首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Bleikvassli Zn-Pb-Cu deposit occurs in the Uppermost Allochthon in the Caledonides of northern Norway. The orebody is enclosed in amphibolite-facies schists and gneisses, underlain by amphibolites, and it has been classified as a sediment-hosted massive sulphide (SEDEX) deposit. The stratiform ore is dominantly pyritic, with a basal layer of pyrrhotitic ore. Sulphide veins occur in the footwall. The orebody generally has a limited range of 34S, from 0.3 to 4.5% (x = 2.4 ± 1.2, 1 , n = 26). The lowest 34S values (0.3–2.3) were found in sulphide veins in the footwall and vent proximal stratiform ore. More distal pyritic Zn-Pb ore has heavier average 34S values (up to 4.5). The ore sulphides were deposited from a hydrothermal solution with 34S about 2 perhaps with the incorporation of a minor portion of sulphide from the ambient seawater. The hydrothermal solution probably acquired most of its sulphide from the underlying mixed lithology; notably basaltic rocks. Sulphide produced by thermochemical reduction of seawater in the deep conduit system may also have been incorporated. Bacteriogenic sulphide is not likely as a major source of ore sulphur in the massive ore. Sulphide incorporated in distal pyrite, which have 34S from -12 to-10, could have formed either by oxidation of the hydrothermal sulphide, or by bacterial reduction of seawater sulphate in the depositional environment. Exchange of sulphur isotopes probably took place only on a localized scale during Caledonian metamorphism, the bulk sulphur isotopic composition of the ore being preserved in a hand specimen scale.  相似文献   

2.
Mesothermal gold mineralization at the Samdong mine (5.5–13.5 g/ton Au), Youngdong mining district, is situated in massive quartz veins up to 1.2 m wide which fill fault fractures within upper amphibolite to epidote-amphibolite facies, Precambrian-banded biotite gneiss. The veins are mineralogically simple, consisting of iron- and base-metal sulfides and electrum, and are associated with weak hydrothermal alteration zones (<0.5 m wide) characterized by silicification and sericitization. Fluid inclusion data and equilibrium thermodynamic interpretation of mineral assemblages indicate that the quartz veins were formed at temperatures between 425 and 190°C from relatively dilute aqueous fluids (4.5–13.8 wt. % equiv NaCl) containing variable amounts of CO2 and CH4. Evidence of fluid unmixing (CO2 effervescence) during the early vein formation indicates approximate pressures of 1.3–1.9 kbars, corresponding to minimum depths of 5–7 km under a purely lithostatic pressure regime. Gold deposition occurred mainly at temperatures between 345 and 240 °C, likely due to decreases in sulfur activity accompanying fluid unmixing. The 34S values of sulfide minerals (-3.0 to 5.3 ), and the measured and calculated O-H isotope compositions of ore fluids (18O = 5.7 to 7.6; = –74 to –80) indicate that mesothermal gold mineralization at the Samdong mine may have formed from dominantly magmatic hydrothermal fluids, possibly related to intrusion of the nearby ilmenite-series, Kimcheon Granite of Late Jurassic age.  相似文献   

3.
The 620 M.y.-old in Hihaou (In Zize) magmatic complex located at the north-western boundary of the Archaean In Ouzzal block (western Ahaggar), is composed of massive alkaline rhyo-ignimbrites and rhyolitic domes, which are intruded by a granophyric and granitic body. The whole is preserved in a cauldron structure. Extrusive rocks are strongly 18O-depleted, with -values as low as –1.5/SMOW, while granophyres are less depleted (minimum -18O value=+2.0/SMOW. The granite has values around + 6/SMOW. D/H compositions are rather low, with D–90 to –110/SMOW. Isotopic zoning of quartz phenocrysts, 18O/16O fractionation among coexisting phases, and heterogeneity of the whole-rock -18O values, suggest that the volcanic rocks have interacted with meteoric water after the eruption. Several mechanisms of isotopic alteration are discussed. The hydrothermal alteration does not seem to have been controlled by the granitic intrusion, but rather seems to have followed the deposition of thick pyroclastic deposits on permeable arkosic sandstones and fluvio-glacial conglomerates. Pervasive circulation of water through the cooling volcanic deposits could have produced the observed 18O depletion.  相似文献   

