首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The textures of minerals in volcanic and plutonic rocks testify to a complexity of processes in their formation that is at odds with simple geochemical models of igneous differentiation. Zoning in plagioclase feldspar is a case in point. Very slow diffusion of the major components in plagioclase means that textural evidence for complex magmatic evolution is preserved, almost without modification. Consequently, plagioclase affords considerable insight into the processes by which magmas accumulate in the crust prior to their eventual eruption or solidification. Here, we use the example of the 1980–1986 eruptions of Mount St. Helens to explore the causes of textural complexity in plagioclase and associated trapped melt inclusions. Textures of individual crystals are consistent with multiple heating and cooling events; changes in total pressure (P) or volatile pressure ( $P_{{{\text{H}}_{ 2} {\text{O}}}}$ P H 2 O ) are less easy to assess from textures alone. We show that by allying textural and chemical analyses of plagioclase and melt inclusions, including volatiles (H2O, CO2) and slow-diffusing trace elements (Sr, Ba), to published experimental studies of Mount St. Helens magmas, it is possible to disambiguate the roles of pressure and temperature to reconstruct magmatic evolutionary pathways through temperature–pressure–melt fraction (T $P_{{{\text{H}}_{ 2} {\text{O}}}}$ P H 2 O F) space. Our modeled crystals indicate that (1) crystallization starts at $P_{{{\text{H}}_{ 2} {\text{O}}}}$ P H 2 O  > 300 MPa, consistent with prior estimates from melt inclusion volatile contents, (2) crystal cores grow at $P_{{{\text{H}}_{ 2} {\text{O}}}}$ P H 2 O  = 200–280 MPa at F = 0.65–0.7, (3) crystals are transferred to $P_{{{\text{H}}_{ 2} {\text{O}}}}$ P H 2 O  = 100–130 MPa (often accompanied by 10–20 °C of heating), where they grow albitic rims of varying thicknesses, and (4) the last stage of crystallization occurs after minor heating at $P_{{{\text{H}}_{ 2} {\text{O}}}}$ P H 2 O  ~ 100 MPa to produce characteristic rim compositions of An50. We hypothesize that modeled $P_{{{\text{H}}_{ 2} {\text{O}}}}$ P H 2 O decreases in excess of ~50 MPa most likely represent upward transport through the magmatic system. Small variations in modeled $P_{{{\text{H}}_{ 2} {\text{O}}}}$ P H 2 O , in contrast, can be effected by fluxing the reservoir with CO2-rich vapors that are either released from deeper in the system or transported with the recharge magma. Temperature fluctuations of 20–40 °C, on the other hand, are an inevitable consequence of incremental, or pulsed, assembly of crustal magma bodies wherein each pulse interacts with ancestral, stored magmas. We venture that this “petrological cannibalism” accounts for much of the plagioclase zoning and textural complexity seen not only at Mount St. Helens but also at arc magmas generally. More broadly we suggest that the magma reservoir below Mount St. Helens is dominated by crystal mush and fed by frequent inputs of hotter, but compositionally similar, magma, coupled with episodes of magma ascent from one storage region to another. This view both accords with other independent constraints on the subvolcanic system at Mount St. Helens and supports an emerging view of many active magmatic systems as dominantly super-solidus, rather than subliquidus, bodies.  相似文献   

2.
The effectiveness of transmitting underground water in rock fractures is strongly influenced by the widths of the fractures and their interconnections. However, the geometries needed for water flow in fractured rock are also heavily controlled by the confining pressure conditions. This paper is intended to study the seepage properties of fractured rocks under different confining pressures. In order to do this, we designed and manufactured a water flow apparatus that can be connected to the electro-hydraulic servo-controlled test system MTS815.02, which provides loading and exhibits external pressures in the test. Using this apparatus, we tested fractured mudstone, limestone and sandstone specimens and obtained the relationship between seepage properties and variations in confining pressure. The calculation of the seepage properties based on the collection of water flow and confining pressure differences is specifically influenced by non-Darcy flow. The results show that: (1) The seepage properties of fractured rocks are related to confining pressure, i.e. with the increase of confining pressure, the permeability $ k $ decreases and the absolute value of non-Darcy flow coefficient $ \beta $ increases. (2) The sandstone coefficients $ k $ and $ \beta $ range from $ 1.03 \times 10^{ - 18} $ to $ 1.53 \times 10^{ - 17} $  m2 and $ - 1.13 \times 10^{17} $ to $ - 2.35 \times 10^{18} $  m?1, respectively, and exhibit a greater change compared to coefficients of mudstone and limestone. (3) From the regression analysis of experimental data, it is concluded that the polynomial function is a better fit than the power and logarithmic functions. The results obtained can provide an important reference for understanding the stability of rock surrounding roadways toward prevention of underground water gushing-out, and for developing underground resources (e.g. coal).  相似文献   

