共查询到20条相似文献,搜索用时 15 毫秒
1.
The 3rd Chinese National Arctic Research Expedition(CHINARE–Arctic III) was carried out from July to September in 2008. The partial pressure of CO2(pCO2) in the atmosphere and in surface seawater were determined in the Bering Sea during July 11–27, 2008, and a large number of seawater samples were taken for total alkalinity(TA) and total dissolved inorganic carbon(DIC) analysis. The distributions of CO2 parameters in the Bering Sea and their controlling factors were discussed. The pCO2 values in surface seawater presented a drastic variation from 148 to 563 μatm(1 μatm = 1.013 25×10-1 Pa). The lowest pCO2 values were observed near the Bering Sea shelf break while the highest pCO2 existed at the western Bering Strait. The Bering Sea generally acts as a net sink for atmospheric CO2 in summer. The air-sea CO2 fluxes in the Bering Sea shelf, slope, and basin were estimated at-9.4,-16.3, and-5.1 mmol/(m2·d), respectively. The annual uptake of CO2 was about 34 Tg C in the Bering Sea. 相似文献
2.
An improved model is presented for the calculation of the solubility of carbon dioxide in aqueous solutions containing Na+, K+, Ca2+, Mg2+, Cl−, and SO42− in a wide temperature–pressure–ionic strength range (from 273 to 533 K, from 0 to 2000 bar, and from 0 to 4.5 molality of salts) with experimental accuracy. The improvements over the previous model [Duan, Z. and Sun, R., 2003. An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533K and from 0 to 2000 bar. Chemical Geology, 193: 257–271] include: (1) By developing a non-iterative equation to replace the original equation of state in the calculation of CO2 fugacity coefficients, the new model is at least twenty times computationally faster and can be easily adapted to numerical reaction-flow simulator for such applications as CO2 sequestration and (2) By fitting to the new solubility data, the new model improved the accuracy below 288 K from 6% to about 3% of uncertainty but still retains the high accuracy of the original model above 288 K. We comprehensively evaluate all experimental CO2 solubility data. Compared with these data, this model not only reproduces all the reliable data used for the parameterization but also predicts the data that were not used in the parameterization. In order to facilitate the application to CO2 sequestration, we also predicted CO2 solubility in seawater at two-phase coexistence (vapor–liquid or liquid–liquid) and at three-phase coexistence (CO2 hydrate–liquid water–vapor CO2 [or liquid CO2]). The improved model is programmed and can be downloaded from the website http://www.geochem-model.org/programs.htm. 相似文献
3.
A global ocean carbon cycle model based on the ocean general circulation model POP and the improved biogeochemical model OCMIP-2 is employed to simulate carbon cycle processes under the historically observed atmospheric CO 2 concentration and different future scenarios (called Rep- resentative Concentration Pathways, or RCPs). The RCPs in this paper follow the design of Inter- governmental Panel on Climate Change (IPCC) for the Fifth Assessment Report (AR5). The model results show that the ocean absorbs CO 2 from atmosphere and the absorbability will continue in the 21st century under the four RCPs. The net air-sea CO 2 flux increased during the historical time and reached 1.87 Pg/a (calculated by carbon) in 2005; however, it would reach peak and then decrease in the 21st century. The ocean absorbs CO 2 mainly in the mid latitude, and releases CO 2 in the equator area. However, in the Antarctic Circumpolar Current (ACC) area the ocean would change from source to sink under the rising CO 2 concentration, including RCP4.5, RCP6.0, and RCP8.5. In 2100, the anthropogenic carbon would be transported to the 40 S in the Atlantic Ocean by the North Atlantic Deep Water (NADW), and also be transported to the north by the Antarctic Bottom Water (AABW) along the Antarctic continent in the Atlantic and Pacific oceans. The ocean pH value is also simulated by the model. The pH decreased by 0.1 after the industrial revolution, and would continue to decrease in the 21st century. For the highest concentration sce- nario of RCP8.5, the global averaged pH would decrease by 0.43 to reach 7.73 due to the absorption of CO 2 from atmosphere. 相似文献
4.