4.
Isotopic compositions of carbon and oxygen are studied in different (rhodochrosite, calcareous-rhodochrosite, and chlorite–rhodochrosite) types of manganese carbonate ores from the Usa deposit (Kuznetskii Alatau). The 13C value varies from –18.4 to –0.7, while the 18O value ranges between 18.4 and 23.0. Host rocks are characterized by higher values of 13C (–1.9 to 1.0) and 18O (21.2 to 24.3). The obtained isotope data suggest an active participation of oxidized organic carbon in the formation of manganese carbonates. Manganese carbonate ores of the deposit are probably related to metasomatic processes.  相似文献   

5.
The Ixtahuacan Sb-W deposits are hosted by upper Pennsylvanian to Permian metasedimentary rocks of the central Cordillera of Guatemala. The deposits consist of gold-bearing arsenopyrite, stibnite and scheelite. Arsenopyrite and scheelite are early in the paragenesis, occurring as disseminations in pyritiferous black shale/sandstone and in argillaceous limestone, respectively. Some stibnite is disseminated, but the bulk of the stibnite occurs as massive stratabound lenses in black shales and in quartz-ankerite veins and breccias, locally containing scheelite.Microthermometric measurements on fluid inclusions in quartz and scheelite point to a low temperature (160–190°C) and low to moderate salinity (5–15 wt% NaCl eq.) aqueous ore fluid. Abundant vapour-rich inclusions suggest that the fluid boiled. Carbon dioxide was produced locally as a result of interaction of the aqueous fluid with the argillaceous limestone. Bulk leaching experiments and SEM-EDS analyses of decrepitated fluid inclusion residues indicate that the ore-bearing solution was NaCl-dominated. The 18O values of quartz, ankerite and scheelite from mineralized veins range from 19.7 to 20.5, 18.1 to 20.0 and 7.0 to 8.4 respectively. The average temperature calculated from quartz-scheelite oxygen isotopic fractionation is 170°C. The oxygen isotopic composition of the fluid, interpreted to have been in equilibrium with these minerals, ranged from 5.7 to 7.6, and is considered to represent an evolved meteoric water. Diagenetic or syngenetic pyrite has a sulphur isotopic composition of 0.5±0.3 which is consistent with bacterial reduction of sulphate. The 34S values of arsenopyrite and stibnite range from –2.8 to 2.0 and –2.7 to –2.3 respectively, and are though to reflect sulphur derived from pyrite.The Ixtahuacan deposits are interpreted to have formed at low temperature (<200°C) and a depth of a few hundred metres from a low fO2 (10–49–10–57), high pH (7–8) fluid. Arsenic was probably transported as arsenious acid, antimony and gold as thio-complexes and tungsten as the complex HWO 4 .A model is proposed in which a meteoric fluid, heated by a felsic intrusion at depth, was focused to shallow levels along faults. The interaction of the fluid with pyritiferous beds caused the deposition of arsenopyrite as a result of sulphidation and/or decreasing fO2; gold probably co-precipitated with As or was adsorbed onto the arsenopyrite. The precipitation of stibnite was caused by boiling. Scheelite deposited in response to the increase in Ca2+ activity which accompanied interaction of the ore fluid with the argillaceous limestones.  相似文献   