3.
Iron-rich orthopyroxene plays an important role in models of the thermal and magmatic evolution of the Moon, but its density at high pressure and high temperature is not well-constrained. We present in situ measurements of the unit-cell volume of a synthetic polycrystalline end-member orthoferrosilite (FeSiO3, fs) at simultaneous high pressures (3.4–4.8 GPa) and high temperatures (1,148–1,448 K), to improve constraints on the density of orthopyroxene in the lunar interior. Unit-cell volumes were determined through in situ energy-dispersive synchrotron X-ray diffraction in a multi-anvil press, using MgO as a pressure marker. Our volume data were fitted to a high-temperature Birch–Murnaghan equation of state (EoS). Experimental data are reproduced accurately, with a  $\varDelta P$ Δ P  standard deviation of 0.20 GPa. The resulting thermoelastic parameters of fs are: V 0 = 875.8 ± 1.4 Å3K 0 = 74.4 ± 5.3 GPa, and $\frac{{\text d}K}{{\text d}T} = -0.032 \pm 0.005\,\hbox{GPa K}^{-1}$ d K d T = - 0.032 ± 0.005 GPa K - 1 , assuming ${K}^{\prime}_{0} = 10 $ K 0 ′ = 10 . We also determined the thermal equation of state of a natural Fe-rich orthopyroxene from Hidra (Norway) to assess the effect of magnesium on the EoS of iron-rich orthopyroxene. Comparison between our two data sets and literature studies shows good agreement for room-temperature, room-pressure unit-cell volumes. Preliminary thermodynamic analyses of orthoferrosilite, FeSiO3, and orthopyroxene solid solutions, (Mg1?x Fe x ) SiO3, using vibrational models show that our volume measurements in pressure–temperature space are consistent with previous heat capacity and one-bar volume–temperature measurements. The isothermal bulk modulus at ambient conditions derived from our measurements is smaller than values presented in the literature. This new simultaneous high-pressure, high-temperature data are specifically useful for calculations of the orthopyroxene density in the Moon.  相似文献   

4.
Oxygen fugacity ( $ f_{{{\text{O}}_{ 2} }} $ f O 2 ) is a fundamental but little known intensive variable in mantle processes. It influences the P/T position of a mantle solidus and the composition of mantle-derived melts and fluids and constrains mantle-core equilibria and a number of geophysical properties of the mantle. An important source of information on oxidation states is the ferric–ferrous iron ratio in mantle spinels. Since the magnetite component is low in mantle spinels, normal analytical errors translate into considerable $ f_{{{\text{O}}_{ 2} }} $ f O 2 uncertainties. In this study, we analyzed the Fe3+–Fetot ratio of chromites present as inclusions in diamond and other mantle-related occurrences by point-source Mössbauer spectroscopy using single-crystal absorbers as well as conventional Mössbauer spectroscopy using powder absorbers. The studied spinels have been previously analyzed by single-crystal X-ray diffraction and electron microprobe. The ferric–ferrous ratios found are normally similar to the different techniques apart from some samples where a large number of grains have been used for the analyses (powder absorbers). The general agreement between the different techniques allows us to conclude that the studied chromites are stoichiometric. However, conventional Mössbauer spectroscopy on powder absorbers should be conducted with great care, since the method requires a relatively large amount of sample material. Spinel frequently occurs as small grains, and the large number of crystals required may possess different degrees of oxidation/alteration and, consequently, different ferric–ferrous ratio leading to possible errors in the interpretation of the results.  相似文献   

