首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, permeation of mixed gases H2S/CH4 through commercial polyphenylene oxide (PPO) hollow fiber and poly (ester urethane) urea (PEUU) flat membranes was studied at pressures of 345–689 kPa, at ambient temperature and at 313.15 K. Various H2S concentrations of about 100–5000 ppm in CH4 binary synthetic gas mixtures as well as a real natural gas sample obtained from a gas refinery containing 0.3360 mol.% H2S (equivalent to 3360 ppm) were tested. It was observed that the permeance of components was affected by the balance between competitive sorption and plasticization effects. Separation factors of H2S/CH4 were in the range of 1.3–2.9, 1.8–3.1 and 2.2–4.3 at pressures of 345, 517 and 689 kPa, respectively. In the range of 101–5008 ppm of H2S in CH4, the effect of temperature on the separation factor was nearly negligible; however, permeances of both components of the mixtures increased with temperature. Additionally, the results obtained by PEUU membrane indicated that it was a better choice for hydrogen sulfide separation from H2S/CH4 mixtures than PPO. For PPO membrane, removal of hydrogen sulfide from high-concentration (up to 5008 ppm) binary mixtures of H2S/CH4 was compared with that of low concentration (as low as 101 ppm) through PPO. At concentrations of 101–968 ppm, plasticization was dominant compared with the competitive sorption, while for the H2S feed concentrations of 3048 ppm, the competitive sorption effect was dominant. For H2S concentration of 5008 ppm, the balance between these two effects played an important role for explanation of its trend.  相似文献   

2.
The presence of a gassy ground condition is an important problem in tunneling. In this study, the effects of groundwater H2S and CH4 emissions are investigated and characterized together with the factors that created these conditions in Nosoud tunnel in Iran. Through the geological investigations, the presence of these gasses was not detected prior to the construction of the tunnel. Groundwater sampling indicated that about 1 L of H2S is released per 100 L of the water inflow into the Nosoud tunnel under normal conditions. However, the volume of the released gas was varying with the changes in the groundwater discharge rate. Thus, estimation of groundwater inflow into the tunnel is necessary for predicting the volume of gas emission. Based on the experience of the Nosoud tunnel excavations, there are several geological and hydrogeological factors that must be considered as the indicators of gas emissions during tunneling. Considering the importance of ground water gas emission into the tunnels located in gassy conditions, the present work was conducted to predict the H2S seepage before the excavation using geological and hydrogeological indicators.  相似文献   

3.
The relationship among H2S, total organic carbon (TOC), total sulfur (TS) and total nitrogen contents of surface sediments (0–1 cm) was examined to quantify the relationship between H2S concentrations and TOC content at the sediment water interface in a coastal brackish lake, Nakaumi, southwest Japan. In this lake, bottom water becomes anoxic during summer due to a strong halocline. Lake water has ample dissolved SO4 2? and the surface sediments are rich in planktic organic matter (C/N 7–9), which is highly reactive in terms of sulfate reduction. In this setting the amount of TOC should be a critical factor regulating the activity of sulfate reduction and H2S production. In portions of the lake where sediment TOC content is less than 3.5 %, H2S was very low or absent in both bottom and pore waters. However, in areas with TOC >3.5 %, H2S was correlated with TOC content (pore water H2S (ppm) = 13.9 × TOC (%) ? 52.1, correlation coefficient: 0.72). H2S was also present in areas with sediment TS above 1.2 % (present as iron sulfide), which suggests that iron sulfide formation is tied to the amount of TOC. Based on this relationship, H2S production has progressively increased after the initiation of land reclamation projects in Lake Nakaumi, as the area of sapropel sediments has significantly increased. This TOC–H2S relationship at sediment–water interface might be used to infer H2S production in brackish–lagoonal systems similar to Lake Nakaumi, with readily available SO4 2? and reactive organic matter.  相似文献   