6.
Summary Pervasive hydrothermal alteration zones in quartz-feldspar porphyry domes underly all massive sulfide lenses in the D-68 Zone Cu-Zn deposit, Noranda. Alteration pipes are mineralogically zoned and contain chloritic cores consisting of stringer sulfides, enveloped by sericitic haloes. Silicified rocks are found locally.Alteration took place at nearly constant volume. Na depletion, and K enrichment relative to the least altered rocks, are found in all alteration zones. Fe and Mg have been added to the chloritic zone and subtracted in the sericitic and silicic zones. Ca and Si are enriched mainly in the silicic zone. Al, Ti and Zr were the least mobile of the elements studied.Whole-rock 18O values vary from +5.6 to +6.2 per mil in chloritized rocks, +5.8 to + 7.3 per mil in sericitized rocks and + 7.2 to + 8.3 per mil in silicified rocks. D values for two chloritized samples are – 63 and – 70 per mil whereas in two sericitized samples they are close to –62 per mil. Quartz from the chlorite alteration zone is isotopically heavier (18O = 8.6 per mil) than that from the sericite alteration zone (18O = 6.4 per mil), suggesting equilibration with different hydrothermal fluid or different temperature of alteration. Assuming an alteration temperature of 300° + 50°C the fluid in equilibrium with quartz and chlorite had 18O and D values of about 1.5 ± 2.0 per mil and –23 ± 5 per mil, respectively. The fluid in equilibrium with quartz and sericite had 18O and D values of about –0.5 ± 2 per mil and –30 ± 5 per mil, respectively. On the basis of isotopic data, seawater was probably the major constituent of the hydrothermal fluids.
Hydrothermale Umwandlung und Sauerstoff-Wasserstoff-Isotopengeochemie der Zone D-68 Cu-Zn Derberz Sulfidlagerstätte, Noranda District, Quebec, Canada
Zusammenfassung Hydrothermale Umwandlungszonen in porphyrischen Quarz-Feldspat Gesteinskörpern liegen unterhalb von Derberz Sulfidlinsen in der D-68 Zone Cu-Zn Lagerstätte, Noranda. Umgewandelte pipes sind mineralogisch zoniert; sie enthalten aus Sulfiden bestehende chloritische Kerne, die von sericitischen Höfen umhüllt werden. Lokal treten silicifizierte Gesteine auf.Die Umwandlung ging bei annähernd konstantem Volumen vor sich. Na-Verarmung und K-Anreicherung, bezogen auf die am wenigsten umgewandelten Gesteine, liegen in allen Umwandlungszonen vor. Fe und Mg wurden der Chloritzone zugeführt, in den Sericit- und Si-Zonen abgeführt. Ca und Si sind vor allem in der Si-Zone angereichert. Al, Ti und Zr waren von den untersuchten Elementen am wenigsten mobil.Gesamtgesteins-18O Werte variieren von +5,6 bis +6,2 in den chloritisierten Gesteinen, von +5,8 bis 7,3 in sericitisierten Gesteinen und von +7,2 bis +8,3 in den silicifizierten Gesteinen. Die D Werte für zwei chloritisierte Proben betragen –63 und –70, in zwei sericitisierten Proben liegen sie hingegen nahe bei –62. Quarz von der Chlorit-Umwandlungszone ist isotopisch schwerer (18O = 8,6) als von der Sericit-Umwandlungszone (18O = 6.4), was eine Gleichgewichtseinstellung mit verschiedenen hydrothermalen Lösungen oder eine verschiedene Umwandlungstemperatur nahelegt. Bei einer angenommenen Umwandlungstemperatur von 300 ± 50°C, hatte die im Gleichgewicht mit Quarz und Chlorit stehende Lösung 18O und D Werte von etwa 1,5 ± 2 bzw. –23 + 5. Die im Gleichgewicht mit Quarz und Sericit befindliche Lösung hatte 18O und D Werte von etwa –0,5 ± 2%o bzw. –30 ± 5. Aufgrund der Isotopendaten war wahrscheinlich Meerwasser der Hauptbestandteil der hydrothermalen Lösungen.


With 7 Figures  相似文献   

7.
Polished ore samples from the world-class Bleiberg lead-zinc deposit in Austria were studied by Field Emission Scanning Electron Microscopy (FESEM) at magnifications in the range of 105–106. The zinc ore shows nano-sized sphalerite filaments and spherules which are morphologically similar to recent biofilms of sulphate-reducing bacteria. The activity of sulphate-reducing bacteria is suggested by a large 34S difference of ~40 between coeval seawater sulphate (+16 ) and sulphide sulphur (< –25 ) in the Bleiberg ores, and by variable sulphur valences. Peloids of sphalerite, Zn-bearing calcite and pyrite have features typical of bacterial colonies. Combined with geological and mineralogical evidence, a significant role of bacteria during ore deposition at Bleiberg is likely.Eugen F. Stumpfl deceasedEditorial handling: B. Lehmann  相似文献   

