共查询到20条相似文献,搜索用时 72 毫秒
1.
根据澳大利亚气象局MJO指数、国家气象局753站逐日站点资料、NCEP/NCAR全球再分析资料,通过合成分析研究了MJO活动对广东前汛期降水的影响。结果表明:MJO传播至东印度洋时广东降水为正异常,当其移至西太平洋时广东降水为负异常。MJO通过引起大尺度环流异常和大气垂直运动的异常对降水产生影响。当MJO传播至东印度洋时,副热带高压异常增强,广东为干冷偏北风和暖湿偏南风的交汇区且此时广东上空空气上升运动强烈,有利降水产生;当MJO传播至西太平洋时,副热带高压异常减弱,广东被偏北风控制且此时广东上空空气下沉运动强烈,对降水不利。 相似文献
2.
MJO对华南前汛期降水的影响及其可能机制 总被引:10,自引:2,他引:10
利用站点降水资料、实时多变量MJO(Madden-Julian Oscillation)指数、向外长波辐射(OLR)资料和NCEP/NCAR再分析资料,采用合成分析方法研究了MJO对华南前汛期降水的影响,并讨论其可能机制。结果表明,(1)在MJO不同位相,华南前汛期降水异常有明显的差异,并且这种差异随滞后时长而发生变化。第2~3位相和第6~7位相分别是影响华南前汛期降水的典型"湿位相"和"干位相"。(2)华南前汛期降水对MJO的响应需要一定时间,滞后时长约为1~2候。(3)MJO活跃(受抑)对流可通过激发Rossby波影响华南前汛期降水。当MJO活跃(受抑)对流中心位于赤道印度洋附近时,非绝热加热作用激发的Rossby波到达并影响华南地区,华南地区出现水汽供应的增强(减弱),从而促进(抑制)华南前汛期降水。 相似文献
3.
用奇异值分解方法(SVD)分析了夏季降水异常与前期冬季大气环流异常之间的联系,得到了一些很有意义的结果,为夏季降水预测提供了参考. 相似文献
4.
利用站点降水资料、美国气候预测中心(CPC)的MJO指数和NCEP/DOE AMIP-II再分析资料,研究了热带印度洋MJO对4—6月长江中下游地区降水的影响及可能机制。(1) 热带印度洋MJO对长江中下游地区降水有显著影响:热带印度洋MJO偏强(偏弱)时,同期以及滞后1~2候时该地区降水偏多(偏少)。(2) 热带印度洋MJO处在不同位相时,大尺度背景场有明显的差别:热带印度洋MJO偏强(偏弱)时,同期以及滞后1~2候时MJO活跃对流中心位于热带印度洋(西太平洋),西太平洋副热带地区表现为反气旋性(气旋性)环流异常,孟加拉湾为气旋性(反气旋性)环流异常,长江中下游地区出现了异常上升(下沉)运动,水汽辐合增强(减弱);伴随MJO的东传,水汽输送异常来源有所变化。(3) 热带印度洋MJO通过激发Gill型响应和Rossby波列,对长江中下游地区降水产生影响。 相似文献
5.
利用1979—2012年中国753站地面气象观测站4—9月降水日资料和NCEP/DOE高度场、风场,温度场再分析Ⅱ格点日资料,基于实时多变量MJO指数研究MJO对于广西汛期(4—9月)降水的影响。根据MJO的8个不同位相使用逐日资料进行合成分析,结果表明:MJO对于广西汛期降水有显著影响。当MJO活跃中心位于西印度洋时,副高加强西伸,广西低层西南风增强,大量来自南海和孟加拉湾的水汽在广西上空辐合,广西汛期降水增强;当MJO活跃中心东移靠近西太平洋时,副高减弱东退,偏南暖湿气流向广西输送的水汽减少,其辐合减弱,广西汛期降水减少。 相似文献
6.
SVD方法在夏季降水预测中的应用 总被引:4,自引:0,他引:4
用奇异值分解方法(SVD)分析了夏降水异常与前期冬季大气环流异常之间的联系,得到了一些很有意义的结果,为夏季降水预测提供了参考。 相似文献
7.
黄淮地区汛期降水预测的一种前兆信号 总被引:4,自引:1,他引:4
为探讨黄淮地区汛期降水预测的物理因子,应用奇异值分解(SVD)技术研究了冬季北太平洋地区上空100hPa高度场与黄淮地区汛期降水场的时空结构及相互关系。结果表明其SVD分解的第一模态有较高的相关,一般1月份40~60°N,160°E~160°W的北太平洋地区上空100hPa高度场偏低(高)时,则黄淮地区汛期降水偏少(偏多),可作为预测黄淮地区汛期降水的一种前兆信号。 相似文献
8.
