首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crystallization experiments at 400 MPa, oxidized condition (logfO2= NNO + 1, where NNO is nickel–nickel oxide buffer) andover a range of temperatures (850–950°C) and fluidcomposition (XH2Oin = 0·3–1) have been carriedout to constrain the storage conditions of the sulphur-richmagma of the Huerto Andesite (an anhydrite, pyrrhotite, andS-rich apatite-bearing, post-Fish Canyon Tuff mafic lava). Theresults are used to evaluate the role of fluids released fromthe crystallization of magmas such as the Huerto Andesite onthe remobilization of the largely crystallized dacitic FishCanyon magma body. Experiments were performed using the naturalandesitic bulk composition with and without added sulphur. Thepresence of sulphur slightly affects the phase equilibria bychanging the phase proportions, stability fields of plagioclase,pyroxenes and ilmenite, and also affects the plagioclase composition.Phase equilibria and mineral composition data indicate thatthe magma may have contained 4·5 wt % water in the meltand that the pre-eruptive temperature was 875 ± 25°C.Assuming that the magma was in equilibrium with a fluid phase,the CO2 concentration of the melt is estimated to be in therange 2000–4000 ppm (at 400 MPa). Before eruption, theandesite had an oxidation state very close to, or slightly within,the co-stability field of anhydrite–pyrrhotite at NNO+ 1·1. At these conditions, the sulphur content in themelt is 500 ppm. Assuming open-system degassing resulting fromcontinuing crystallization at depth, most of the CO2 dissolvedin the andesitic melt should be released after the crystallizationof <10 vol. % of the magma, corresponding to a cooling from875 to 825–850°C. Thus, the fluids released owingto crystallization processes should be mainly composed of waterat temperatures below 825°C. KEY WORDS: experimental study; andesite; volatile; Fish Canyon Tuff; Huerto Andesite  相似文献   

2.
The Campanian Ignimbrite is a > 200 km3 trachyte–phonolitepyroclastic deposit that erupted at 39·3 ± 0·1ka within the Campi Flegrei west of Naples, Italy. Here we testthe hypothesis that Campanian Ignimbrite magma was derived byisobaric crystal fractionation of a parental basaltic trachyandesiticmelt that reacted and came into local equilibrium with smallamounts (5–10 wt%) of crustal rock (skarns and foid-syenites)during crystallization. Comparison of observed crystal and magmacompositions with results of phase equilibria assimilation–fractionationsimulations (MELTS) is generally very good. Oxygen fugacitywas approximately buffered along QFM + 1 (where QFM is the quartz–fayalite–magnetitebuffer) during isobaric fractionation at 0·15 GPa ( 6km depth). The parental melt, reconstructed from melt inclusionand host clinopyroxene compositions, is found to be basaltictrachyandesite liquid (51·1 wt% SiO2, 9·3 wt%MgO, 3 wt% H2O). A significant feature of phase equilibria simulationsis the existence of a pseudo-invariant temperature, 883 °C,at which the fraction of melt remaining in the system decreasesabruptly from 0·5 to < 0·1. Crystallizationat the pseudo-invariant point leads to abrupt changes in thecomposition, properties (density, dissolved water content),and physical state (viscosity, volume fraction fluid) of meltand magma. A dramatic decrease in melt viscosity (from 1700Pa s to 200 Pa s), coupled with a change in the volume fractionof water in magma (from 0·1 to 0·8) and a dramaticdecrease in melt and magma density acted as a destabilizingeruption trigger. Thermal models suggest a timescale of 200kyr from the beginning of fractionation until eruption, leadingto an apparent rate of evolved magma generation of about 10–3km3/year. In situ crystallization and crystal settling in density-stratifiedregions, as well as in convectively mixed, less evolved subjacentmagma, operate rapidly enough to match this apparent volumetricrate of evolved magma production. KEY WORDS: assimilation; Campanian Ignimbrite; fractional crystallization; magma dynamics; phase equilibria  相似文献   