8.
Zusammenfassung Die Schwefelisotopenzusammensetzung von sulfidischen Erzmineralen und Baryten der unterdevonischen schichtgebundenen Bleiglanz-Zinkblende-Baryt-Erzvorkommen des Grazer Paläozoikums (Ostalpen, Österreich) wurde untersucht. Zur Analyse gelangten 64 Proben von etwa 15 Lokalitäten. Die Schwefelisotopenverteilung zeigt Ähnlichkeiten mit anderen an das Devon gebundenen schwerspatführenden Lagerstätten. Die Baryte ergaben 34S-Werte von +23, 1 bis +27, 8, die dem Meerwassersulfat devonischen Alters entsprechen. Die untersuchten Galenite variieren von +2, 4 bis +6, 9 und die Sphalerite von +3, 3 bis +9, 1. Die Werte der Pyrite zeigen einen großen Streubereich (–27, 4 bis +37, 6). Eine massive buntmetallarme Pyritvererzung fällt durch sehr schweren Schwefel auf. Späte Mineralisationsphasen der Sulfide tendieren gleichfalls zur Anreicherung des schweren Schwefels.
The sulphur isotope compositions of 64 samples of sulphide minerals and barites from the strata-bound Lower Devonian ore deposits of the Paleozoic Complex of Graz in the Eastern Alps (Austria) have been investigated. The 34S-values of galenites and sphalerites show only small variations in the range of +2, 4 up to +6, 9 for PbS and +3, 3 up to +9, 1 for ZnS indicating abiogenic origin. Later remobilized sulphide minerals show a tendency to heavier sulphur. The deposition of pyrites is influenced partly by bacteriogenic processes (–27, 4 up to +37, 6). The enrichment of heavier sulphur characterizes massive pyrite mineralisations being poor on base metals. The sulphur isotope compositions of barites (+23, 1 up to 27, 8) correspond to Devonian sea water sulphate. An ore free barite characterized by increased strontium concentration shows heavier sulphur (+29, 6) than barites from ore beds.


Derzeit Oberste Bergbehörde, Bundesministerium für Handel, Gewerbe und Industrie (Wien)  相似文献   

9.
The S-isotopic compositions of sulfide deposits from Steinmann, granitoid and felsic volcanic associations have been examined. Ores of Steinmann association have 34S values close to zero per mil (34S=+0.3±3.1) it appears they are of mantle origin. Isotopically, ores of granitoid association regularly show a variable enrichment in 32S relative to meteoritic (34S=–2.7±3.3). The composition is in accord with an upper mantle/lower crustal source. Two stratiform accumulations of felsic volcanic association show a narrow spread of 34S values (+0.2 to 2.4); a mantle origin for the sulfur in these deposits is favored. In contrast, vein, stockwork and cement ores are moderately enriched in 32S relative to meteoritic (34S=–4.0±6.4). These ores are polygenetic; sulfur and metals appear to have been leached from local country rocks where volcanogenic and biogenic sulfur predominate.  相似文献   

10.
Summary A set of 354 sulphur isotope data from the Bleiberg deposit, the type deposit of Alpine low temperature carbonate hosted Pb–Zn deposits (APT deposits), is critically evaluated applying statistical methods. The sulphur isotope patterns vary significantly among the ore horizons. This suggests a long lasting and polyphase mineralisation system. The sulphur isotope composition of barite corresponds to that of Carnian seawater (i.e. 16 34S). The 34S values of the iron sulphides correspond to data from sedimentary iron sulphides. Pb and Zn sulphides are characterized by three normally distributed 34S populations with mean values of –6 to –8, –13 to –18, and –25 to –29. Heavy sulphur (>–10 34S) indicates contribution of sulphide sulphur from epigenetic-hydrothermal fluids, whereas light sulphide sulphur (<–21 34S) was produced by sulphur – reducing bacteria. The intermediate population is explained by mixing of sulphur derived from these two sources. Other sources of local importance, however, can not be excluded. The isotope populations correspond only partly to the paragenetic ore stages. The sulphur isotope patterns in the APT deposits are regionally different. Data from other low-temperature sediment-hosted Pb–Zn deposits support the proposed interpretation. A comparison demonstrates that the sulphur isotope patterns of APT deposits correspond to patterns of the Irish type deposits, but are different to those of Mississippi Valley type deposits.Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1007/s00710-004-0071-3  相似文献   

11.
The Rosita Hills volcanic centre is an alkalicalcic, mid-Tertiary complex overlying orthoand paragneissic basement, on the eastern margin of the Rio Grande Rift in south central Colorado, USA. The centre contains vein-hosted, adularia-sericite type, epithermal Ag and base-metal mineralisation with minor Au. Stable isotope studies (O and H) of whole rock and mineral separate (quartz and sericite) samples from veins and hydrothermal eruption breccias show that the hydrothermal fluid had both magmatic and meteoric components. The D and 18O values of the hydrothermal fluid, calculated from mineral values, range from -22 to -103 and 0.5 to 5.9 respectively. Fluid inclusion data from vein minerals (quartz, baryte and sphalerite) and from an advanced argillic lithocap overlying the veins again show that the hydrothermal system had more than one component fluid. Fluid inclusions have salinities which range from 1.7 to 25.1 wt% NaCl equivalent and show evidence of boiling in the advanced argillic lithocap. Homogenisation temperatures range from 135°C to 298°C. Liquid CO2 is present in some inclusions. These data indicate that a saline, isotopically heavy fluid mixed with a dilute, isotopically light fluid to precipitate the ore. We argue that the saline, isotopically heavy fluid is magmatic and derived from a resurgent rhyolitic magma below the mineralisation.  相似文献   

