首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we present a method to quantify the effectiveness of carbon mitigation options taking into account the `permanence' of the emissions reduction. While the issue of permanence is most commonly associated with a `leaky' carbon sequestration reservoir, we argue that this is an issue that applies to just about all carbon mitigation options. The appropriate formulation of this problem is to ask `what is the value of temporary storage?' Valuing temporary storage can be represented as a familiar economic problem, with explicitly stated assumptions about carbon prices and the discount rate. To illustrate the methodology, we calculate the sequestration effectiveness for injecting CO2 at various depths in the ocean. Analysis is performed for three limiting carbon price assumptions: constant carbon prices (assumes constant marginal damages), carbon prices rise at the discount rate (assumes efficient allocation of a cumulative emissions cap without a backstop technology), and carbon prices first rise at the discount rate but become constant after a given time (assumes introduction of a backstop technology). Our results show that the value of relatively deep ocean carbon sequestration can be nearly equivalent to permanent sequestration if marginal damages (i.e., carbon prices) remain constant or if there is a backstop technology that caps the abatement cost in the not too distant future. On the other hand, if climate damages are such as to require a fixed cumulative emissions limit and there is no backstop, then a storage option with even very slow leakage has limited value relative to a permanent storage option.  相似文献   

2.
The social cost of carbon – i.e., the marginal present-value cost imposed by greenhouse gas emissions – is determined by a complex interaction between factual assumptions, modeling methods, and value judgments. Among the most crucial factors is society's willingness to tolerate potentially catastrophic environmental risks. To explore this issue, the present analysis employs a stochastic climate–economy model that accounts for uncertainties in baseline economic growth, baseline emissions, greenhouse gas mitigation costs, carbon cycling, climate sensitivity, and climate change damages. In this model, preferences are specified to reflect the high degree of risk aversion revealed by private investment decisions, signaled by the large observed gap between the average rates of return paid by safe and risky financial instruments. In contrast, most climate–economy models assume much lower risk aversion. Given high risk aversion, the analysis finds that investment in climate stabilization yields especially large net benefits by forestalling low-probability threats to long-run human well-being. Accordingly, the social cost of carbon attains the markedly high value of $25,700 per metric ton of carbon dioxide in a baseline scenario in which emissions are unregulated. This value falls to just $4 per ton as the stringency of control measures is successively increased. These results cast doubt on the idea that the social cost of carbon takes on a uniquely defined, objective value that is independent of policy decisions. This does not, however, rule out the use of carbon prices to achieve the benefits of climate stabilization using least-cost mitigation measures.  相似文献   

3.
It is physically possible to capture CO2 directly from the air and immobilize it in geological structures. Air capture differs from conventional mitigation in three key aspects. First, it removes emissions from any part of the economy with equal ease or difficulty, so its cost provides an absolute cap on the cost of mitigation. Second, it permits reduction in concentrations faster than the natural carbon cycle: the effects of irreversibility are thus partly alleviated. Third, because it is weakly coupled to existing energy infrastructure, air capture may offer stronger economies of scale and smaller adjustment costs than the more conventional mitigation technologies. We assess the ultimate physical limits on the amount of energy and land required for air capture and describe two systems that might achieve air capture at prices under 200 and 500 $/tC using current technology. Like geoengineering, air capture limits the cost of a worst-case climate scenario. In an optimal sequential decision framework with uncertainty, existence of air capture decreases the need for near-term precautionary abatement. The long-term effect is the opposite; assuming that marginal costs of mitigation decrease with time while marginal climate change damages increase, then air capture increases long-run abatement. Air capture produces an environmental Kuznets curve, in which concentrations are returned to preindustrial levels.  相似文献   