This paper evaluates the simultaneous measurement of dissolved gases (CO2 and O2/Ar ratios) by membrane inlet mass spectrometry (MIMS) along the 180° meridian in the Southern Ocean. The calibration of pCO2 measurements by MIMS is reported for the first time using two independent methods of temperature correction. Multiple calibrations and method comparison exercises conducted in the Southern Ocean between New Zealand and the Ross Sea showed that the MIMS method provides pCO2 measurements that are consistent with those obtained by standard techniques (i.e. headspace equilibrator equipped with a Li–Cor NDIR analyser). The overall MIMS accuracy compared to Li–Cor measurements was 0.8 μatm. The O2/Ar ratio measurements were calibrated with air-equilibrated seawater standards stored at constant temperature (0 ± 1 °C). The reproducibility of the O2/Ar standards was better than 0.07% during the 9 days of transect between New Zealand and the Ross Sea.The high frequency, real-time measurements of dissolved gases with MIMS revealed significant small-scale heterogeneity in the distribution of pCO2 and biologically-induced O2 supersaturation (ΔO2/Ar). North of 65°S several prominent thermal fronts influenced CO2 concentrations, with biological factors also contributing to local variability. In contrast, the spatial variation of pCO2 in the Ross Sea gyre was almost entirely attributed to the biological utilization of CO2, with only small temperature effects. This high productivity region showed a strong inverse relationship between pCO2 and biologically-induced O2 disequilibria (r2 = 0.93). The daily sea air CO2 flux ranged from − 0.2 mmol/m2 in the Northern Sub-Antarctic Front to − 6.4 mmol/m2 on the Ross Sea shelves where the maximum CO2 influx reached values up to − 13.9 mmol/m2. This suggests that the Southern Ocean water (south of 58°S) acts as a seasonal sink for atmospheric CO2 at the time of our field study. 相似文献
5.
The interannual variations of CO2 sources and sinks in the surface waters of the Antarctic Ocean (south of 50°S) were studied between 1986 and 1994. An existing, slightly modified one-dimensional model describing the mixed-layer carbon cycle was used for this study and forced by available satellite-derived and climatological data. Between 1986 and 1994, the mean Antarctic Ocean CO2 uptake was 0.53 Pg C year−1 with an interannual variability of 0.15 Pg C year−1.Interannual variation of the Antarctic Ocean CO2 uptake is related to the Antarctic Circumpolar Wave (ACW), which affects sea surface temperature (SST), wind-speed and sea-ice extent. The CO2 uptake in the Antarctic Ocean has increased from 1986 to 1994 by 0.32 Pg C. It was found that over the 9 years, the surface ocean carbon dioxide fugacity (fCO2) increase was half that of the atmospheric CO2 increase inducing an increase of the air–sea fCO2 gradient. This effect is responsible for 60% of the Antarctic Ocean CO2 uptake increase between 1986 and 1994, as the ACW effect cancels out over the 9 years investigated. 相似文献
6.
Calcification in the marine environment is the basis for the accretion of carbonate in structures such as coral reefs, algal ridges and carbonate sands. Among the organisms responsible for such calcification are the Corallinaceae (Rhodophyta), recognised as major contributors to the process world-wide. Hydrolithon sp. is a coralline alga that often forms rhodoliths in the Western Indian Ocean. In Zanzibar, it is commonly found in shallow lagoons, where it often grows within seagrass beds and/or surrounded by green algae such as Ulva sp. Since seagrasses in Zanzibar have recently been shown to raise the pH of the surrounding seawater during the day, and since calcification rates are sensitive to pH, which changes the saturation state of calcium carbonate, we measured the effects of pH on photosynthetic and calcification rates of this alga. It was found that pH had significant effects on both calcification and photosynthesis. While increased pH enhanced calcification rates both in the light and in the dark at pH >8.6, photosynthetic rates decreased. On the other hand, an increase in dissolved CO2 concentration to 26 μmol kg−1 (by bubbling with air containing 0.9 mbar CO2) caused a decrease in seawater pH which resulted in 20% less calcification after 5 days of exposure, while enhancing photosynthetic rates by 13%. The ecological implications of these findings is that photosynthetically driven changes in water chemistry by surrounding plants can affect calcification rates of coralline algae, as may future ocean acidification resulting from elevated atmospheric CO2. 相似文献
7.