5.
Rock burst is one of the common failures in hard rock mining and civil construction. This study focuses on the prediction of rock burst classification with case instances using cloud models and attribution weight. First, cloud models are introduced briefly related to the rock burst classification problem. Then, the attribution weight method is presented to quantify the contribution of each rock burst indicator for classification. The approach is implemented to predict the classes of rock burst intensity for the 164 rock burst instances collected. The clustering figures are generated by cloud models for each rock burst class. The computed weight values of the indicators show that the stress ratio $ Ts = \sigma_{\theta } /\sigma_{c} $ Ts = σ θ / σ c is the most vulnerable parameter and the elastic strain energy storage index W et and the brittleness factor $ B = \sigma_{c} /\sigma_{t} $ B = σ c / σ t take the second and third place, respectively, contributing to the rock burst classification. Besides, the predictive performance of the strategy introduced in this study is compared with that of some empirical methods, the regression analysis, the neural networks and support vector machines. The results turn out that cloud models perform better than the empirical methods and regression analysis and have superior generalization ability than the neural networks in modelling the rock burst cases. Hence, cloud models are feasible and applicable for prediction of rock burst classification. Finally, different models with varying indicators are investigated to validate the parameter sensitivity results obtained by cloud clustering analysis and regression analysis in context to rock burst classification.  相似文献   

6.
Single crystals of two novel calcium oxotellurate(IV) nitrates were grown under hydrothermal conditions and were structurally characterized by X-ray diffraction. Ca $_5$ Te $_4\text {O}_{12}$ (NO $_3$ ) $_2$ (H $_2$ O) $_2$ [ $Cc$ , $Z=4$ , $a=25.258(3)$ Å, $b=5.7289(7)$ Å, $c=17.0066(19)$ Å, $\beta =124.377(2)^{\circ}$ , $R[F^2 > 2\sigma (F^2)]=0.043$ , 4083 $F^2$ data, 281 parameters] can be described as a non-classic order/disorder (OD) structure, which fulfills the basic principle of OD theory, viz. local equivalence of polytypes, but does not strictly follow the vicinity condition (VC) of OD theory. The structure is made up from an alternating stacking of non-polar layers composed of isolated [TeO $_3$ ] units and Ca $^{2+}$ ions and polar layers containing NO $_3^-$ ions and water molecules. The electron lone-pairs of the [TeO $_3$ ] units protrude into the free space of the anion/water layers. The crystal under investigation was a non-classic OD-twin of domains of a maximum degree of order (MDO). At the twin plane a fragment of the second MDO polytype is located. The main building blocks of Ca $_6$ Te $_5\text {O}_{15}$ (NO $_3$ ) $_2$ [ $P2_1/c$ , $Z=4$ , $a=15.494(2)$ Å, $b=5.6145(7)$ Å, $c=39.338(4)$ Å, $\beta =142.480(5)^{\circ}$ , $R[F^2 > 2\sigma (F^2)]=0.043$ , 3026 $F^2$ data, 307 parameters] are isolated [TeO $_3$ ] units and Ca $^{2+}$ ions which are connected to a three-dimensional framework perforated by channels in which the N atoms of the nitrate anions are located and the electron lone-pairs of the [TeO $_3$ ] units protrude. The structure can topologically be derived from the structure of Ca $_5$ Te $_4\text {O}_{12}$ (NO $_3$ ) $_2$ (H $_2$ O) $_2$ by removing the water molecules and connecting the CaTeO $_3$ layers with additional [TeO $_3$ ] units and Ca $^{2+}$ ions.  相似文献   