4.
The CO2 concentration of the air in Postojna Cave (400–7900 ppm) is found to be induced by CO2 sources (human respiration contributing?~?20,000–58,000 ppm per breath, outgassing of dripwater and water seeping from the vadose zone/epikarst with a pCO2 values of 5000–29,000 ppm, and underground Pivka River having pCO2 at 2344–4266 ppm) and CO2 dilution (inflow of outside air with a CO2 concentration of?~?400 ppm). Measurements show that sinking Pivka River has the lowest CO2 concentration among plausible CO2 sources but still continuously exceeds the surrounding cave air CO2 concentration. During the winter months, intensive ventilation reduces the cave air CO2 concentration to outside levels (~?400 ppm), even in the centre of the cave system. CO2 dilution is less pronounced in summer (CO2(min)?≈?800 ppm), since the ventilation rate is not as strong as in winter and the outside air that enters the cave through breathing holes and fractures is enriched with soil CO2. During spring and autumn, the daily alternation of the ventilation regime with a smaller rate of air exchange results in yearly cave air CO2 peaks of up to?~?2400 ppm. Some dead-end passages can be much less affected by ventilation, resulting in a cave air CO2 concentration of up to 7900 ppm. The strongest diurnal CO2 peaks due to human respiration were recorded during the spring holidays (increase of up to 1300 ppm day?1), compared to considerably smaller summer peaks despite peak visits (increase of?~?600 ppm day?1).  相似文献   

5.
The mass of volatiles emitted during volcanic eruptions is often estimated by comparing the volatile contents of undegassed melt inclusions, trapped in crystals at an early stage of magmatic evolution, with that of the degassed matrix glass. Here we present detailed characterisation of magmatic volatiles (H2O, CO2, S, Fl and Cl) of crystal-hosted melt and fluid inclusions from the 2014–2015 Holuhraun eruption of the Bárðarbunga volcanic system, Iceland. Based on the ratios of magmatic volatiles to similarly incompatible trace elements, the undegassed primary volatile contents of the Holuhraun parental melt are estimated at 1500–1700 ppm CO2, 0.13–0.16 wt% H2O, 60–80 ppm Cl, 130–240 ppm F and 500–800 ppm S. High-density fluid inclusions indicate onset of crystallisation at pressures?≥?0.4 GPa (~?12 km depth) promoting deep degassing of CO2. Prior to the onset of degassing, the melt CO2 content may have reached 3000–4000 ppm, with the total magmatic CO2 budget estimated at  23–55 Mt. SO2 release commenced at 0.12 GPa (~?3.6 km depth), eventually leading to entrapment of SO2 vapour in low-density fluid inclusions. We calculate the syn-eruptive volatile release as 22.2 Mt of magmatic H2O, 5.9–7.7 Mt CO2, and 11.3 Mt of SO2 over the course of the eruption; F and Cl release were insignificant. Melt inclusion constraints on syn-eruptive volatile release are similar to estimates made during in situ field monitoring, with the exception of H2O, where field measurements may be heavily biased by the incorporation of meteoric water.  相似文献   

6.
Volatiles contribute to magma ascent through the sub-volcanic plumbing system. Here, we investigate melt inclusion compositions in terms of major and trace elements, as well as volatiles (H2O, CO2, SO2, F, Cl, Br, S) for Quaternary Plinian and dome-forming dacite and andesite eruptions in the central and the northern part of Dominica (Lesser Antilles arc). Melt inclusions, hosted in orthopyroxene, clinopyroxene and plagioclase are consistently rhyolitic. Post-entrapment crystallisation effects are limited, and negligible in orthopyroxene-hosted inclusions. Melt inclusions are among the most water-rich yet recorded (≤?8 wt% H2O). CO2 contents are generally low (<?650 ppm), although in general the highest pressure melt inclusion contain the highest CO2. Some low-pressure (<?3 kbars) inclusions have elevated CO2 (up to 1100–1150 ppm), suggestive of fluxing of shallow magmas with CO2-rich fluids. CO2-trace element systematics indicate that melts were volatile-saturated at the time of entrapment and can be used for volatile-saturation barometry. The calculated pressure range (0.8–7.5 kbars) indicates that magmas originate from a vertically-extensive (3–27 km depth) storage zone within the crust that may extend to the sub-Dominica Moho (28 km). The vertically-extensive crustal system is consistent with mush models for sub-volcanic arc crust wherein mantle-derived mafic magmas undergo differentiation over a range of crustal depths. The other volatile range of composition for melt inclusions from the central part is F (75–557 ppm), Cl (1525–3137 ppm), Br (6.1–15.4 ppm) and SO2 (<?140 ppm), and for the northern part it’s F (92–798 ppm), Cl (1506–4428 ppm), Br (not determined) and SO2 (<?569; one value at 1015 ppm). All MIs, regardless of provenance, describe the same Cl/F correlation (8.3?±?2.7), indicating that the magma source at depth is similar. The high H2O content of Dominica magmas has implications for hazard assessment.  相似文献   