12.
Wetar Island is composed of Neogene volcanic rocks and minor oceanic sediments and forms part of the Inner Banda Arc. The island preserves precious metal-rich volcanogenic massive sulfide and barite deposits, which produced approximately 17 metric tonnes of gold. The polymetallic massive sulfides are dominantly pyrite (locally arsenian), with minor chalcopyrite which are cut by late fractures infilled with covellite, chalcocite, tennantite–tetrahedrite, enargite, bornite and Fe-poor sphalerite. Barite orebodies are developed on the flanks and locally overly the massive sulfides. These orebodies comprise friable barite and minor sulfides, cemented by a series of complex arsenates, oxides, hydroxides and sulfate, with gold present as <10 m free grains. Linear and pipe-like structures comprising barite and iron-oxides beneath the barite deposits are interpreted as feeder structures to the barite mineralization. Hydrothermal alteration around the orebodies is zoned and dominated by illite–kaolinite–smectite assemblages; however, local alunite and pyrophyllite are indicative of late acidic, oxidizing hydrothermal fluids proximal to mineralization. Altered footwall volcanic rocks give an illite K–Ar age of 4.7±0.16 Ma and a 40Ar/39Ar age of 4.93±0.21 Ma. Fluid inclusion data suggest that hydrothermal fluid temperatures were around 250–270°C, showed no evidence of boiling, with a mean salinity of 3.2 wt% equivalent NaCl. The 34S composition of sulfides ranges between +3.3 and +11.7 and suggests a significant contribution of sulfur from the underlying volcanic edifice. The 34S barite data vary between +22.4 and +31.0, close to Miocene seawater sulfate. Whole rock 87Sr/86Sr analyses of unaltered volcanic rocks (0.70748–0.71106) reflect contributions from subducted continental material in their source region. The 87Sr/86Sr barite data (0.7076–0.7088) indicate a dominant Miocene seawater component to the hydrothermal system. The mineral deposits formed on the flanks of a volcanic edifice at depths of ~2 km. Spectacular sulfide mounds showing talus textures are localized onto faults, which provided the main pathways for high-temperature hydrothermal fluids and the development of associated stockworks. The orebodies were covered and preserved by post-mineralization chert, gypsum, Globigerina-bearing limestone, lahars, subaqueous debris flows and pyroclastics rocks.  相似文献   

13.
Graphite occurs in two distinct textural varieties in syntectonic granitoids of the New Hampshire Plutonic Series and in associated metasedimentary wall rocks. Textural characteristics indicate that coarse graphite flakes were present at an early stage of crystallization of the igneous rocks and thus may represent xenocrystic material assimilated from the wall rocks. The range of 13C values determined for flake graphite in the igneous rocks (–26.5 to –13.8) overlaps the range for flake graphite in the wall rocks (–26.0 to –16.7), and spatial correlation of some 13C values in the plutons and wall rocks supports the assimilation mechanism. The textures of fine-grained irregular aggregates or spherulites of graphite, on the other hand, indicate that they formed along with secondary hydrous silicates and carbonates during retrograde reactions between the primary silicates and a carbon-bearing aqueous fluid phase. Relative to coexisting flake graphite, spherulitic graphite shows isotopic shifts ranging from 1.9 higher to 1.4 lower in both igneous and metasedimentary samples.The observed isotopic shifts and the association of spherulitic graphite with hydrous silicates are explained by dehydration of C-O-H fluids initially on or near the graphite saturation boundary. Hydration of silicates causes dehydration of the fluid and drives the fluid composition to the graphite saturation surface. Continued dehydration of the fluid then requires coprecipitation of secondary graphite and hydrous silicates and drives the fluid toward either higher or lower CO2/CH4 depending upon the inital bulk composition. Isotopic shifts in graphite formed at successive reaction stages are explained by fractionation of 13C between secondary graphite and the evolving fluid because 13C is preferentially concentrated into CO2 relative to CH4.Epigenetic graphite in two vein deposits assiciated with the contacts of these igneous rocks is generally enriched in 13C (–15.7 to –11.6) relative to both the igneous and wall-rock 13C values. Values of 13C vary by up to 3.4 within veins, with samples taken only 3 cm apart differing by 2.0 These variations in 13C correlate with textural evidence showing sequential deposition of different generations of graphite in the veins from fluids which differed in proportions of carbon species or isotopic composition (or both).  相似文献   