利用1980—2020年中国753站逐日降水资料、NCEP/NCAR大气再分析资料以及哈得来中心的海表温度资料和实时多变量Madden-Julian振荡( MJO)指数,研究了MJO在印度洋地区(1—3位相)活跃日数对长江流域夏季降水日数的影响。结果表明两者存在显著的统计联系,在MJO活跃日数偏多的年份,MJO相关的西北太平洋反气旋环流异常有利于向长江中下游地区输送水汽,进而导致长江流域中下游范围内降水日数的增加,且这种影响主要体现在降水等级为大雨(25 mm/d)及以上强度的日数上。进一步研究发现,MJO在印度洋活跃日数与长江中下游夏季降水日数的关系存在年代际变化,两者显著的联系仅出现在2000年之后,之前的时段两者联系则较弱。这种关系的转变可能与印度洋海表温度变率减弱的背景有关,印度洋海洋年际变率变弱导致其对于长江中下游地区的影响减弱,进而使得MJO的调控作用凸显出来。夏季季节平均的印度洋MJO活跃日数可以对长江中下游的大雨以上的降水日数产生影响,且两者的关系在大约2000年之后变得尤为显著。 相似文献
9.
奇异值分解方法对降水的预测试验 总被引:5,自引:4,他引:5
SVD方法由于可以用来研究两个气象场的相互作用,本文将其与多元回归方法结合作短期气候预测试验,并用它对云南5月雨量与海温进行分解,客观地反映出海洋和大气的耦合关系,所选高相关区的预报因子物理意义清晰,并与多元回归模型进行了预测效果比较,从所作的6年预报试验和2年独立预报检验结果来看,效果较好,值得进一步研究应用。 相似文献
10.
欧亚环流异常对中国夏季降水的影响及其预测研究 总被引:6,自引:1,他引:6
文中利用奇异值分解 (SVD)方法 ,分析了 5 0 0hPa环流与中国降水的耦合作用。结果表明 ,夏季高度场和降水场相互的空间分布与大气环流的遥相关型紧密联系 ,所对应的时间系数对夏季旱涝趋势有较好的表征能力。冬、春季高度场和夏季降水场的相互关系显示出与夏季相类似的遥相关分布型。利用高度场与降水场奇异值分解的结果及前期环流异常信息 ,可以为夏季降水趋势预测提供参考 相似文献
11.
In this study,the major features of a heavy rainfall event in the Yangtze River region on 3-7 June 2011 and its event-related large-scale circulation and predictability were studied.Both observational analysis and model simulation were used,the latter being based on the Weather Research and Forecasting(WRF) model forced by NCEP Global Forecast System(GFS) datasets.It was found that,during 3-5 June,the western Pacific subtropical high apparently extended to the west and was much stronger,and the Indian summer monsoon trough was slightly weaker than in normal years.The east-west oriented shear line over the middle and lower reaches of the Yangtze River was favorable for the transportation and convergence of water vapor,and the precipitation band was located slightly to the south of the shear line.During 6-7 June,the western Pacific subtropical high retreated eastward,while the trough over the Okhotsk Sea deepened.The low vortex in Northeast China intensified,bringing much more cold air to the middle and lower reaches of the Yangtze River,and the shear line over this area moved slightly southward.The convection band moved southward and became weaker,so the rainfall during 6-7 June weakened and was located slightly to the south of the previous precipitation band.Many of the observed features,including background circulation and the distribution and amount of precipitation,were reproduced reasonably by the WRF,suggesting a feasibility of this model for forecasting extreme weather events in the Yangtze River region. 相似文献
12.