7.
Occurrence of hydrogen sulfide gas (H2S) is one of the most important engineering geological hazards during tunneling. Its hazards and consequent challenges are very difficult and costly to solve. During site investigation, one of the tasks for engineering geologists is prediction and evaluation of the risk of H2S gas in the underground spaces. In this study, water conveyance tunnel of Aspar, which was excavated in H2S-bearing environments, is discussed. The tunnel is excavated in the hydrocarbon formations. Applied experiments suggest that geological formations pertaining to hydrocarbon resources are crucial in formation and reservation of H2S gas. This paper briefly discusses hazards and geological sources of H2S, as well as remedial measures for decreasing the risks and problems in excavation of the tunnel. To predict the risk of H2S gas in the underground spaces, it is possible to use some precursors such as: sulfur springs, organic traces, organic argillaceous rocks, exposure of H2S odor from fresh surface of rock and smell of H2S during boreholes drilling. Controlling the inflow of groundwater into the excavation, diluting the concentration of H2S, training the personnel and utilization of some proper safety equipment have been used to mitigate risks and problems in tunnel excavation.  相似文献   

8.
In the present work, H2S of crude oil was removed via a two-step method including stripping followed by adsorption. First, ZnO/MCM-41 adsorbents containing 5, 17.5 and 30 wt% of zinc were synthesized and characterized using XRD and nitrogen physisorption. Then, these materials were used as adsorbents for the removal of the H2S stripped from crude oil. At second step, the H2S of crude oil was extracted to gas phase by hot stripping. The obtained extract was collected in a storage tank for the subsequent H2S adsorption process. A three-factor Box–Behnken design with five center points and one response was performed for the optimization of adsorption of H2S. The influence of process parameters and their interactional effects on the adsorption of H2S were analyzed using the obtained adsorption experimental data. A model including three important factors, i.e., temperature, space velocity and amount of supported zinc and their interactions, was developed to generate the optimum condition. The point of Zn = 30 wt%, T = 300 °C and space velocity = 3,000 h?1 had the optimum point with the highest break point time (t bp = 973 min).  相似文献   

9.
Titanium- and water-rich metamorphic olivine (Fo 86–88) is reported from partially dehydrated serpentinites from the Voltri complex, Ligurian Alps. The rocks are composed of mostly antigorite and olivine in addition to magnetite, chlorite, clinopyroxene and Ti-clinohumite. In situ secondary ion mass spectrometry (SIMS) data show that metamorphic olivine has very high and strongly correlated H2O (up to 0.7 wt%) and TiO2 contents (up to 0.85 wt%). Ti-rich olivine shows colourless to yellow pleochroism. Olivine associated with Ti-clinohumite contains low Ti, suggesting that Ti-rich olivine is not the breakdown product of Ti-clinohumite. Fourier transform infrared spectroscopy (FTIR) absorption spectra show peaks of serpentine, Ti-clinohumite and OH-related Si vacancies. Combining FTIR and SIMS data, we suggest the presence of clustered planar defects or nanoscale exsolutions of Ti-clinohumite in olivine. These defects or exsolutions contain more H2O (x ~ 0.1 in the formula 4Mg2SiO4·(1?x)Mg(OH,F)2·xTiO2) than Ti-clinohumite in the sample matrix (x = 0.34–0.46). In addition to TiO2 and H2O, secondary olivine contains significant Li (2–60 ppm), B (10–20 ppm), F (10–130 ppm) and Zr (0.9–2.1 ppm). It is enriched in 11B (δ11B = +17 to +23 ‰). Our data indicate that secondary olivine may play a significant role in transporting water, high-field strength and fluid-mobile elements into the deeper mantle as well as introduce significant B isotope anomalies. Release of hydrogen from H2O-rich olivine subducted into the deep mantle may result in strongly reduced mantle domains.  相似文献   