14.
A systematic study of the auriferous quartz veins of the Val-dOr vein field, Abitibi, Quebec, Canada, demonstrates that the C, O, S isotope composition of silicate, carbonate, borate, oxide, tungstate and sulphide minerals have a range in composition comparable to that previously determined for the whole Superior Province. The oxygen isotope composition of quartz from early quartz–carbonate auriferous veins ranges from 9.4 to 14.4 whereas later quartz-tourmaline-carbonate veins have 18Oquartz values ranging from 9.2 to 13.8 . Quartz-carbonate veins have carbonate (18O: 6.9–12.5 ; 13C: –6.2– –1.9 ) and pyrite (34S: 1.2 and 1.9 ) isotope compositions comparable to those of quartz-tourmaline-carbonate veins (18O: 7.9–11.7 ; 13C: –8.0 – –2.4 ; 34S: 0.6–6.0 ). 18Oquartz values in quartz-tourmaline-carbonate veins have a variance comparable to analytical uncertainty at the scale of one locality, irrespective of the type of structure, the texture of the quartz or its position along strike, across strike or down-dip a vein. In contrast, the oxygen isotope composition of quartz in quartz-tourmaline-carbonate veins displays a regional distribution with higher 18O values in the south-central part of the vein field near the Cadillac Tectonic Zone, and which 18O values decrease regularly towards the north. Another zone of high 18O values in the northeast corner of the region and along the trace of the Senneville Fault is separated by a valley of lower 18O values from the higher values near the Cadillac Tectonic Zone. Oxygen isotope isopleths cut across lithological contacts and tectonic structures. This regional pattern in quartz-tourmaline-carbonate veins is interpreted to be a product of reaction with country rocks and mixing between (1) a deep-seated hydrothermal fluid of metamorphic origin with minimum 18O=8.5 , 13C=0.6 and 34S=–0.4 , and (2) a supracrustal fluid, most likely Archean seawater with a long history of water-rock exchange and with maximum 18O=3.9 , 13 C=–5.6 and 34S=5.0 .  相似文献   

15.
The marble- and metavolcanic-hosted Pb–Zn–(Ag–Sb–As) deposits of the Hällefors district, located in the Palaeoproterozoic Bergslagen ore province, south central Sweden, comprise both stratabound sulphides and discordant, Ag-rich sulphide–sulphosalt veins. The complex sulphide–sulphosalt assemblages of the Alfrida-Jan Olof mines at Hällefors were investigated by a combination of ore microscopy, electron-microprobe analysis, and in situ laser sulphur isotope analysis. The massive ore is characterized by positive and homogeneous 34S (+1.4 to +2.7 V-CDT), whereas vein-hosted sulphides and sulphosalts exhibit similar, but generally less positive to slightly negative 34S (–0.6 to +2.0). Comparison of the observed ore mineral assemblages with calculated phase equilibria in the system Fe–As–S–O–H and isotopic fractionation as a function of temperature, oxygen fugacity and pH indicates that the vein-type mineralization was formed from relatively reduced and rather alkaline hydrothermal fluids. At these reduced conditions, fractionation of 34S via changes of fO2 is insignificant, and thus the isotopic signatures of the vein minerals directly reflect the composition of the sulphur source. We therefore conclude that the vein-type ore essentially inherited the sulphur isotope signature from the pre-existing massive sulphides via metamorphic remobilization at approximately 300–400°C and 2–3 kbar. Scales of remobilization observable are on the order of about 5 mm to 30 cm. Overall, the sulphide–sulphosalt assemblages from the Alfrida-Jan Olof mines exhibit 34S values which are comparable to a majority of metasupracrustal-hosted deposits in the Bergslagen province, thereby suggesting a common origin from ca. 1.90–1.88 Ga volcanic-hydrothermal processes.Editorial handling: S. Nicolescu  相似文献   