7.
Property and behaviour of sand–pile interface are crucial to shaft resistance of piles. Dilation or contraction of the interface soil induces change in normal stress, which in turn influences the shear stress mobilised at the interface. Although previous studies have demonstrated this mechanism by laboratory tests and numerical simulations, the interface responses are not analysed systematically in terms of soil state (i.e. density and stress level). The objective of this study is to understand and quantify any increase in normal stress of different pile–soil interfaces when they are subjected to loading and stress relief. Distinct element modelling was carried out. Input parameters and modelling procedure were verified by experimental data from laboratory element tests. Parametric simulations of shearbox tests were conducted under the constant normal stiffness, constant normal load and constant volume boundary conditions. Key parameters including initial normal stress ( $ \sigma_{{{\text{n}}0}}^{\prime } $ ), initial void ratio (e 0), normal stiffness constraining the interface and loading–unloading stress history were investigated. It is shown that mobilised stress ratio ( $ \tau /\sigma_{\text{n}}^{\prime } $ ) and normal stress increment ( $ \Updelta \sigma_{\text{n}}^{\prime } $ ) on a given interface are governed by $ \sigma_{{{\text{n}}0}}^{\prime } $ and e 0. An increase in $ \sigma_{{{\text{n}}0}}^{\prime } $ from 100 to 400 kPa leads to a 30 % reduction in $ \Updelta \sigma_{\text{n}}^{\prime } $ . An increase in e 0 from 0.18 to 0.30 reduces $ \Updelta \sigma_{\text{n}}^{\prime } $ by more than 90 %, and therefore, shaft resistance is much lower for piles in loose sands. A unique relationship between $ \Updelta \sigma_{\text{n}}^{\prime } $ and normal stiffness is established for different soil states. It can be applied to assess the shaft resistance of piles in soils with different densities and subjected to loading and stress relief. Fairly good agreement is obtained between the calculated shaft resistance based on the proposed relationship and the measured results in centrifuge model tests.  相似文献   

8.
Several new radiation defects with total electron spin S?=?1 occurring in electron-irradiated, synthetic ??-quartz have been observed by using electron paramagnetic resonance spectroscopy. These defects are considered to be biradicals, i.e., pairs of S?=?1/2 species. The concentration of these centers depends on the condition of the fast-electron irradiation. They have different decay behaviors that allow measurements of any individual species especially when it predominates over the others. The primary spin Hamiltonian parameter matrices g 1, g 2, D have now been determined for two similar defects, which herein are labeled $ E_{2}^{\prime \prime } $ and $ E_{4}^{\prime \prime } $ . Inter-electron distances estimated by using the magnetic dipole model, suggest that the structures of centers $ E_{2}^{\prime \prime } $ and $ E_{4}^{\prime \prime } $ both involve the unpaired electrons each located in orbitals of two silicon atoms next to a common oxygen vacancy but which have slightly different Si?CSi distances at 0.90 and 0.79?nm, respectively. This model is consistent with previous DFT calculations of the triplet configurations with local energetic minima. Observed decay behaviors suggest a transformation of centers $ E_{2,4}^{\prime \prime } $ to the analogous $ E_{1}^{\prime \prime } $ center. These triplet centers in quartz provide new insights into the structures of analogous defects in amorphous silica.  相似文献   

9.
Magnesiowüstite, (Mg0.08Fe0.88)O, and wüstite, Fe0.94O, were compressed to ~36?GPa at ambient temperature in the diamond anvil cell (DAC) at the Advanced Light Source. X-ray diffraction patterns were taken in situ in radial geometry in order to study the evolution of crystallographic preferred orientation through the cubic-to-rhombohedral phase transition. Under uniaxial stress in the DAC, {100}c planes aligned perpendicular to the compression direction. The {100}c in cubic became { $\left\{ {10\bar 14} \right\}$ }r in rhombohedral and remained aligned perpendicular to the compression direction. However, the {101}c and {111}c planes in the cubic phase split into { ${10{\bar{1}}4}$ }r and { ${11{\bar{2}}0}$ }r, and (0001)r and { ${10{\bar{1}}1}$ }r, respectively, in the rhombohedral phase. The { ${11{\bar{2}}0}$ }r planes preferentially aligned perpendicular to the compression direction while { ${10{\bar{1}}4}$ }r oriented at a low angle to the compression direction. Similarly, { ${10{\bar{1}}1}$ }r showed a slight preference to align more closely perpendicular to the compression direction than (0001)r. This variant selection may occur because the 〈 ${10{\bar{1}}4}$ r and [0001]r directions are the softer of the two sets of directions. The rhombohedral texture distortion may also be due to subsequent deformation. Indeed, polycrystal plasticity simulations indicate that for preferred { ${10{\bar{1}}4}$ }〈 ${1{\bar{2}}10}$ r and { ${11{\bar{2}}0}$ }〈 ${{\bar{1}}101}$ r slip and slightly less active { ${10{\bar{1}}1}$ }〈 ${{\bar{1}}2{\bar{1}}0}$ r slip, the observed texture pattern can be obtained.  相似文献   