10.
Major and trace elements and water contents were analyzed in 16 peridotite xenoliths embedded by the Cenozoic basalts in Pingnan (southeastern Guangxi Province), to constrain the chemical composition and evolution of the lithospheric mantle located in the central part of the South China Block (SCB). The peridotites are mainly moderately refractory harzburgites and lherzolites (Mg#-Ol?=?90.3–91.7) and minor fertile lherzolites (Mg#-Ol?=?88.9–89.9). Clinopyroxenes in the peridotites show LREE-depleted pattern, and commonly exhibit negative anomalies in Nb and Ti, suggesting the peridotites probably represent residues after 1–10% of partial melting without significant mantle metasomatism. Water contents range from 146 to 237 ppm wt. H2O in clinopyroxene, and from 65 to 112 ppm wt. H2O, in orthopyroxene but are below detection limit (2 ppm wt. H2O) in olivine. Calculated bulk water contents, based on the mineral modes and partition coefficient, range from 14 to 83 ppm wt. H2O (average 59 ppm wt. H2O). There is a correlation between melting indices (such as Mg#-Ol, Ybn in clinopyroxene) and water contents in clinopyroxene and orthopyroxene, but no correlation is observed between the whole-rock water contents and the redox state (Fe3+/∑Fe ratios in spinel), suggesting that water contents in the peridotites are mainly controlled by the degree of partial melting rather than by oxygen fugacity. The lithospheric mantle beneath the interior of the SCB may not be compositionally stratified; fertile and moderately refractory mantle coexist at the similar depths. Geochemical data and water contents of the studied peridotites are similar to the proposed MORB source and indicate that the ancient refractory lithospheric mantle was irregularly eroded or reacted by the upwelling asthenosphere, and eventually replaced by juvenile fertile accreted mantle through the cooling of the asthenosphere.  相似文献   

11.
Calibration of five gas geothermometers is presented, three of which used CO2, H2S and H2 concentrations in fumarole steam, respectively. The remaining two use CO2H2 and H2SH2 ratios. The calibration is based on the relation between gas content of drillhole discharges and measured aquifer temperatures. After establishing the gas content in the aquifer, gas concentrations were calculated in steam formed by adiabatic boiling of this water to atmospheric pressure to obtain the gas geothermometry functions. It is shown that the concentrations of CO2, H2S and H2 in geothermal reservoir waters are fixed through equilibria with mineral buffers. At temperatures above 230°C epidote + prehnite + calcite + quartz are considered to buffer CO2. Two buffers are involved for H2S and H2 and two functions are, therefore, presented for the geothermometers involving these gases. For waters containing less than about 500 ppm chloride and in the range 230–300°C pyrite + pyrrholite + epidote + prehnite seem to be involved, but pyrite + epidote + prehnite + magnetite or chlorite for waters above 300°C and waters in the range 230–300°C, if containing over about 500 ppm.The gas geothermometers are useful for predicting subsurface temperatures in high-temperature geothermal systems. They are applicable to systems in basaltic to acidic rocks and in sediments with similar composition, but should be used with reservation for systems located in rocks which differ much in composition from the basaltic to acidic ones. The geothermometry results may be used to obtain information on steam condensation in upflow zones, or phase separation at elevated pressures.Measured aquifer temperatures in drillholes and gas geothermometry temperatures, based on data from nearby fumaroles, compare well in the five fields in Iceland considered specifically for the present study as well as in several fields in other countries for which data were inspected. The results of the gas geothermometers also compare well with the results of solute geothermometers and mixing models in three undrilled Icelandic fields.  相似文献   