基于渤海表层典型的碳酸盐系统,通过实验室密闭培养实验,分析急性CO2酸化条件对菲律宾蛤仔(Ruditapes philippinarum) CaCO3形成速率(G)和CO2呼吸速率(RC)的影响,以探讨局部海域CO2酸化的底层海水在潮流或者风海流等因素的驱动下,脉冲式影响贝类栖息地时养殖贝类可能的响应。结果表明,菲律宾蛤仔在急性CO2酸化条件下发生轻微的钙壳溶解和显著的呼吸抑制。CO2酸化和菲律宾蛤仔的呼吸作用共同驱动钙壳溶解,溶解速率随Ω文石下降而升高,G(μmol/(FWg·h))=0.14 × Ω文石-0.49 (n=12, r=0.95, p<0.01)。活体菲律宾蛤仔钙壳保持稳定的Ω文石临界值为3.5,而在Ω文石=1.0的条件下,每天溶解的钙壳相当于贝壳总重的2‰。相较于钙壳溶解,Ω文石改变对菲律宾蛤仔呼吸作用的影响更大,RC(μmol/(FWg·h))=0.27 × Ω文石+0.90 (n =12, r=0.82, p<0.01)。由于呼吸代谢决定了摄食等各种耗能行为的效率,因此本研究的结果表明,尽管菲律宾蛤仔可以通过摄食等自身调节机制来抵御造成钙壳溶解的环境胁迫,然而这一机制本身就可能受到酸化环境的不良影响。 相似文献
8.
CO2是引起全球气候变暖的最重要温室气体。大气中过量CO2被海水吸收后将改变海水中碳酸盐体系的组成,造成海水酸化,危害海洋生态环境。本文采用局部近似回归法对2013年12月—2014年11月期间西沙海洋大气CO2浓度连续监测数据进行筛分,得到西沙大气CO2区域本底浓度。结果表明,西沙大气CO2区域浓度具有明显的日变化和季节变化特征。4个季节西沙大气CO2区域本底浓度日变化均表现为白天低、夜晚高,最高值405.39×10-6(体积比),最低值399.12×10-6(体积比)。西沙大气CO2区域本底浓度季节变化特征表现为春季和冬季高,夏季和秋季低。CO2月平均浓度最高值出现在2013年12月,为406.22×10-6(体积比),最低值出现在2014年9月,为398.68×10-6(体积比)。西沙大气CO2区域本底浓度日变化主要受本区域日照和温度控制。季节变化主要控制因素是南海季风和大气环流,南海尤其是北部海域初级生产力变化和海洋对大气CO2的源/汇调节作用。 相似文献
9.
大气中CO_2浓度不断升高导致的海水酸化,已经引起了广泛的环境、生态和气候问题。本实验采用实验生态学的方法,以盐生杜氏藻(Dunaliella salina)为研究对象,分析其在CO_2加富的条件下叶绿素荧光参数的变化。研究表明,CO_2加富对盐生杜氏藻光系统Ⅱ最大光化学量子产额(Fv/Fm)和最大相对电子传递速率(rETRmax)无显著影响(P0.05),显著促进了光系统Ⅱ实际光合效率(P0.05)和光能利用效率(α)(P0.05),并且降低了饱和光强(Ek)(P0.05)。然而,CO_2升高增加了盐生杜氏藻的光抑制参数(β)(P0.05)和非光化学淬灭(NPQ)(P0.05),这说明在光照充足的情况下,CO_2加富会对盐生杜氏藻产生负面效应,使其更容易受到光抑制。 相似文献
10.