利用1979~2013年中国站点逐日降水资料和NCEP/NCAR再分析资料,对长江中下游夏季降水的季节内振荡最显著周期进行了分析研究。结果表明长江中游最显著周期为10~30天,长江下游最显著周期为30~60天。为了揭示这种差异产生的物理原因,进一步利用位相合成的方法对这两个区域不同周期的季节内振荡降水、高低空风场和高度场以及垂直结构和水汽等循环过程的演变特征进行分析。在200 hPa环流场上,长江中游的降水主要受到高纬度自西向东传播的波列影响,而长江下游的降水与鄂霍次克海的高度场的变化相关。在风场的垂直涡度和散度的位相结构演变过程中,10~30天的垂直涡度和散度有自北向南的移动,30~60天的垂直涡度和散度在长江以南地区有自南向北的传播。水汽输送的位相发展过程表明,长江中游的水汽分别来自于南海的向北输送和长江以北地区向南的水汽输送;长江下游地区的水汽则主要来自于热带东印度洋经孟加拉湾的向东输送并在南海的北向输送,以及西太平洋水汽向西输送到南海再向长江下游的输送。从高层大尺度环流场和整层积分的水汽通量输送上解释了长江中游10~30天降水的自北向南移动,和长江下游30~60天降水自南向北传播的原因。 相似文献
13.
Statistically Downscaled Summer Rainfall over the Middle-Lower Reaches
of the Yangtze River 总被引:2,自引:0,他引:2 下载免费PDF全文
The summer rainfall over the middle-lower reaches of the Yangtze River valley (YRSR) has been estimated with a multi-linear regression model using principal atmospheric modes derived from a 500 hPa geopotential height and a 700 hPa zonal vapor flux over the domain of East Asia and the West Pacific.The model was developed using data from 1958 92 and validated with an independent prediction from 1993 2008.The independent prediction was efficient in predicting the YRSR with a correlation coefficient of 0.72 and a relative root mean square error of 18%.The downscaling model was applied to two general circulation models (GCMs) of Flexible Global Ocean-Atmosphere-Land System Model (FGOALS) and Geophysical Fluid Dynamics Laboratory coupled climate model version 2.1 (GFDL-CM2.1) to project rainfall for present and future climate under B1 and A1B emission scenarios.The downscaled results pro-vided a closer representation of the observation compared to the raw models in the present climate.In addition,compared to the inconsistent prediction directly from dif-ferent GCMs,the downscaled results provided a consistent projection for this half-century,which indicated a clear increase in the YRSR.Under the B1 emission scenario,the rainfall could increase by an average of 11.9% until 2011 25 and 17.2% until 2036 50 from the current state;under the A1B emission scenario,rainfall could increase by an average of 15.5% until 2011 25 and 25.3% until 2036 50 from the current state.Moreover,the increased rate was faster in the following decade (2011 25) than the latter of this half-century (2036 50) under both emissions. 相似文献
14.
利用中国逐日降水格点资料和NCAR/NCEP再分析资料,对1998年发生在我国东部长江中下游流域的夏季持续性强降水过程中显著的大气季节内振荡(ISO)的三维结构演变等活动特征进行了分析。1998年夏季长江及江南地区的异常强降水对应着该地区强的ISO活动。利用位相合成方法,对长江流域两个典型的季节内循环周期的ISO降水、850 hPa水平风场以及水汽和垂直速度等循环过程的时空分布特征进行了诊断分析。在低频环流场上,对流层低层的低频气旋和反气旋环流表现出交替在热带西北太平洋增强并向西偏北方向移动发展的特征,当异常气旋环流移动到长江流域上空时,长江流域正好位于气旋环流西南侧的东北风异常和西北太平洋上向西移动的反气旋环流西北侧的西南风异常环流汇合处的下方,引起该地区强降水的发生。在强降水阶段的ISO的垂直结构上,上升运动和水汽表现出从华南到长江流域自南向北移动的特征,强烈的垂直上升运动以及来自南方充足的水汽为增强长江流域地区的降水起到了重要作用。 相似文献
15.
南海地区潜热输送与长江流域夏季降水的关系 总被引:1,自引:0,他引:1
利用美国NCEP的1958--2006年高斯网格月平均再分析资料,以及国家气象中心的全国160站1958—2006年月平均降水资料,使用奇异值分解(SVD)方法,分析了南海及周边地区(简称南海地区,0°-20°N、100°-125°E)夏季潜热输送和长江流域夏季降水的相关关系。结果表明,南海地区夏季潜热输送与长江流域夏季降水呈显著负相关,显著相关的区域分别是南海中部和长江以北的川北、陕南地区以及以南的东部地区,潜热输送和降水都在20世纪70年代中期出现突变。典型旱、涝年潜热通量合成分析表明,南海中部潜热输送与降水也呈明显的负相关。 相似文献
16.