4.
IPCC于2022年4月正式发布了第六次评估报告(AR6)第三工作组(WGⅢ)报告《气候变化2022:减缓气候变化》,该报告以已发布的第一和第二工作组报告作为基础,评估了各领域减缓气候变化的进展。报告的第九章建筑章节系统全面地评估了全球建筑领域的温室气体排放现状、趋势和驱动因素,综述并评估了建筑减缓气候变化的措施、潜力、成本和政策。报告主要结论认为,全球建筑领域有可能在2050年实现温室气体净零排放,但如果政策措施执行不力,将有可能在建筑领域形成长达几十年的高碳锁定效应。报告的主要结论将成为全球建筑领域应对气候变化行动的重要参考,对于我国建筑领域实现碳达峰、碳中和目标也有非常重要的借鉴意义。  相似文献   

5.
Adam Millard-Ball 《Climatic change》2012,110(3-4):1047-1066
Geoengineering research has historically been inhibited by fears that the perceived availability of a technological fix for climate change, such as the deployment of space-based deflectors, may undermine greenhouse gas abatement efforts. I develop a game theoretic model to show that the credible threat of unilateral geoengineering may instead strengthen global abatement and lead to a self-enforcing climate treaty with full participation. A ‘rogue nation’ may wish to unilaterally geoengineer if it faces extreme climate damages (as with Tuvalu), or if there are minimal local side effects from geoengineering, such as hydrological cycle disruption or stratospheric ozone depletion. However, the costly global side effects of geoengineering may make it individually rational for other countries to reduce emissions to the level where this rogue nation no longer wishes to unilaterally geoengineer. My results suggest a need to model the impacts of a “selfish geoengineer” intent only on maximizing net domestic benefits, as well as a “benevolent geoengineer” out to restore global mean temperature and minimize global side effects.  相似文献   

6.
Climate is simulated for reference and mitigation emissions scenarios from Integrated Assessment Models using the Bern2.5CC carbon cycle–climate model. Mitigation options encompass all major radiative forcing agents. Temperature change is attributed to forcings using an impulse–response substitute of Bern2.5CC. The contribution of CO2 to global warming increases over the century in all scenarios. Non-CO2 mitigation measures add to the abatement of global warming. The share of mitigation carried by CO2, however, increases when radiative forcing targets are lowered, and increases after 2000 in all mitigation scenarios. Thus, non-CO2 mitigation is limited and net CO2 emissions must eventually subside. Mitigation rapidly reduces the sulfate aerosol loading and associated cooling, partly masking Greenhouse Gas mitigation over the coming decades. A profound effect of mitigation on CO2 concentration, radiative forcing, temperatures and the rate of climate change emerges in the second half of the century.  相似文献   

7.
 回顾了国际社会应对气候变化的进程,对国内外的碳排放状况、中国减缓碳排放的技术潜力、中国减缓碳排放的宏观影响、全球减缓气候变化的公平性与国际合作行动等问题进行了分析与评估。提出了中国减缓气候变化的思路与对策,指出在全球应对气候变化的形势下,中国要积极适应国际政治、经济及贸易格局变动的趋势,将减缓气候变化对策纳入国家经济与社会发展战略与规划之中,促进国家经济和社会的全面、协调和可持续发展。  相似文献   

8.
Climate change will have dangerous impacts on future generations. Accordingly, people in the present have an obligation to make sacrifices for the benefit of future others. However, research on temporal and social discounting shows that people are short-sighted and selfish—they prefer immediate over delayed benefits, and they prefer benefits for themselves over others. Discounting over long-term time horizons is known as intergenerational discounting, and is a major obstacle to climate action. Here, we examine whether persuasive messages that activate the legacy motive—the desire to build a positive legacy—can increase the willingness of current actors to make sacrifices for future generations. Using a climate change public goods game, we find that when the benefits of cooperation accrue to decision makers in the present, high levels of cooperation are sustained, whereas when the benefits accrue to future generations, intergenerational discounting makes cooperation elusive. Crucially, when the legacy motive is activated—by promoting death awareness, feelings of power asymmetry, and intergenerational reciprocity—intergenerational discounting is attenuated, and cooperation is restored. Our results suggest climate action can be fostered by framing climate change as an intergenerational dilemma, and by crafting persuasive messages that activate people’s drive to leave a positive legacy.  相似文献   