12.
Cylinders of synthetic periclase single crystals were annealed at 0.15–0.5 GPa and 900–1200 °C under water-saturated conditions for 45 min to 72 h. Infrared spectra measured on the quenched products show bands at 3,297 and 3,312 cm?1 indicating V OH ? centers (OH-defect stretching vibrations in a half-compensated cation vacancy) in the MgO structure as a result of proton diffusion into the crystal. For completely equilibrated specimens, the OH-defect concentration, expressed as H2O equivalent, was calculated to 3.5 wt ppm H2O at 1,200 °C and 0.5 GPa based on the calibration method of Libowitzky and Rossmann (Am Min 82:1111–1115, 1997). This value was confirmed via Raman spectroscopy, which shows OH-defect-related bands at identical wavenumbers and yields an H2O equivalent concentration of about 9 wt ppm using the quantification scheme of Thomas et al. (Am Min 93:1550–1557, 2008), revised by Mrosko et al. (Am Mineral 96:1748–1759, 2011). Results of both independent methods give an overall OH-defect concentration range of 3.5–9 (+4.5/?2.6) ppm H2O. Proton diffusion follows an Arrhenius law with an activation energy E a = 280 ± 64 kJ mol?1 and the logarithm of the pre-exponential factor logDo (m2 s?1) = ?2.4 ± 1.9. IR spectra taken close to the rims of MgO crystals that were exposed to water-saturated conditions at 1,200 °C and 0.5 GPa for 24 h show an additional band at 3,697 cm?1, which is related to brucite precipitates. This may be explained by diffusion of molecular water into the periclase, and its reaction with the host crystal during quenching. Diffusion of molecular water may be described by logDH2O (m2 s?1) = ?14.1 ± 0.4 (2σ) at 1,200 °C and 0.5 GPa, which is ~ 2 orders of magnitude slower than proton diffusion at identical P-T conditions.  相似文献   

13.
Variability in baseline groundwater methane concentrations and isotopic compositions was assessed while comparing free and dissolved gas sampling approaches for a groundwater monitoring well in Alberta (Canada) over an 8-year period. Methane concentrations in dissolved gas samples (n?=?12) were on average 4,380?±?2,452 μg/L, yielding a coefficient of variation (CV) >50 %. Methane concentrations in free gas samples (n?=?12) were on average 228,756?±?62,498 ppm by volume, yielding a CV of 27 %. Quantification of combined sampling, sample handling and analytical uncertainties was assessed via triplicate sampling (CV of 19 % and 12 % for free gas and dissolved gas methane concentrations, respectively). Free and dissolved gas samples yielded comparable methane concentration patterns and there was evidence that sampling operations and pumping rates had a marked influence on the obtained methane concentrations in free gas. δ13CCH4 and δ2HCH4 values of methane were essentially constant (?78.6?±?1.3 and ?300?±?3?‰, respectively) throughout the observation period, suggesting that methane was derived from the same biogenic source irrespective of methane concentration variations. The isotopic composition of methane constitutes a robust and highly valuable baseline parameter and increasing δ13CCH4 and δ2HCH4 values during repeat sampling may indicate influx of thermogenic methane. Careful sampling and analytical procedures with identical and repeatable approaches are required in baseline-monitoring programs to generate methane concentration and isotope data for groundwater that can be reliably compared to repeat measurements once potential impact from oil and gas development, for example, may occur.  相似文献   