MJO对中国春季降水影响的数值模拟研究 总被引:2,自引:0,他引:2
利用IAP-AGCM4.0模式,通过多初值集合数值模拟研究了赤道附近的大气季节内振荡(MJO)传播的两个关键位相期对中国东部春季降水的影响.当在赤道中东印度洋及赤道西太平洋引进异常非绝热加热(强MJO活动)强迫时,模式很好地模拟出了中国东部地区春季降水的异常形势,模式模拟与先期所作的诊断分析结果极为相似,即在MJO的第2-3(6-7)位相,中国长江中下游地区多雨(中国东部大部分地区降水偏少).对模式输出的高度场、风场、散度和涡度场以及水汽输送场的分析表明,中国春季降水异常的发生分别与异常非绝热加热在东亚/西北太平洋地区所造成的异常大气环流形势密切相关.对逐日响应场的分析表明,就MJO活动影响中国春季降水的可能物理过程及机制进行的讨论表明,赤道附近的异常对流加热不仅可以在赤道附近激发产生大气的罗斯贝波和开尔文波型响应,而且,还会在大气中激发产生从热带到中高纬度的罗斯贝波列遥响应.但是,由于异常对流加热发生的地区不同,大气遥响应场的形势也会十分不同,它所导致的影响也就很不一样.当异常对流加热发生在赤道中东印度洋(对应MJO的第2-3位相)时,大气的罗斯贝波列遥响应将在东亚/西太平洋地区形成有利于中国东部(尤其是长江中下游地区)春季降水偏多的形势;当异常对流加热发生在赤道西太平洋(对应MJO的第6-7位相)时,大气的罗斯贝波列遥响应将在东亚/西太平洋地区形成不利于中国东部春季降水的形势. 相似文献
17.
利用NCEP/NCAR逐日再分析资料及长江中下游降水资料, 诊断和分析了长江中下游地区旱年1978年、涝年1999年青藏高原东部大气热源与降水季节内振荡的关系, 并着重讨论了青藏高原低频热力过程的经、纬向传播, 结果表明:1978年夏季青藏高原东部大气热源存在10~20 d周期为主的振荡, 交叉谱分析表明:青藏高原东部热源与长江中下游降水在10~20 d频段存在显著相关, 且青藏高原激发的周期为10~20 d的低频振荡热源在纬向上呈现出驻波形式; 1999年夏季青藏高原东部热源存在30~60 d周期为主的振荡, 热源与长江中下游降水在30~60 d频段存在显著相关。 相似文献
18.
With the IAP/LASG GOALS model,the heavy rainfall of the summer of 1999 in the Yangtze River valley is simulated with observational sea surface temperature (SST).Comparing the simulations of 1999 with the corresponding ones of 1998 and the sensitivity experiments with different sea surface temperature anomalies (SSTA) at different ocean regions,the relationships between the floods in the Yangtze River valley and the SSTA in the Pacific and Indian Oceans are studied.The results show that the positive SSTAin the tropical Indian Ocean are a major contributor to the heavy rainfall and may be a very important index to predict the heavy rainfall over the Yangtze River valley in the summer.The simulations also show that the relationships between the SSTA in the tropical eastern Pacific and the heavy rainfall in the Yangtze River valley are very complicated,and the heavy rainfall in the Yangtze River valley can occur in both a decaying and an intensifying El Ninio event and also in a La Nina event.However,the different SSTA of different periods in the above three cases play different parts. 相似文献
19.
Numerical Simulation of the 1999 Yangtze River Valley Heavy Rainfall Including Sensitivity Experiments with Different SSTA 总被引:2,自引:0,他引:2
With the IAP/LASG GOALS model, the heavy rainfall of the summer of 1999 in the Yangtze River valley is simulated with observational sea surface temperature (SST). Comparing the simulations of 1999 with the corresponding ones of 1998 and the sensitivity experiments with different sea surface temperature anomalies (SSTA) at different ocean regions, the relationships between the floods in the Yangtze River valley and the SSTA in the Pacific and Indian Oceans are studied. The results show that the positive SSTA in the tropical Indian Ocean are a major contributor to the heavy rainfall and may be a very important index to predict the heavy rainfall over the Yangtze River valley in the summer. The simulations also show that the relationships between the SSTA in the tropical eastern Pacific and the heavy rainfall in the Yangtze River valley are very complicated, and the heavy rainfall in the Yangtze River valley can occur in both a decaying and an intensifying E1 Nino event and also in a La Nifia event. However, the different SSTA of different periods in the above three cases play different partd. 相似文献