10.
The standard enthalpies of formation of FeS (troilite), FeS2 (pyrite), Co0.9342S, Co3S4 (linnaeite), Co9S8 (cobalt pentlandite), CoS2 (cattierite), CuS (covellite), and Cu2S (chalcocite) have been determined by high temperature direct reaction calorimetry at temperatures between 700 K and 1021 K. The following results are reported: $$\Delta {\rm H}_{f,FeS}^{tr} = - 102.59 \pm 0.20kJ mol^{ - 1} ,$$ $$\Delta {\rm H}_{f,FeS}^{py} = - 171.64 \pm 0.93kJ mol^{ - 1} ,$$ $$\Delta {\rm H}_{f,Co_{0.934} S} = - 99.42 \pm 1.52kJ mol^{ - 1} ,$$ $$\Delta {\rm H}_{f,Co_9 S_8 }^{ptl} = - 885.66 \pm 16.83kJ mol^{ - 1} ,$$ $$\Delta {\rm H}_{f,Co_3 S_4 }^{In} = - 347.47 \pm 7.27kJ mol^{ - 1} ,$$ $$\Delta {\rm H}_{f,CoS_2 }^{ct} = - 150.94 \pm 4.85kJ mol^{ - 1} ,$$ $$\Delta {\rm H}_{f,Cu_2 S}^{cc} = - 80.21 \pm 1.51kJ mol^{ - 1} ,$$ and $$\Delta {\rm H}_{f,CuS}^{cv} = - 53.14 \pm 2.28kJ mol^{ - 1} ,$$ The enthalpy of formation of CuFeS2 (chalcopyrite) from (CuS+FeS) and from (Cu+FeS2) was determined by solution calorimetry in a liquid Ni0.60S0.40 melt at 1100 K. The results of these measurements were combined with the standard enthalpies of formation of CuS, FeS, and FeS2, to calculate the standard enthalpy of formation of CuFeS2. We found \(\Delta {\rm H}_{f,CuFeS_2 }^{ccp} = - 194.93 \pm 4.84kJ mol^{ - 1}\) . Our results are compared with earlier data given in the literature; generally the agreement is good and our values agree with previous estimates within the uncertainties present in both.  相似文献   

11.
Spectral ratios of teleseismic P waves for 15 deep (>200 km) earthquakes recorded at 146 High-Sensitivity Seismographic Network stations in the Kanto district and its surrounding area, eastern Japan, were inverted for attenuation parameter $ t_P^{ * } $ . The dataset consisted of good-quality vertical-component seismograms, whose P phases were handpicked. The P wave spectral ratios with high signal-to-noise ratios were calculated up to 1 Hz for all the station pairs, linear regressed, and then inverted for $ t_P^{ * } $ using the technique of least squares . The result showed that the active volcanic areas were clearly characterized by high $ t_P^{ * } $ . In contrast, $ t_P^{ * } $ varied in the nonvolcanic areas. The present result on the $ t_P^{ * } $ distribution was roughly consistent with the shallow part (<30 km) of an attenuation structure, which has been previously obtained based on 3-D tomography by using records of high-frequency (around 5 Hz) P waves from local earthquakes. This suggested that the present method of $ t_P^{ * } $ estimation is valid. The advantage and possible application to other areas were also discussed.  相似文献   

12.
Creep experiments have been performed on samples from a single crystal of vanadium-doped forsterite under controlled \(p_{{\text{O}}_2 } \) conditions to investigate the effects of the addition of substitutional defects in the tetrahedral lattice sites. The addition of vanadium causes marked changes in the flow behavior of the forsterite, with a net increase in the creep rate at high \(p_{{\text{O}}_2 } \) and a new \(p_{{\text{O}}_2 } \) -dependent flow regime at low \(p_{{\text{O}}_2 } \) conditions. These observations can be interpreted as resulting from changes in the majority defect species that maintain the charge neutrality within the crystal. A climb-controlled dislocation creep model for the high-temperature deformation of vanadium-doped forsterite is proposed in which either (i) movement of uncharged jogs is rate-limited by the diffusion of silicon via a vacancy mechanism or (ii) movement of positively charged jogs is rate-limited by diffusion of oxygen via a vacancy mechanism.  相似文献   