14.
Spherulitic textures in the Rocche Rosse obsidian flow (Lipari, Aeolian Islands, Italy) have been characterized through petrographic, crystal size distribution (CSD) and in situ major and volatile elemental analyses to assess the mode, temperature and timescales of spherulite formation. Bulk glass chemistry and spherulite chemistry analyzed along transects across the spherulite growth front/glass boundary reveal major-oxide and volatile (H2O, CO2, F, Cl and S) chemical variations and heterogeneities at a ≤5 μm scale. Numerous bulk volatile data in non-vesicular glass (spatially removed from spherulitic textures) reveal homogenous distributions of volatile concentrations: H2O (0.089 ± 0.012 wt%), F (950 ± 40 ppm) and Cl (4,100 ± 330 ppm), with CO2 and S consistently below detection limits suggesting either complete degassing of these volatiles or an originally volatile-poor melt. Volatile concentrations across the spherulite boundary and within the spherulitic textures are highly variable. These observations are consistent with diffusive expulsion of volatiles into melt, leaving a volatile-poor rim advancing ahead of anhydrous crystallite growth, which is envisaged to have had a pronounced effect on spherulite crystallization dynamics. Argon concentrations dissolved in the glass and spherulites differ by a factor of ~20, with Ar sequestered preferentially in the glass phase. Petrographic observation, CSD analysis, volatile and Ar data as well as diffusion modeling support continuous spherulite nucleation and growth starting at magmatic (emplacement) temperatures of ~790–825 °C and progressing through the glass transition temperature range (T g ~ 750–620 °C), being further modified in the solid state. We propose that nucleation and growth rate are isothermally constant, but vary between differing stages of spherulite growth with continued cooling from magmatic temperatures, such that there is an evolution from a high to a low rate of crystallization and low to high crystal nucleation. Based on the diffusion of H2O across these temperature ranges (~800–300 °C), timescales of spherulite crystallization occur on a timescale of ~4 days with further modification up to ~400 years (growth is prohibitively slow <400 °C and would become diffusion reliant). Selective deformation of spherulites supports a down-temperature continuum of spherulite formation in the Rocche Rosse obsidian; indeed, petrographic evidence suggests that high-strain zones may have catalyzed progressive nucleation and growth of further generations of spherulites during syn- and post-emplacement cooling.  相似文献   

15.
Generation of CO2-rich melts during basalt magma ascent and degassing   总被引:1,自引:0,他引:1  
To test mechanisms of basaltic magma degassing, continuous decompressions of volatile-bearing (2.7–3.8 wt% H2O, 600–1,300 ppm CO2) Stromboli melts were performed from 250–200 to 50–25 MPa at 1,180–1,140 °C. Ascent rates were varied from 0.25 to ~1.5 m/s. Glasses after decompression show a wide range of textures, from totally bubble-free to bubble-rich, the latter with bubble number densities from 104 to 106 cm?3, similar to Stromboli pumices. Vesicularities range from 0 to ~20 vol%. Final melt H2O concentrations are homogeneous and always close to solubilities. In contrast, the rate of vesiculation controls the final melt CO2 concentration. High vesicularity charges have glass CO2 concentrations that follow theoretical equilibrium degassing paths, whereas glasses from low vesicularity charges show marked deviations from equilibrium, with CO2 concentrations up to one order of magnitude higher than solubilities. FTIR profiles and maps reveal glass CO2 concentration gradients near the gas–melt interface. Our results stress the importance of bubble nucleation and growth, and of volatile diffusivities, for basaltic melt degassing. Two characteristic distances, the gas interface distance (distance either between bubbles or to gas–melt interfaces) and the volatile diffusion distance, control the degassing process. Melts containing numerous and large bubbles have gas interface distances shorter than volatile diffusion distances, and degassing proceeds by equilibrium partitioning of CO2 and H2O between melt and gas bubbles. For melts where either bubble nucleation is inhibited or bubble growth is limited, gas interface distances are longer than volatile diffusion distances. Degassing proceeds by diffusive volatile transfer at the gas–melt interface and is kinetically limited by the diffusivities of volatiles in the melt. Our experiments show that CO2-oversaturated melts can be generated as a result of magma decompression. They provide a new explanation for the occurrence of CO2-rich natural basaltic glasses and open new perspectives for understanding explosive basaltic volcanism.  相似文献   