3.
Compositional Zoning of the Bishop Tuff   总被引:14,自引:0,他引:14  
Compositional data for >400 pumice clasts, organized accordingto eruptive sequence, crystal content, and texture, providenew perspectives on eruption and pre-eruptive evolution of the>600 km3 of zoned rhyolitic magma ejected as the Bishop Tuffduring formation of Long Valley caldera. Proportions and compositionsof different pumice types are given for each ignimbrite packageand for the intercalated plinian pumice-fall layers that eruptedsynchronously. Although withdrawal of the zoned magma was lesssystematic than previously realized, the overall sequence displaystrends toward greater proportions of less evolved pumice, morecrystals (0·5–24 wt %), and higher FeTi-oxide temperatures(714–818°C). No significant hiatus took place duringthe 6 day eruption of the Bishop Tuff, nearly all of which issuedfrom an integrated, zoned, unitary reservoir. Shortly beforeeruption, however, the zoned melt-dominant portion of the chamberwas invaded by batches of disparate lower-silica rhyolite magma,poorer in crystals than most of the resident magma but slightlyhotter and richer in Ba, Sr, and Ti. Interaction with residentmagma at the deepest levels tapped promoted growth of Ti-richrims on quartz, Ba-rich rims on sanidine, and entrapment ofnear-rim melt inclusions relatively enriched in Ba and CO2.Varied amounts of mingling, even in higher parts of the chamber,led to the dark gray and swirly crystal-poor pumices sparselypresent in all ash-flow packages. As shown by FeTi-oxide geothermometry,the zoned rhyolitic chamber was hottest where crystal-richest,rendering any model of solidification fronts at the walls orroof unlikely. The main compositional gradient (75–195ppm Rb; 0·8–2·2 ppm Ta; 71–154 ppmZr; 0·40–1·73% FeO*) existed in the melt,prior to crystallization of the phenocryst suite observed, whichincluded zircon as much as 100 kyr older than the eruption.The compositions of crystals, though themselves largely unzoned,generally reflect magma temperature and the bulk compositionalgradient, implying both that few crystals settled or were transportedfar and that the observed crystals contributed little to establishingthat gradient. Upward increases in aqueous gas and dissolvedwater, combined with the adiabatic gradient (for the 5 km depthrange tapped) and the roofward decline in liquidus temperatureof the zoned melt, prevented significant crystallization againstthe roof, consistent with dominance of crystal-poor magma earlyin the eruption and lack of any roof-rind fragments among theBishop ejecta, before or after onset of caldera collapse. Amodel of secular incremental zoning is advanced wherein numerousbatches of crystal-poor melt were released from a mush zone(many kilometers thick) that floored the accumulating rhyoliticmelt-rich body. Each batch rose to its own appropriate levelin the melt-buoyancy gradient, which was self-sustaining againstwholesale convective re-homogenization, while the thick mushzone below buffered it against disruption by the deeper (non-rhyolitic)recharge that augmented the mush zone and thermally sustainedthe whole magma chamber. Crystal–melt fractionation wasthe dominant zoning process, but it took place not principallyin the shallow melt-rich body but mostly in the pluton-scalemush zone before and during batchwise melt extraction. KEY WORDS: Bishop Tuff; ignimbrite; magma zonation; mush model; rhyolite  相似文献   

4.
Trachybasalt scoria from a cinder cone near the Mexican volcanicfront contain phenocrysts of olivine with chromite inclusions,apatite, augite and hornblende, with microphenocrysts of plagioclase.The water-saturated phase relations reproduce the phenocrystassemblage between 1040°C and 970°C with water contentsof between 2·5 and 4·5% (50–150 MPa). Theabsence of biotite phenocrysts in the scoria places a tightconstraint on the pressure–temperature conditions of phenocrystequilibration, as there is only a small zone where biotite doesnot accompany hornblende in the experiments. Diluting the fluidphase with CO2 changes the composition of the olivine, indicatingthat CO2 was only a minor component of the fluid of the scoria.Hornblende is stable to 1040°C at oxygen fugacities of NNO+ 2 (where NNO is the nickel–nickel oxide buffer), butat lower oxygen fugacities, the upper limit is 990°C. Thereis a progressive increase in crystallinity in experimental runsas both pressure and temperature decrease. Isobaric plots ofcrystallinity show that the onset of hornblende crystallizationinvolves a reaction relation, and also results in a marked  相似文献   