13.
Two crystals of natural chalcopyrite, CuFeS2, experimentally deformed at 200° C have been studied by means of transmission electron microscopy (TEM). The activated glide planes are (001) and {112}. The dislocations in (001) have the Burgers vector [110] and a predominating edge character. They are split into two colinear partials b=1/2[110] and can cross split into {112}. The dislocations in {112} consist of straight segments along low index lattice lines. They are often arranged in dipoles generating trails of loops. Few dislocations with b=1/2[ \(\overline {11} \) 1] and [1 \(\bar 1\) 0] are present and dislocations with b=[0 \(\bar 2\) 1] occur in low angle subgrain boundaries. From weak beam contrasts it is presumed that most of the dislocations gliding in {112} have b=1/2〈3 \(\overline {11} \) 〉. They are dissociated into up to four partials. Microtwins and different types of stacking faults in {112} also occur. Models of the dissociation of dislocations are discussed.  相似文献   

14.
Weak, compact radio sources (~100 mJy peak flux, L~1–10 pc) with their spectral peaks at about a gigahertz are studied, based on the complete sample of 46 radio sources of Snellen, drawn from high-sensitivity surveys, including the low-frequency Westerbork catalog. The physical parameters have been estimated for 14 sources: the magnetic field (H ), the number density of relativistic particles (n e), the energy of the magnetic field $(E_{H_ \bot } )$ , and the energy of relativistic particles (E e). Ten sources have $E_{H_ \bot } \ll E_e $ , three have approximate equipartition of the energies $(E_{H_ \bot } \sim E_e )$ , and only one has $E_{H_ \bot } \gg E_e $ . The mean magnetic fields in quasars (10?3 G) and galaxies (10?2 G) have been estimated. The magnetic field appears to be related to the sizes of compact features as $H \sim 1/\sqrt L $ .  相似文献   

15.
Data systematization using the constraints from the equation $$Cp = Cv + \alpha _P {}^2V_T K_T T$$ where C p, C v, α p, K T and V are respectively heat capacity at constant pressure, heat capacity at constant volume, isobaric thermal expansion, isothermal bulk modulus and molar volume, has been performed for tungsten and MgO. The data are $$K_T (W) = 1E - 5/(3.1575E - 12 + 1.6E - 16T + 3.1E - 20T^2 )$$ $$\alpha _P (W) = 9.386E - 6 + 5.51E - 9T$$ $$C_P (W) = 24.1 + 3.872E - 3T - 12.42E - 7T^2 + 63.96E - 11T^3 - 89000T^{ - 2} $$ $$K_T (MgO) = 1/(0.59506E - 6 + 0.82334E - 10T + 0.32639E - 13T^2 + 0.10179E - 17T^3 $$ $$\alpha _P (MgO) = 0.3754E - 4 + 0.7907E - 8T - 0.7836/T^2 + 0.9148/T^3 $$ $$C_P (MgO) = 43.65 + 0.54303E - 2T - 0.16692E7T^{ - 2} + 0.32903E4T^{ - 1} - 5.34791E - 8T^2 $$ For the calculation of pressure-volume-temperature relation, a high temperature form of the Birch-Murnaghan equation is proposed $$P = 3K_T (1 + 2f)^{5/2} (1 + 2\xi f)$$ Where $$K_T = 1/(b_0 + b_1 T + b_2 T^2 + b_3 T^3 )$$ $$f = (1/2)\{ [V(1,T)/V(P,T)]^{2/3} - 1\} $$ $$\xi = ({3 \mathord{\left/ {\vphantom {3 4}} \right. \kern-\nulldelimiterspace} 4})[K'_0 + K'_1 \ln ({T \mathord{\left/ {\vphantom {T {300}}} \right. \kern-\nulldelimiterspace} {300}}) - 4]$$ where in turn $$V(1,T) = V_0 [\exp (\int\limits_{300}^T {\alpha dT)]} $$ . The temperature dependence of the pressure derivative of the bulk modulus (K′1) is estimated by using the shock-wave data. For tungsten the data are K′0 = 3.5434, K′1 = 0.032; for MgO K′0 = 4.17 and K′1 = 0.1667. For calculating the Gibbs free energy of a solid at high pressure and at temperatures beyond that of melting at 1 atmosphere, it is necessary to define a high-temperature reference state for the fictive solid.  相似文献   