16.
The pre-Cenozoic geology at Candelaria, Nevada comprises four main lithologic units: the basement consists of Ordovician cherts of the Palmetto complex; this is overlain unconformably by Permo-Triassic marine clastic sediments (Diablo and Candelaria Formations); these are structurally overlain by a serpentinitehosted tectonic mélange (Pickhandle/Golconda allochthon); all these units are cut by three Mesozoic felsic dike systems. Bulk-mineable silver-base metal ores occur as stratabound sheets of vein stockwork/disseminated sulphide mineralisation within structurally favourable zones along the base of the Pickhandle allochthon (i.e. Pickhandle thrust and overlying ultramafics/mafics) and within the fissile, calcareous and phosphatic black shales at the base of the Candelaria Formation (lower Candelaria shear). The most prominent felsic dike system — a suite of Early Jurassic granodiorite porphyries — exhibits close spatial, alteration and geochemical associations with the silver mineralisation. Disseminated pyrites from the bulk-mineable ores exhibit a 34S range from — 0.3 to + 12.1 (mean 34S = +6.4 ± 3.5, 1, n = 17) and two sphalerites have 34S of + 5.9 and + 8.7 These data support a felsic magmatic source for sulphur in the ores, consistent with their proximal position in relation to the porphyries. However, a minor contribution of sulphur from diagenetic pyrite in the host Candelaria sediments (mean 34S = — 14.0) cannot be ruled out. Sulphur in late, localised barite veins ( 34S = + 17.3 and + 17.7) probably originated from a sedimentary/seawater source, in the form of bedded barite within the Palmetto basement ( 34S = + 18.9). Quartz veins from the ores have mean 18O = + 15.9 ± 0.8 (1, n = 10), which is consistent, over the best estimate temperature range of the mineralisation (360°–460°C), with deposition from 18O-enriched magmatic-hydrothermal fluids (calculated 18O fluid = + 9.4 to + 13.9). Such enrichment probably occurred through isotopic exchange with the basement cherts during fluid ascent from a source pluton. Whole rock data for a propylitised porphyry ( 18O = + 14.2, D = — 65) support a magmatic fluid source. However, D results for fluid inclusions from several vein samples (mean = — 108 ± 14, 1, n = 6) and for other dike and sediment whole rocks (mean = — 110 ± 13, 1, n = 5) reveal the influence of meteoric waters. The timing of meteoric fluid incursion is unresolved, but possibilities include late-mineralisation groundwater flooding during cooling of the Early Jurassic progenitor porphyry system and/or meteoric fluid circulation driven by Late Cretaceous plutonism.  相似文献   

17.
Similar characteristics and age data suggest that the Pb + Zn vein deposits hosted by Lower Palaeozoic and Vendian strata of the British Isles form a genetically related group, coeval with the Lower Carboniferous carbonatehosted base-metal deposits of Ireland. Sulphur isotopic data demonstrate that there were separate sulphide and sulphate sulphur sources for the vein minerals. 34S values from minerals in individual vein systems are consistent but there is a large variation between deposits, revealing distinctive local sulphur sources. The data suggests that sulphide sulphur (total range of values of 34SH2S of -6.5 to 18.62) was derived from the underlying strata while the sulphate (baryte) sulphur source (34Sbaryte mainly in the range 12 to 24) was groundwater or surface water that mixed with rising hydrothermal fluids in the upper reaches of the veins.  相似文献   

18.
New sulphur and sulphate-oxygen isotope measurements for the main discordant and stratiform lead-zinc-barite orebodies at Silvermines Co. Tipperary, allow reappraisal of previously offered differing interpretations (Graham, 1970; Greig et al., 1971) of the bearing of sulphur isotopes on the genesis of this important Irish deposit. The following aspects of the data are confirmed: barite 34 S-values range from 17–21, similar to lower Carboniferous seawater sulphate: stratiform sulphide lens pyrites have 34 S-values ranging from –13 to –36; vein sulphide 34 S-values range from –8 to 4; sulphide 34 S-values increase upwards and outwards respectively in the related discordant and stratiform G orebodies; galena-sphalerite isotope palaeotemperatures are not too consistent, ranging from 40 to 430°C (using the calibration of Czamanske and Rye (1974). New facts are as follows: barite 18O-values range from –13 to –17, stratiform barites ranging from 13 to 14.5; sulphides separated from a single stratiform ore lens hand specimen usually have 34 Ssl > 34 Sga > 34 Spy; the outward decrease in 34 S-values in the stratiform G orebody is confined to the first few hundred feet only; pyrite 34 S-values progressively increase downwards through one stratiform sulphide orebody; yet variations of 13 occur within a single colloform pyrite structure from another stratiform orebody. It is concluded that there were at least two sources of sulphur, seawater sulphate and deep-seated sulphur. The former was the dominant source of all sulphate and, via biogenic reduction, of the sulphur in the bulk of the stratiform sulphide. The latter was the source of the sulphur in the vein sulphides. There was minimal isotopic interaction between the cool seawater sulphate and the warm unwelling ore fluid sulphur species, even though the latter precipitated under near isotopic equilibrium conditions when the temperature dropped and/or the pH and Eh increased. The lack of isotopic equilibrium between pyrite and ore sulphides in the stratiform ore lenses may result from the latter having precipitated slightly later than the former because of solubility relationships. Overall the present isotopic evidence supports considerable geological evidence favoring a syngenetic origin for the stratiform Silvermines orebodies.  相似文献   