9.
Integrated assessment models (IAMs) have commonly been used to understand the relationship between the economy, the earth’s climate system and climate impacts. We compare the IPCC simulations of CO2 concentration, radiative forcing, and global mean temperature changes associated with five SRES ‘marker’ emissions scenarios with the responses of three IAMs—DICE, FUND and PAGE—to these same emission scenarios. We also compare differences in simulated temperature increase resulting from moving from a high to a low emissions scenario. These IAMs offer a range of climate outcomes, some of which are inconsistent with those of IPCC, due to differing treatments of the carbon cycle and of the temperature response to radiative forcing. In particular, in FUND temperatures up until 2100 are relatively similar for the four emissions scenarios, and temperature reductions upon switching to lower emissions scenarios are small. PAGE incorporates strong carbon cycle feedbacks, leading to higher CO2 concentrations in the twenty-second century than other models. Such IAMs are frequently applied to determine ‘optimal’ climate policy in a cost–benefit approach. Models such as FUND which show smaller temperature responses to reducing emissions than IPCC simulations on comparable timescales will underestimate the benefits of emission reductions and hence the calculated ‘optimal’ level of investment in mitigation.  相似文献   

10.
Global GHG emissions continue to rise, with nearly a quarter of it due to trade that is not currently captured within global climate policy. In the context of current trade patterns and limited global cooperation on climate change, the feasibility of consumption-based emissions accounting to contribute to a more comprehensive (national) policy framework in the UK is investigated. Consumption-based emissions results for the UK from a range of models are presented, their technical robustness is assessed, and their potential application in national climate policy is examined using examples of policies designed to reduce carbon leakage and to address high levels of consumption. It is shown that there is a need to include consumption-based emissions as a complementary indicator to the current approach of measuring territorial emissions. Methods are shown to be robust enough to measure progress on climate change and develop and inform mitigation policy. Finally, some suggestions are made for future policy-oriented research in the area of consumption-based accounting that will facilitate its application to policy.

Policy relevance

Emissions embodied in trade are rapidly increasing and there is thus a growing gap between production emissions and the emissions associated with consumption. This is a growing concern due to the absence of a global cap and significant variation in country-level mitigation ambitions. Robust measurements of consumption-based emissions are possible and provide new insights into policy options. This includes trade-related policy (e.g. border carbon adjustments) and domestic policies (e.g. resource efficiency strategies). As climate policy targets deepen, there is a need for a broad range of policy options in addition to production and technological solutions. Consumption-based emissions are complementary to production-based emissions inventories, which are still the most accurate estimate for aggregated emissions at the global level. However, without consumption-based approaches, territorial emissions alone will not provide a complete picture of progress in regional and national emissions reduction.  相似文献   

11.
Proponents of climate change mitigation face difficult choices about which types of policy instrument(s) to pursue. The literature on the comparative evaluation of climate policy instruments has focused overwhelmingly on economic analyses of instruments aimed at restricting demand for greenhouse gas emissions (especially carbon taxes and cap-and-trade schemes) and, to some extent, on instruments that support the supply of or demand for substitutes for emissions-intensive goods, such as renewable energy. Evaluation of instruments aimed at restricting the upstream supply of commodities or products whose downstream consumption causes greenhouse gas emissions—such as fossil fuels—has largely been neglected in this literature. Moreover, analyses that compare policy instruments using both economic and political (e.g. political “feasibility” and “feedback”) criteria are rare. This article aims to help bridge both of these gaps. Specifically, the article demonstrates that restrictive supply-side policy instruments (targeting fossil fuels) have numerous characteristic economic and political advantages over otherwise similar restrictive demand-side instruments (targeting greenhouse gases). Economic advantages include low administrative and transaction costs, higher abatement certainty (due to the relative ease of monitoring, reporting and verification), comprehensive within-sector coverage, some advantageous price/efficiency effects, the mitigation of infrastructure “lock-in” risks, and mitigation of the “green paradox”. Political advantages include the superior potential to mobilise public support for supply-side policies, the conduciveness of supply-side policies to international policy cooperation, and the potential to bring different segments of the fossil fuel industry into a coalition supportive of such policies. In light of these attributes, restrictive supply-side policies squarely belong in the climate policy “toolkit”.  相似文献   