16.
In the Pan-African Lufilian belt (Western Zambian Copperbelt), uranium mineralizations, preferentially scattered in kyanite ± talc micaschists (metamorphosed evaporitic sediments) or concentrated along transposed quartz veins provide an opportunity to (1) understand the time/space relationship between the ore minerals and the deformation of the host rocks, (2) identify the different fluid events associated with specific stages of quartz deformation and (3) characterize the ore fluid geochemistry in terms of fluid origin and fluid/rock interactions. In the U occurrences studied in Lolwa and Mitukuluku (Domes region, Western Zambian Copperbelt), two mineralizing stages are described. The first generation of ore fluids (53–59 wt% CaCl2, 13–15 wt% NaCl; N2–H2 in the gas phase of fluid inclusions) circulated during the high-temperature quartz recrystallization, at 500–700 °C. This temperature is in agreement with the PT conditions recorded during the crustal thickening related to continental collision at ca. 530 Ma. LA-ICPMS analyses show the presence of uranium within this fluid, with a concentration mode around 20 ppm. The second generation of ore fluid (21–32 wt% NaCl, 19–21 wt% CaCl2; CO2–CO in the gas phase of fluid inclusions) percolated at lower temperature conditions, at the brittle–ductile transition, between 200 and 300 °C. This temperature could be related to the exhumation of the high-grade metamorphic rocks at ca. 500 Ma. The formation of H2 and CO is interpreted as the result of radiolysis in the presence of dissolved uranium in the aqueous phase of these fluid inclusions. Finally, a late fluid (14–16 wt% NaClequiv) circulated in the brittle domain but seems unrelated to U (re-)mobilization event.  相似文献   

17.
This paper studied the CO2-EGR in Altmark natural gas field with numerical simulations. The hydro-mechanical coupled simulations were run using a linked simulator TOUGH2MP-FLAC3D. In order to consider the gas mixing process, EOS7C was implemented in TOUGH2MP. A multi-layered 3D model (4.4 km × 2 km × 1 km) which consists of the whole reservoir, caprock and base rock was generated based on a history-matched PETREL model, originally built by GDF SUEZ E&P Deutschland GmbH for Altmark natural gas field. The model is heterogeneous and discretized into 26,015 grid blocks. In the simulation, 100,000 t CO2 was injected in the reservoir through well S13 within 2 years, while gas was produced from the well S14. Some sensitivity analyses were also carried out. Simulation results show that CO2 tends to migrate toward the production well S14 along a NW–SE fault. It reached the observation wells S1 and S16 after 2 years, but no breakthrough occurred in the production well. After 2 years of CO2 injection, the reservoir pressure increased by 2.5 bar, which is beneficial for gas recovery. The largest uplift (1 mm) occurred at the bottom of the caprock. The deformation was small (elastic) and caprock integrity was not affected. With the injection rate doubled the average pressure increased by 5.3 bar. Even then the CO2 did not reach the production well S14 after 2 years of injection. It could be concluded that the previous flow field was established during the primary gas production history. This former flow field, including CO2 injection/CH4 production rate during CO2-EGR and fault directions and intensity are the most important factors affecting the CO2 transport.  相似文献   

18.
The solubility of sulphur in sulphide-saturated, H2O-bearing basaltic–andesitic and basaltic melts from Hekla volcano (Iceland) has been determined experimentally at 1,050°C, 300 and 200 MPa, and redox conditions with oxygen fugacity (logfO2) between QFM−1.2 and QFM+1.1 (QFM is a quartz–fayalite–magnetite oxygen buffer) in the systems containing various amounts of S and H2O. The S content of the H2O-rich glasses saturated with pyrrhotite decreases from 2,500 ppm in basalt to 1,500 ppm in basaltic andesite at the investigated conditions. Furthermore, the reduction of water content in the melt at pyrrhotite saturation and fixed T, P and redox conditions leads to a decrease in S concentration from 2,500 to 1,400 ppm for basaltic experiments (for H2O decrease from 7.8 to 1.4 wt%) and from 1,500 to 900 ppm (for H2O decrease from 6.7 to 1.7 wt%) for basaltic andesitic experiments. Our experimental data, combined with silicate melt inclusion investigations and the available models on sulphide saturation in mafic magmas, indicate that the parental basaltic melts of Hekla were not saturated with respect to sulphide. During magmatic differentiation, the S content in the residual melts increased and might have reached sulphide saturation with 2,500 ppm dissolved S. With further magma crystallization, the S concentration in the melt was controlled by the sulphide saturation of the magma, decreasing from ~2,500 to 900 ppm S.  相似文献   