16.
A study on the geochemistry of groundwater was carried out in a river basin of Andhra Pradesh to probe into the spatial controlling processes of groundwater contamination, using principal component analysis (PCA). The PCA transforms the chemical variables, pH, EC, Ca2+, Mg2+, Na+, K+, HCO \(_3^- \) , Cl?, SO \(_4^{2-} \) , NO \(_3^-\) and F?, into two orthogonal principal components (PC1 and PC2), accounting for 75% of the total variance of the data matrix. PC1 has high positive loadings of EC, Na+, Cl?, SO \(_4^{2-} \) , Mg2+ and Ca2+, representing a salinity controlled process of geogenic (mineral dissolution, ion exchange, and evaporation), anthropogenic (agricultural activities and domestic wastewaters), and marine (marine clay) origin. The PC2 loadings are highly positive for HCO \(_3^- \) , F?, pH and NO \(_3^- \) , attributing to the alkalinity and pollution controlled processes of geogenic and anthropogenic origins. The PC scores reflect the change of groundwater quality of geogenic origin from upstream to downstream area with an increase in concentration of chemical variables, which is due to anthropogenic and marine origins with varying topography, soil type, depth of water levels, and water usage. Thus, the groundwater quality shows a variation of chemical facies from Na+ > Ca2+ > Mg2+ > K+: HCO \(_3^- \) > Cl? > SO \(_4^{2-}>\) NO \(_3^- \) > F?at high topography to Na+ > Mg2+ > Ca2+ > K+: Cl? > HCO \(_3^- \) > SO \(_4^{2-}>\) NO \(_3^- \) > F? at low topography. With PCA, an effective tool for the spatial controlling processes of groundwater contamination, a subset of explored wells is indexed for continuous monitoring to optimize the expensive effort.  相似文献   

17.
Geochemical potential field is defined as the scope within the earth’s space where a given component in a certain phase of a certain material system is acted upon by a diffusion force, depending on its spatial coordinatesX, Y andZ. The three coordinates follow the relations: $$NF_{ix} = - \frac{{\partial \mu }}{{\partial x}}, NF_{iy} = - \frac{{\partial \mu }}{{\partial y}}, NF_{iz} = - \frac{{\partial \mu }}{{\partial z}}$$ The characteristics of such a field can be summarized as: (1) The summation of geochemical potentials related to the coordinatesX, Y, Z, or pseudo-velocity head, pseudo-pressure head and pseudo-potential head of a certain component in the earth is a constant as given by $$\mu _x + \mu _y + \mu _z = c$$ or $$\mu _{x2} + \mu _{y2} + \mu _{z2} = \mu _{x1} + \mu _{y1} + \mu _{z1} $$ Derived from these relations is the principle of geochemical potential conservation. The following relations have the same physical significance: $$\mu _k + \mu _u + \mu _p = c$$ or $$\mu _{k2} + \mu _{u2} + \mu _{p2} = \mu _{k1} + \mu _{u1} + \mu _{p1} $$ (2) Geochemical potential field is a vector field quantified by geochemical field intensity which is defined as the diffusion force applied to one molecular volume (or one atomic volume) of a certain component moving from its higher concentration phase to lower concentration phase. The geochemical potential field intensity is given by $$\begin{gathered} E = - grad\mu \hfill \\ E = \frac{{RT}}{x}i + \frac{{RT}}{y}j + \frac{{RT}}{z}K \hfill \\ \end{gathered} $$ The present theory has been inferred to interpret the mechanism of formation of some tungsten ore deposits in China.  相似文献   