12.
The Framework Convention on Climate Change calls for stabilizing atmospheric concentrations of carbon dioxide and other greenhouse gases. In contrast, many economists espouse the goal of minimizing the present value of abatement costs and damages. The choice between evaluation endpoints – least-cost stabilization and maximization of benefits less costs – involves a tradeoff between accuracy and relevance. Atmospheric concentrations associated with candidate abatement policies can be more accurately predicted, for any level of confidence, than can the monetary values of climate damages associated with those policies. The monetary value of damages is more relevant to the question of what resources should be devoted to abatement, however, because atmospheric concentrations are of little interest except as they influence climate and its impacts on economic activities, ecosystems, and other elements of human concern. As demonstrated using both analytic and numerical models, the choice between endpoints is not solely a matter of analytic convenience but has substantive implications when comparing near-term abatement policies. For the next few decades, maximization of benefits less costs is likely to require greater abatement than will cost-effective stabilization of atmospheric concentrations.  相似文献   

13.
This paper provides a novel assessment of the role of direct air capture of CO2 from ambient air (DAC) on the feasibility of achieving stringent climate stabilization. We use the WITCH energy-economy-climate model to investigate the long term prospects of DAC, implementing a technological specification based on recent estimates by the American Physical Society (APS 2011). Assuming global cooperation on a stringent climate policy we find that: (1) DAC is deployed only late in century, after other low carbon options, though at a very significant scale; (2) DAC has an impact on the marginal and total abatement costs (reducing them) and on the timing of mitigation (postponing it); (3) DAC also allows for a prolonged use of oil, with a positive welfare impact for energy exporting countries. Finally, we assess the role of DAC in a less than ideal climate policy by exploring its potential for engaging energy exporting countries in climate mitigation activities by means of a “clean oil” market in which oil exporters can sell oil decarbonized via DAC.  相似文献   

14.
Arpad Cseh 《Climate Policy》2019,19(2):139-146
The global and long-term nature of climate change conflicts with the self-interest and short-term dominated priorities of decision-makers. Climate change mitigation makes sense at the global level, but not at the level of the individual decision-maker. This conflict has been and remains the main obstacle to effective global cooperation and mitigation. This paper proposes a framework that aligns climate action with short-term self-interest through results-based payments to governments. Its key components are: determining an emission benchmark for each country as well as a price for carbon saving; paying countries annually for reducing emissions below their respective benchmark; a new international fund to finance these annual payments by borrowing capital from private investors; and repaying borrowings in the long-term through payments made by countries to the fund based on a pre-determined allocation mechanism. This framework would offer important benefits over an approach focused on allocating climate action or a carbon budget among countries. These include the improved prospect of reaching an effective climate agreement and delivering fast and dramatic mitigation thanks to stronger political commitment, the transformation of short-term self-interest from an obstacle into a driver of climate action, and the additional financing created. The paper also proposes a pilot scheme focusing on hydrofluorocarbon emissions with a considerably lower financing requirement. This offers the possibility of an alternative financing mechanism, and thus a faster and more straightforward implementation path. Short-term financial incentives offered to governments could turn policy action from a burden into an opportunity from their perspective unlocking a huge potential for timely mitigation.

Key policy insights

  • A new international framework that offers short-term, results-based payments to governments to promote mitigation action could lead to much more effective global mitigation and international cooperation.

  • The financing of such an approach could be solved through a novel financing structure, backed by the long-term commitments of participating countries and thus aligning the timeframe of the financial costs of mitigation with its climate benefits.