19.
Clinopyroxene phenocrysts from the mafic calc-alkaline lavas of Salina (Aeolian arc, southern Tyrrhenian Sea, Italy) have been analysed to determine the hydrogen content and iron oxidation state of this early crystallized phase. The volcanic activity of Salina, starting at 168 ka and developed in several centres up to 24 ka, was dominated by calc-alkaline and high-K calc-alkaline basalts and andesites, with minor dacites and rhyolites. The presence of OH vibrational bands was detected in the IR spectra of clinopyroxenes phenocrysts from Corvo, Rivi-Capo (168–87 ka), Fossa delle Felci (108–59 ka) and Monte dei Porri (57 ka) eruptions. Corvo-Rivi-Capo basalts have clinopyroxenes with the lowest water contents 75–97 ppm H2O by weight, whereas an increase in the hydrogen contents of clinopyroxenes from Fossa delle Felci centre, with 171–286 ppm H2O by weight, and Monte dei Porri with 343–390 ppm H2O by weight, was observed. Mössbauer spectroscopy showed only a limited variation on the Fe3+/Fetot ratio of the studied samples, and a very similar atomic Fe3+ content (0.042–0.047 a.p.f.u.) suggesting that only minor variation on fO2 occurred during the crystallization of these clinopyroxenes. The water content of parental melts, calculated by applying an IVAl-dependent partition coefficient to the measured hydrogen contents of clinopyroxenes, is 0.4–0.8 wt% of water in melt for the Rivi-Capo-Corvo basalts, 0.5–3.7 wt% water in melt for Fossa delle Felci lavas and 1.6–2.6 wt% of water in melt for Monte dei Porri lavas. An increase in the maximum hydrogen contents of clinopyroxenes can be recognized during the evolution of the Salina volcano, with the highest hydrogen content measured in clinopyroxenes from Monte dei Porri where the eruptions were characterized by a high degree of explosivity, suggesting a key role of volatiles.  相似文献   

20.
Perennial ice covers on many Antarctic lakes have resulted in high lake inorganic carbon contents. The objective of this paper was to evaluate and compare the brine and CO2 chemistries of Lake Vida (Victoria Valley) and West Lake Bonney (Taylor Valley), two lakes of the McMurdo Dry Valleys (East Antarctica), and their potential consequences during global warming. An existing geochemical model (FREZCHEM-15) was used to convert measured molarity into molality needed for the FREZCHEM model, and this model added a new algorithm that converts measured DIC into carbonate alkalinity needed for the FREZCHEM model. While quite extensive geochemical information exists for ice-covered Taylor Valley lakes, such as West Lake Bonney, only limited information exists for the recently sampled brine of >25 m ice-thick Lake Vida. Lake Vida brine had a model-calculated pCO2 = 0.60 bars at the field pH (6.20); West Lake Bonney had a model-calculated pCO2 = 5.23 bars at the field pH (5.46). Despite the high degree of atmospheric CO2 supersaturation in West Lake Bonney, it remains significantly undersaturated with the gas hydrate, CO2·6H2O, unless these gas hydrates are deep in the sediment layer or are metastable having formed under colder temperatures or greater pressures. Because of lower temperatures, Lake Vida could start forming CO2·6H2O at lower pCO2 values than West Lake Bonney; but both lakes are significantly undersaturated with the gas hydrate, CO2·6H2O. For both lakes, simulation of global warming from current subzero temperatures (?13.4 °C in Lake Vida and ?4.7 °C in West Lake Bonney) to 10 °C has shown that a major loss of solution-phase carbon as CO2 gases and carbonate minerals occurred when the temperatures rose above 0 °C and perennial ice covers would disappear. How important these Antarctic CO2 sources will be for future global warming remains to be seen. But a recent paper has shown that methane increased in atmospheric concentration due to deglaciation about 10,000 years ago. So, CO2 release from ice lakes might contribute to atmospheric gases in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号