18.
Natural springs have been reliable sources of domestic water and have allowed for the development of recreational facilities and resorts in the Central Appalachians. The structural history of this area is complex and it is unknown whether these natural springs receive significant recharge from modern precipitation or whether they discharge old water recharged over geological times scales. The main objective of this study was to use stable isotopes of water ( $\delta^{18} {\text{O}}_{{{\text{H}}_{2} {\text{O}}}}$ and $\delta^{2} {\text{H}}_{{{\text{H}}_{2} {\text{O}}}}$ ), dissolved inorganic carbon ( $\delta^{13} {\text{C}}_{\text{DIC}}$ ) and dissolved sulfate ( $\delta^{34} {\text{S}}_{{{\text{SO}}_{4} }}$ and $\delta^{18} {\text{O}}_{{{\text{SO}}_{4} }}$ ) to delineate sources of water, carbon and sulfur in several natural springs of the region. Our preliminary isotope data indicate that all springs are being recharged by modern precipitation. The oxygen isotope composition indicates that waters in thermal springs did not encounter the high temperatures required for O isotope exchange between the water and silicate/carbonate minerals, and/or the residence time of water in the aquifers was short due to high flow rates. The carbon isotopic composition of dissolved inorganic carbon and sulfur/oxygen isotopic composition of dissolved sulfate provide evidence of low-temperature water–rock interactions and various biogeochemical transformations these waters have undergone along their flow path.  相似文献   

19.
The chemistry of soil solutions can be altered by human activities, due to the intense agricultural and husbandry, leading to leaching of nutrients and subsequently elevating ground water levels. Multivariate statistical and inverse geochemical modeling techniques were used to determine the main factors controlling soil solution chemistry of calcareous soils. In this research, a total of 21 calcareous soils was characterized and assessed for soil solution using soil column. The major cations in the studied soil solutions were in the decreasing order as Ca2+ > Mg2+ > Na+ > K+. The anions were also arranged in decreasing order as HCO $ _{3}^{ - } $  > Cl $ ^{ - } $  > SO $ _{4}^{2 - } $  > NO $ _{3}^{ - } $ . Concentrations of NO $ _{3}^{ - } $ , P, and K+ in soil solutions were in the range of 6.8–307.5 mg l?1 (mean 63.2 mg l?1), 5.0–10.4 mg l?1 (mean 5.9 mg l?1), and 2.8–54.6 mg l?1 (mean 11.3 mg l?1), respectively. Results suggest that the concentration of P in the soil solutions could be primarily controlled by the solubility of dicalcium phosphate dihydrate and dicalcium phosphate. Interactions between soil properties and observed solubility of nutrients were described, and put into empirical multivariate formulations. Obtained equations contained electrical conductivity (EC) as a key factor in determining nutrients solubility. Inverse geochemical modeling of soil solution using PHREEQC indicates the dissolution of calcite, anhydrite, halite, CO2 (g), N2 (g), and hydroxyapatite, and precipitation of sulfur. Cation exchange between Ca2+, Mg2+, K+ and Na+ occurred with Mg2+ and K+ into the solution, and Ca2+ and Na+ out of the solution. Determination of soil solution will improve soil management in the area, and preventing groundwater deterioration.  相似文献   

20.
The oxygen fugacity condition of equilibration has been carefully determined from a spinel lherzolite from Mongolia, olivine xenocrysts from chrome pyrope-bearing peridotite nodules from kimberlites of Yakutia, and basaltic samples from ocean floor, iron arcs and the continental areas. These indicate that the spinel lherzolites occurring within alkali basalts from Mongolia, equilibrated under an \(f_{O_2 } \) condition similar to that of WM buffer. The diamond and chrome pyrope-bearing peridotites from the kimberlite pipes equilibrated between IW and WM buffers. Some of the ilmenite-bearing peridotite crystallized under \(f_{O_2 } \) conditions similar to that between WM and QFM buffers and chondrites equilibrated below the QFI buffer. It is concluded that during geochemical processes in the upper mantle the \(f_{O_2 } \) conditions vary broadly, and are similar to that between FMQ and IW buffers. There is a dramatic change in the composition of the kimberlitic fluid, which is CH4-bearing at an early stage, but is in equilibrium with H2O and CO2 at a later stage. This is related to mass transfer of fluids from the lower part of the mantle with a low oxidation state to the upper part having a higher \(f_{O_2 } \) condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号