  • The effectiveness of results-based payments and the concept behind this new approach could be proven through a pilot scheme focusing on hydrofluorocarbon emissions.

  相似文献   

15.
This paper compares the results of the three state of the art climate-energy-economy models IMACLIM-R, ReMIND-R, and WITCH to assess the costs of climate change mitigation in scenarios in which the implementation of a global climate agreement is delayed or major emitters decide to participate in the agreement at a later stage only. We find that for stabilizing atmospheric GHG concentrations at 450?ppm CO2-only, postponing a global agreement to 2020 raises global mitigation costs by at least about half and a delay to 2030 renders ambitious climate targets infeasible to achieve. In the standard policy scenario??in which allocation of emission permits is aimed at equal per-capita levels in the year 2050??regions with above average emissions (such as the EU and the US alongside the rest of Annex-I countries) incur lower mitigation costs by taking early action, even if mitigation efforts in the rest of the world experience a delay. However, regions with low per-capita emissions which are net exporters of emission permits (such as India) can possibly benefit from higher future carbon prices resulting from a delay. We illustrate the economic mechanism behind these observations and analyze how (1) lock-in of carbon intensive infrastructure, (2) differences in global carbon prices, and (3) changes in reduction commitments resulting from delayed action influence mitigation costs.  相似文献   

16.
Equity is usually interpreted in terms of the concept of justice, such that an equitable share of the atmospheric space is understood in terms of past emissions. This emphasizes the collective nature of sharing the burden of mitigation and the duty to act for those who have emitted the most. An alternative is considered: the aggregate costs and benefits to all Parties that could result from both increasing the level of collective ambition and implementing a climate regime that supports bold actions across all Parties. The regional impacts and carbon flow costs across differentiated scenarios are assessed and it is argued that the majority of developing-country Parties would be better off if a high ambition outcome to which all contributed, but some more than others. Moreover, those with middle or low emissions would have proportionally more to gain (or lose) relative to the level of ambition compared to those that have had higher emissions. The climate regime should be built on the principle of common but differentiated responsibility and respective capabilities (CBDR&RC), in which all act early even if some do much more; one that accounts for justice but does not forget hope.

Policy relevance

Differing interpretations of equity and the principles of the United Nations Framework Convention on Climate Change (UNFCCC) are discussed, with a focus on how these can enhance or hinder collective action. Whilst the climate change negotiations are usually taken as games in which one party gains and another loses, and interactions are dogged by continuous conflict, it is explored instead how negotiation responses can be framed in terms of cooperation. This would emphasize the gains that could be achieved by common but differentiated collective action, which could result in a collective avoidance of impacts. The possibilities that this shift of perspective could bring are explored by comparing costs under global cooperation (or lack of it). It is found that cooperation reduces the total costs for these regions. Thus, thinking in terms of cooperation focuses the options for negotiation on the means and interpretations of the UNFCCC principles that spur action and avoid climate impacts through collective action.  相似文献   

17.
Unleakable carbon, or the uncombusted methane and carbon dioxide associated with fossil fuel systems, constitutes a potentially large and heretofore unrecognized factor in determining use of Earth’s remaining fossil fuel reserves. Advances in extraction technology have encouraged a shift to natural gas, but the advantage of fuel switching depends strongly on mitigating current levels of unleakable carbon, which can be substantial enough to offset any climate benefit relative to oil or coal. To illustrate the potential warming effect of methane emissions associated with utilizable portions of our remaining natural gas reserves, we use recent data published in peer-reviewed journals to roughly estimate the impact of these emissions. We demonstrate that unless unleakable carbon is curtailed, up to 59–81% of our global natural gas reserves must remain underground if we hope to limit warming to 2°C from 2010 to 2050. Successful climate change mitigation depends on improved quantification of current levels of unleakable carbon and a determination of acceptable levels of these emissions within the context of international climate change agreements.