Shane M. Ohline Malcolm R. Reid Shamus L.G. Husheer Kim I. Currie Keith A. Hunter 《Marine Chemistry》2007
Accurate measurement of seawater pH has long been sought by marine chemists (for example: [Dickson, A.G. 1993a. The measurement of sea water pH. Marine Chemistry, 44, 131–142, Dickson, A.G. 1993b. pH buffers for sea water media based on the total hydrogen ion concentration scale. Deep-Sea Research, 40, 107–118; Zhang, 1996; Tapp, M., Hunter, K.A., Currie, K. and Macaskill, B. 2000. Apparatus of continuous-flow underway spectrophotometric measurement of surface water pH. Marine Chemistry 72(2–4), 193–202; Friis, K., Koetzinger, A., Wallace, D.W.R. 2004. Spectrophotometric pH measurement in the ocean: Requirements, design and testing of an autonomous charge-coupled device detector system. Limnology and Oceanography: Methods 2, 126–136]. Recently, such attempts have taken on greater significance as anthropogenic carbon dioxide emissions may create rapidly changing oceanic pH. Spectrophotometric techniques have been accepted generally as the best for determination of seawater pH. Here we report a new technique using thymol blue as the indicator dye and fitting the entire spectrum from 400 to 900 nm rather than measuring the absorbance values at only two or three points in the spectrum. This full-spectrum modelling enables a reduction in signal to noise over other techniques. In the laboratory, we find with seawater samples a pH precision increase of five-fold “within” a sample and seven-fold “between” samples when comparing the full spectrum to the three-point method of analysis [Zhang, H., Byrne, R.H. 1996. Spectrophotometric pH measurements of surface seawater at in-situ conditions: absorbance and protonation behaviour of thymol blue. Marine Chemistry 52, 17–25]. 相似文献
11.
12.
根据2018年7月、11月和2019年1月、4月对广东考洲洋牡蛎养殖海域进行4个季节调查获得的p H、溶解无机碳(DIC)、水温、盐度、溶解氧(DO)及叶绿素a(Chla)等数据,估算该区域表层海水溶解无机碳体系各分量的浓度、初级生产力(PP)、表层海水CO2分压[p(CO2)]和海-气界面CO2交换通量(FCO2),分析牡蛎养殖活动对养殖区碳循环的影响。结果表明:牡蛎养殖区表层海水中Chl a、DIC、HCO3–和PP显著低于非养殖区;养殖淡季表层海水中pH、DO、DIC、HCO3–、和CO32–显著大于养殖旺季,养殖旺季的p(CO2)和FCO2显著大于养殖淡季。牡蛎养殖区表层海水夏季、秋季、冬季和春季的海-气界面CO2交换通量FCO2平均值分别是(42.04±9.56)、(276... 相似文献
13.
采用实验生态学的方法,研究了大型海藻鼠尾藻(Sargassum thunbergii)对赤潮微藻中肋骨条藻(Skeletonema costatum)的克生效应及其对 CO2加富的响应变化.结果表明,正常培养的鼠尾藻新鲜组织、干粉末和水溶性抽提液能够导致中肋骨条藻的细胞密度显著降低(P<0.05), CO2加富培养的鼠尾藻新鲜组织、干粉末和水溶性抽提液能够更加明显地抑制中肋骨条藻种群生长(P<0.01).实验结果证实鼠尾藻对中肋骨条藻具有克生效应,而 CO2加富培养引起了鼠尾藻对中肋骨条藻克生效应的变化,使其对中肋骨条藻生长的抑制作用显著加强.正常培养的鼠尾藻培养水过滤液能够显著抑制中肋骨条藻的生长(P<0.05),而 CO2加富培养的鼠尾藻培养水过滤液对中肋骨条藻的生长没有表现出明显的影响(P>0.05),因此推测 CO2加富培养可能改变了鼠尾藻对中肋骨条藻克生作用的方式,作用方式由分泌克生物质转变为细胞直接接触转递. 相似文献
14.