19.
The Tallberg deposit is situated in the Skellefte District in northern Sweden. It is a Palaeoproterozoic equivalent of Phanerozoic poryphyry-type deposits. The mineralization is situated within the Jörn granitoid complex and is associated with intrusive quartz-feldspar porphyries. The granitoids are coeval with mainly felsic volcanic rocks hosting several massive sulphide deposits. The alteration is generally of a mixed phyllic-propylitic type, but areas or zones associated with high gold grades exhibit phyllic alteration. Ore minerals are pyrite, chalcopyrite, sphalerite, magnetite, and trace amounts of molybdenite. In this stable isotope study, quartz, sericite, and chlorite from the alteration zones were sampled. The magmatic quartz has a 18O composition of + 6.2 to +6.7 whereas the quartz in the hydrothermal alteration zones have values ranging from +7.5 to +10.6. The calculated temperatures for this fractionation range from 430° to 520°C. The sericites have 18O ranging from +4.6 to +8.2 (average +6.6) and D -31 to -54 (average -41). Chlorites range from 18O +4.2 to +7.7 and D from –34 to –44. The range of 34S of 11 pyrite samples is +3.8 to +5.5 with an average of +4.6 ± 0.5, suggesting a relatively homogeneous sulphur source, probably of magmatic origin. Modelling waters in equilibrium with the minerals indicates early magmatic fluids with 18O of 6.5. This fluid mixed with a low 18O and high D fluid, which is tentatively identified as seawater. The 18O signature of sericite and chlorite also indicates significant water-rock exchange, explaining the positive 18O values for the waters in equilibrium with the hydrated minerals.  相似文献   

20.
The Ordovician volcano-sedimentary succession of Erquy (northern Brittany) is made of immature sediments thermally metamorphosed at the contact of intruding basic sills. Pillow lavas constitute the upper part of the sequence. The trace element geochemistry of sills and pillow lavas suggests that they were derived from a tholeiitic source located beneath a passive margin. This volcanic sequence was metamorphosed under low to moderate greenschist facies conditions. In this study the direction and amplitude of chemical and isotopic fluxes in the basalt-sediment-water system were established and the oxygen and hydrogen isotope compositions of the aqueous fluid that reacted with the volcanic rocks were characterized. Cationic thermometry on chlorites and isotopic thermometry on plagioclase-chlorite pairs indicate closure metamorphic temperatures in the range 200–250°C for the basaltic sills. Stable isotope compositions of iron-rich chlorites (18O-5.5; D from-60 to-50) and plagioclases (18O from +9 to +10) reveal that the source of the fluid was certainly seawater. The 18O variations within the sills are strongly correlated with the rate of progress of the main metamorphic reaction:clinopyroxene+plagioclase+ilmenite chlorite+albite+epidote+quartz+sphene that produced major element mobility at the scale of the volcanosedimentary sequence. Calculation of elemental fluxes by mass balance combined with oxygen isotopic compositions of basalts shows that the highest water-rock ratios (1) were at sill-sediment boundaries and within pillow lavas at the top of the pile. The volcanosedimentary sequence of Erquy was a net sink for Na and a source for Ca. No Mg uptake could be detected whereas the hydrothermal alteration of the sediments released Fe, Si, and K trapped by the volcanic rocks. The 18O value of the fluid reacting with sills appears to have shifted no more than +4 after percolation at low temperature through immature sediments (18O12). The Erquy volcano-sedimentary sequence represents a marine hydrothermal system dominated by low-temperature exchange which allowed a general 18O-enrichment of the volcanic rocks and a 18O-depletion of sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号