Policy relevance

It is imperative that companies, investors, and world leaders considering capital expenditures and policies towards continued investment in natural gas fuels do so with a complete understanding of how dependent the ultimate climate benefits are upon increased regulation of unleakable carbon, the uncombusted carbon-based gases associated with fossil fuel systems, otherwise referred to as ‘fugitive’, ‘leaked’, ‘vented’, ‘flared’, or ‘unintended’ emissions. Continued focus on combustion emissions alone, or unburnable carbon, undermines the importance of assessing the full climate impacts of fossil fuels, leading many stakeholders to support near-term mitigation strategies that rely on fuel switching from coal and oil to cleaner burning natural gas. The current lack of transparent accounting of unleakable carbon represents a significant gap in the understanding of what portions of the Earth’s remaining global fossil fuel reserves can be utilized while still limiting global warming to 2°C. Successful climate change mitigation requires that stakeholders confront the issue of both unburnable and unleakable carbon when considering continued investment in and potential expansion of natural gas systems as part of a climate change solution.  相似文献   

18.
It has been suggested that calculations of historical responsibility for global warming should be used to distribute mitigation requirements in future climate agreements. For a medium-term mitigation scenario, we calculate regional mitigation costs resulting from global allocation schemes based on the Brazilian Proposal that solely incorporate historical responsibility as a burden sharing criterion. We find that they are likely to violate ability-to-pay principles. In spite of less stringent abatement requirements, developing country regions experience cost burdens (as a percentage of GDP) in the same range as those of developed countries. We also assess the policy options available for calculating historical responsibility. The periodic updating of responsibility calculations over time, concerns over the robustness and availability of emissions data, and the question of whether past emissions were knowingly harmful, may lead to policy choices that increase the relative historical responsibility attributed to developing countries. This, in turn, would increase their mitigation cost burden.  相似文献   

19.
Preparatory talks to the next round of negotiations seem to indicate that a comprehensive agreement to mitigate climate change will not be easily attainable, despite the intentions of the US administration and the high expectations surrounding the Copenhagen meeting. One key reason is to what extent fast growing economies, and especially China, should take actions to reduce their growth of emissions. This paper argues that a turning point for international negotiations on climate change could be achieved if China were to agree on carbon obligations in the future. Results from modelling work suggest that the optimal investment behaviour is to anticipate the implementation of a climate policy by roughly 10 years, and that thus future commitments—if credible—could lead to significantly earlier steps towards carbon mitigation. If fast growing economies, and foremost China, believe in the long term objective of global stabilization of carbon concentrations, it might be economically rationale to sign on future targets, provided developed countries take on immediate action. Such a provision could be beneficial for both the developing and developed world.  相似文献   

20.
Deforestation has contributed significantly to net greenhouse gas emissions, but slowing deforestation, regrowing forests and other ecosystem processes have made forests a net sink. Deforestation will still influence future carbon fluxes, but the role of forest growth through aging, management, and other silvicultural inputs on future carbon fluxes are critically important but not always recognized by bookkeeping and integrated assessment models. When projecting the future, it is vital to capture how management processes affect carbon storage in ecosystems and wood products. This study uses multiple global forest sector models to project forest carbon impacts across 81 shared socioeconomic (SSP) and climate mitigation pathway scenarios. We illustrate the importance of modeling management decisions in existing forests in response to changing demands for land resources, wood products and carbon. Although the models vary in key attributes, there is general agreement across a majority of scenarios that the global forest sector could remain a carbon sink in the future, sequestering 1.2–5.8 GtCO2e/yr over the next century. Carbon fluxes in the baseline scenarios that exclude climate mitigation policy ranged from −0.8 to 4.9 GtCO2e/yr, highlighting the strong influence of SSPs on forest sector model estimates. Improved forest management can jointly increase carbon stocks and harvests without expanding forest area, suggesting that carbon fluxes from managed forests systems deserve more careful consideration by the climate policy community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号