planar failure surface under triaxial compression. In the present work the behaviour of a marine clay treated with 5 % cement, subjected to undrained triaxial compression tests is studied. The pre-consolidation pressure of the cemented clay due to the cementation bonding is observed to be very high. It is attempted to model the behaviour of cement treated clay using a bounding surface plasticity formulation as the plastic behaviour of the cemented clays within the yield surface has to be considered. The effect of cementation is included in the model as the pre-consolidation pressure obtained from consolidation tests. The tensile strength due to cementation bonds is included in the equation of the bounding surface. Simulations of the undrained triaxial compression tests on cemented clays are carried out and the results are validated with the experimental results.  相似文献   

13.
Shear Strength Behavior of Two Landfill Clay Liners   总被引:1,自引:0,他引:1  
Direct shear tests were conducted to obtain both the shear strength of compacted clay liners (CCLs) specimens and the interface shear strength between compacted clay liner and base soil. These experiments were conducted under the conditions of five different water contents. The experimental results show that shear strength of both CCLs and CCLs/base interface decreases with the increase in the water content of CCLs and base soil. In addition, the considerate concentration of NaCl in leachate has no deteriorating effect on the shear strength of liners. Triaxial shear tests were also conducted on clay liner specimens to obtain total and effective shear strength under a fast compression. The shear strength c‘=100 kPa for sand-bentonite, respectively. These results indicate that the compacted clay-bentonite shows normal consolidation, but that the compacted sand-bentonite exhibits over-consolidation.  相似文献   

14.
This paper reports some results of a large experimental program on Boom Clay conducted in Grenoble in the framework of the European project SELFRAC. The program included isotropic compression up to relatively high stress, drained triaxial compression tests at different cell pressures, as well as permeability measurements under isotropic and deviatoric stress. Local measurement of axial and radial displacements allowed the detection of strain localization during deviatoric loading. The permeability of Boom Clay is found to depend on the mean effective stress. The response of Boom Clay during deviatoric loading appears to be strongly affected by the swelling experienced during the isotropic stage preceding triaxial compression. The rate of swelling decreases with isotropic stress. The longer the swelling before shear, more the response under shear becomes ductile and the lower the initial stiffness. Permeability depends on the mean effective stress and it is found to decrease of about two orders of magnitude when the mean stress increases from 1 to 32 MPa. Permeability during shear loading is essentially constant and does not seem to be affected by strain localization. These results are complemented by a few observations obtained using X-ray microtomography in the framework of the more recent European project TIMODAZ. These findings illustrate the impact of pre-existing inclusions and fissures on specimen deformation upon deviatoric loading in the laboratory.  相似文献   

15.
The mechanical behavior of clay shales is of great interest in many branches of geo-engineering, including nuclear waste disposal, underground excavations, and deep well drilling. Observations from test galleries (Mont Terri, Switzerland and Bure, France) in these materials have shown that the rock mass response near the excavation is associated with brittle failure processes combined with bedding parallel shearing. To investigate the brittle failure characteristics of the Opalinus Clay recovered from the Mont Terri Underground Research Laboratory, a series of 19 unconfined uniaxial compression tests were performed utilizing servo-controlled testing procedures. All specimens were tested at their natural water content with loading approximately normal to the bedding. Acoustic emission (AE) measurements were utilized to help quantify stress levels associated with crack initiation and propagation. The unconfined compression strength of the tested specimens averaged 6.9 MPa. The crack initiation threshold occurred at approximately 30% of the rupture stress based on analyzing both the acoustic emission measurements and the stress–strain behavior. The crack damage threshold showed large variability and occurred at approximately 70% of the rupture stress.  相似文献   

16.
Stone columns (or granular piles) are increasingly being used for ground improvement. This study investigates the qualitative and quantitative improvement in soft clay by stone columns. Finite element analyses were carried out to evaluate the performance of stone columns in soft clay. A drained analysis was carried out using Mohr–Coulomb’s criterion for soft clay, stones, and sand. The interface elements were used at the interface between the stone column and soft clay. Analyses and calculations were carried out to determine equivalent parameters of soil/columns system. The bearing capacity ratio (BCR) of the soil has been estimated for homogeneous and heterogeneous soil. The results have shown that the values of BCR for homogeneous soil are obviously higher than those for heterogeneous soil.  相似文献   

17.
Copper slag is a by-product obtained from production of copper metal. As copper slag contains silica and alumina, it may exhibit pozzolanic property, and hence it may be re-use in ground improvement applications as a partial replacement of cement. Present study evaluates systematically the possible pozzolanic property of copper slag as well as studies the effect of copper slag on engineering properties of cement-treated clay. X-rays diffraction method was employed to assess the possible pozzolanic property of copper slag. Effect of copper slag on engineering properties (i.e. compressive strength and compressibility) of cement-treated clay was studied with samples prepared with constant water content and workability. The test results showed that with sufficient curing time and at constant workability, the compressive strength of cement-treated clay was found to be increased with increasing amount of copper slag at high cement content but the compressive strength remained the same with increasing amount of copper slag at low cement content. Compressibility of cement-treated clay was found to be unchanged with increasing amount of copper slag. It was concluded that copper slag can be used as partial replacement of cement in treating soft marine clay.  相似文献   

18.
INTRODUCTIONThe mechanical responses of soils are more com-plicated compared with metals.By comparing thephysical and mechanical properties of the metals withsoils,Lade(1988)found that there are17differentpoints between the metals and soils,which differfrom metals inthree basic mechanical characteristics:pressure sensitivity,dilatancy,and dependence ofstress path.Wang(2004)proposed a principle of theinteraction between plastic volume and shear strains,that is,there are two relatively inde…  相似文献   

19.
The brittle failure behavior of an over-consolidated clay shale (Opalinus Clay) in undrained rapid triaxial compression was studied. The confining stress levels were chosen to simulate the range of confining stresses relevant for underground excavations at the Mont Terri Underground Research Laboratory, and to investigate the transition from axial splitting failure to macroscopic shear failure. Micro-crack initiation was observed throughout the confining stress range utilized in this study at a differential stress of 2.1 MPa on average, which indicates that friction was not mobilized at this stage of brittle failure. The rupture stress was dependent on confinement indicating friction mobilization during the brittle failure process. With increasing confinement net volumetric strain decreased suggesting that dilation was suppressed, which is possibly related to a change in the failure mode. At confining stress levels ≤0.5 MPa specimen rupture was associated with axial splitting. With increasing confinement, transition to a macroscopic shearing mode was observed. Multi-stage triaxial tests consistently showed lower strengths than single-stage tests, demonstrating cumulative damage in the specimens. Both the Mohr–Coulomb and Hoek–Brown failure criteria could not satisfactorily fit the data over the entire confining stress range. A bi-linear or S-shaped failure criterion was found to satisfactorily fit the test data over the entire confinement range studied.  相似文献   

20.
Mechanical Behavior of a Clay Soil Reinforced with Nylon Fibers   总被引:2,自引:1,他引:1  
Soft soils are well known for their low strength and high compressibility. Several techniques, including reinforcement, are commonly used to increase the strength and decrease the deformation of this kind of soil. This paper presents the results of an investigation into the effects of fiber on the consolidation and shear strength behavior of a clay soil reinforced with nylon fibers. A series of one dimensional consolidation and triaxial tests were conducted on samples of unreinforced and reinforced clay with different percentages of randomly distributed nylon fibers. The results show that the preconsolidation pressure decreases and the coefficient of swelling and compression generally increase with increasing the fiber content. Furthermore, the addition of the fiber leads to a significant increase in shear strength and friction angle of the natural soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号