The third Chinese National Arctic Research Expedition(CHINARE) was conducted in the summer of 2008.During the survey,the surface seawater partial pressure of CO_2(pCO_2) was measured,and sea water samples were collected for CO_2 measurement in the Canada Basin.The distribution of pCO_2 in the Canada Basin was determined,the influencing factors were addressed,and the air-sea CO_2 flux in the Canada Basin was evaluated.The Canada Basin was divided into three regions:the ice-free zone(south of 77°N),the partially ice-covered zone(77°–80°N),and the heavily ice-covered zone(north of 80°N).In the ice-free zone,pCO_2 was high(320 to 368μatm,1 μatm=0.101 325 Pa),primarily due to rapid equilibration with atmospheric CO_2 over a short time.In the partially ice-covered zone,the surface pCO_2 was relatively low(250 to 270 μatm) due to ice-edge blooms and icemelt water dilution.In the heavily ice-covered zone,the seawater pCO_2 varied between 270 and 300 μatm due to biological CO_2 removal,the transportation of low pCO_2 water northward,and heavy ice cover.The surface seawater pCO_2 during the survey was undersaturated with respect to the atmosphere in the Canada Basin,and it was a net sink for atmospheric CO_2.The summertime net CO_2 uptake of the ice-free zone,the partially ice-covered zone and the heavily ice-covered zone was(4.14±1.08),(1.79±0.19),and(0.57±0.03) Tg/a(calculated by carbon,1Tg=10~(12) g),respectively.Overall,the net CO_2 sink of the Canada Basin in the summer of 2008 was(6.5±1.3) Tg/a,which accounted for 4%–10% of the Arctic Ocean CO_2 sink. 相似文献
15.
微藻固碳是一种新型节能减排技术,具有长期可持续发展的潜力。本文对两株富油微藻(球等鞭金藻和微拟球藻)进行了富碳培养下生长特性及中性脂积累特性的研究。两株富油微藻的最佳培养条件为10%CO2浓度和f培养基。本研究对两株富油微藻的最大生物量产率、总脂含量、最大油脂产率、微藻的C含量和CO2固定率进行了测定。球等鞭金藻的各参数指标分别为:142.42±4.58g/(m2·d),39.95%±0.77%,84.47±1.56g/(m2·d),45.98%±1.75%和33.74±1.65g/(m2·d)。微拟球藻的各参数指标分别为:149.92±1.80g/(m2·d),37.91%±0.58%,89.90±1.98g/(m2·d),46.88%±2.01%和34.08±1.32g/(m2·d)。实验结果显示,两株海洋微藻均属于高固碳优良藻株,适合应用于微藻烟气减排技术开发,具备用于海洋生物质能耦合CO2减排开发的潜力。 相似文献
16.
CO2升高和阳光紫外辐射对坛紫菜生长和光合特性的耦合效应 总被引:1,自引:0,他引:1
大气CO2持续升高,导致溶入海水中的CO2增多,海水表层的H+浓度增加,从而引起海洋酸化。为了探讨近岸定生大型海藻对这种环境变化的响应,本文选择经济海藻坛紫菜为实验材料,研究海洋酸化与紫外辐射对藻体生长以及光合特性的影响。实验分两个CO2处理,分别为正常空气水平(390 ppmv)和高CO2水平(800 ppmv); 三种辐射处理,分别为全波长辐射(PAB)、滤除紫外线B(PA)和仅接受可见光处理(PAR)。研究结果表明,CO2培养下的坛紫菜,在仅有可见光(P)或者同时有紫外线A(PA)存在的情况下,显著促进藻体的生长;但在全波长辐射处理下(PAB),这种作用不明显。高CO2降低了藻体在P和PA处理下的光合作用速率,但对PAB处理作用不显著。高CO2处理下的藻体,UV-B显著降低了全波长辐射下藻体紫外吸收物质的含量,但在正常CO2水平下,紫外辐射的作用不显著。这表明高CO2导致的生长优势被紫外辐射的负面效应所抵消,在全球变化的过程中,紫外辐射的进一步加强在海洋酸化的背景下甚至有可能降低坛紫菜的产量。 相似文献
17.
2013年南海东北部春季共享航次采用走航观测方式,现场测定了表层海水和大气的二氧化碳分压(pCO2)及相应参数。结合水文、化学等同步观测要素资料,对该海域pCO2的分布变化进行了探讨。结果表明,陆架区受珠江冲淡水、沿岸上升流及生物活动的影响,呈现CO2的强汇特征;吕宋海峡附近及吕宋岛西北附近海域受海表高温、黑潮分支"西伸"、吕宋岛西北海域上升流等因素影响,呈现强源特征。根据Wanninkhof的通量模式,春季整个南海东北部海域共向大气释放约4.25×104 t碳。 相似文献
18.
TheconcentrationoftotaldissolvedCO_2insurfacewaterinENSOevent──TheresultsofinvestigationduringTOGAexpeditions¥MaLiming;ZhangB?.. 相似文献
19.
Spatial variability in the partial pressures of CO2 in the northern Bering and Chukchi seas 总被引:2,自引:0,他引:2
Liqi Chen Zhongyong Gao 《Deep Sea Research Part II: Topical Studies in Oceanography》2007,54(23-26):2619
In the summers of 1999 and 2003, the 1st and 2nd Chinese National Arctic Research Expeditions measured the partial pressure of CO2 in the air and surface waters (pCO2) of the Bering Sea and the western Arctic Ocean. The lowest pCO2 values were found in continental shelf waters, increased values over the Bering Sea shelf slope, and the highest values in the waters of the Bering Abyssal Plain (BAP) and the Canadian Basin. These differences arise from a combination of various source waters, biological uptake, and seasonal warming. The Chukchi Sea was found to be a carbon dioxide sink, a result of the increased open water due to rapid sea-ice melting, high primary production over the shelf and in marginal ice zones (MIZ), and transport of low pCO2 waters from the Bering Sea. As a consequence of differences in inflow water masses, relatively low pCO2 concentrations occurred in the Anadyr waters that dominate the western Bering Strait, and relatively high values in the waters of the Alaskan Coastal Current (ACC) in the eastern strait. The generally lower pCO2 values found in mid-August compared to at the end of July in the Bering Strait region (66–69°N) are attributed to the presence of phytoplankton blooms. In August, higher pCO2 than in July between 68.5 and 69°N along 169°W was associated with higher sea-surface temperatures (SST), possibly as an influence of the ACC. In August in the MIZ, pCO2 was observed to increase along with the temperature, indicating that SST plays an important role when the pack ice melts and recedes. 相似文献
20.
A. Förster R. Schöner H.-J. Förster B. Norden A.-W. Blaschke J. Luckert G. Beutler R. Gaupp D. Rhede 《Marine and Petroleum Geology》2010
Ketzin, in the Northeast German Basin (NEGB), is the site for pilot injection of CO2 (CO2SINK project) into a saline aquifer (the Upper Triassic Stuttgart Formation) situated at a depth of about 630–700 m. This paper reports the baseline characterization of the reservoir formation based on new core material and well-logs obtained from one injection well and two observations wells, drilled at a distance from 50 m to 100 m from each other. The reservoir is lithologically heterogeneous and made up by fluvial sandstones and siltstones interbedded with mudstones showing remarkable differences in porosity. The thickest sandstone units are associated with channel sandstone, whose thickness varies over short lateral distances. In-depth petrographic, mineralogical, mineral-chemical, and whole-rock geochemical analysis were performed focusing on the sandstone intervals, which display the best reservoir properties for CO2 injection. The dominantly fine-grained and well to moderately-well sorted, immature sandstones classify as feldspathic litharenites and lithic arkoses. Quartz (22–43 wt.%), plagioclase (19–32 wt.%), and K-feldspar (5–13 wt.%) predominate mineralogically. Muscovite plus illite and mixed-layer minerals are omnipresent (4–13 wt.%). Quartz, feldspar, as well as meta-sedimentary and volcanic rock fragments comprise the most abundant detrital components, which often are rimmed by thin, early diagenetic coatings of ferric oxides, and locally of clay minerals. Feldspar grains may be unaltered and optically clear, partially to completely dissolved, partially altered to sheet silicates (mainly illite), or albitized. Analcime and anhydrite constitute the most widespread, often spatially associated pore-filling cement minerals. Authigenic dolomite, barite, and coelestine is minor. The percentage of cements ranges in total from about 5 vol.% to 32 vol.%. Except of samples intensely cemented by anhydrite and analcime, total porosities of the sandstones range from 13% to 26%. The fraction of intergranular porosity varies between 12% and 21%. About 1–5% porosity has been generated by dissolution of detrital plagioclase, K-feldspar, and volcanic rock fragments. The comparatively large modal abundance of feldspars, micas, chlorite, clay minerals, Fe–Ti-oxides, and analcime account for the richness in Ti, Al, Fe, Mg, Na, and K, and the paucity in Si, of the Stuttgart sandstones relative to mature sandstones. Altogether, these sandstones are comparatively rich in minerals that may potentially react with the injected CO2. 相似文献