5.
Phase equilibria simulations were performed on naturally quenchedbasaltic glasses to determine crystallization conditions priorto eruption of magmas at the Mid-Atlantic Ridge (MAR) east ofAscension Island (7–11°S). The results indicate thatmid-ocean ridge basalt (MORB) magmas beneath different segmentsof the MAR have crystallized over a wide range of pressures(100–900 MPa). However, each segment seems to have a specificcrystallization history. Nearly isobaric crystallization conditions(100–300 MPa) were obtained for the geochemically enrichedMORB magmas of the central segments, whereas normal (N)-MORBmagmas of the bounding segments are characterized by polybariccrystallization conditions (200–900 MPa). In addition,our results demonstrate close to anhydrous crystallization conditionsof N-MORBs, whereas geochemically enriched MORBs were successfullymodeled in the presence of 0·4–1 wt% H2O in theparental melts. These estimates are in agreement with direct(Fourier transform IR) measurements of H2O abundances in basalticglasses and melt inclusions for selected samples. Water contentsdetermined in the parental melts are in the range 0·04–0·09and 0·30–0·55 wt% H2O for depleted and enrichedMORBs, respectively. Our results are in general agreement (within±200 MPa) with previous approaches used to evaluate pressureestimates in MORB. However, the determination of pre-eruptiveconditions of MORBs, including temperature and water contentin addition to pressure, requires the improvement of magma crystallizationmodels to simulate liquid lines of descent in the presence ofsmall amounts of water. KEY WORDS: MORB; Mid-Atlantic Ridge; depth of crystallization; water abundances; phase equilibria calculations; cotectic crystallization; pressure estimates; polybaric fractionation  相似文献   

6.
A suite of pyroxenites from the Beni Bousera peridotite massif,northern Morocco, have been analysed for Re–Os and Lu–Hfisotopic compositions. Measured sections of the massif indicatethat pyroxenite layers make up between 1 and 9% by volume ofthe total outcrop. Clinopyroxenes from two Cr-diopside pyroxeniteshave unradiogenic Hf isotope compositions (  相似文献   

7.
The role of clinopyroxene in producing grandite garnet is evaluatedusing data from an ultrahigh-temperature metamorphosed calc-silicategranulite occurrence in the Eastern Ghats Belt, India. ‘Peak’pressure–temperature conditions of metamorphism were previouslyconstrained from associated high Mg–Al granulites as c.0·9 GPa, >950°C, and the rocks were near-isobaricallycooled to c. 750°C. Grandite garnet of variable compositionwas produced by a number of reactions involving phases suchas clinopyroxene, scapolite, plagioclase, wollastonite and calcite,in closely spaced domains. Compositional heterogeneity is preservedeven on a microscale. This precludes pervasive fluid fluxingduring either the peak or the retrograde stage of metamorphism,and is further corroborated by computation of fluid–rockratios. With the help of detailed textural and mineral compositionalstudies leading to formulation of balanced reactions, and usingan internally consistent thermodynamic dataset and relevantactivity–composition relationships, new petrogenetic gridsare developed involving clinopyroxene in the system CaO–Al2O3–FeO–SiO2–CO2–O2in TaCO2fO2 space to demonstrate the importanceof these factors in the formation of grandite garnet. Two singularcompositions in garnet-producing reactions in this system arededuced, which explain apparently anomalous textural relations.The possible role of an esseneite component in clinopyroxenein the production of grandite garnet is evaluated. It is concludedthat temperature and fO2 are the most crucial variables controllinggarnet composition in calc-silicate granulites. fO2, however,behaves as a dependent variable of CO2 in the fluid phase. Externalfluid fluxing of any composition is not necessary to producechemical heterogeneity of garnet solid solution. KEY WORDS: grandite garnet; role of clinopyroxene; internal buffering; oxidation–decarbonation equilibria  相似文献   

8.
Abundant ferroan, metaluminous granitoids (970–950 Ma) emplaced at the end of the Sveconorwegian collisional orogeny (1130–900 Ma) are dominated by intermediate to silicic compositions with rare mafic facies. Both 73% fractional crystallization of an amphibole-bearing gabbroic cumulate substracted from the parent mafic composition and 30% non-modal batch melting of an amphibolitic source equivalent in composition to the mafic facies produce a monzodioritic liquid with appropriate trace element composition. A better fit is obtained for the partial melting process. Both processes could have occurred simultaneously to produce mafic cumulates and restites. As there is no evidence for large volumes of dense mafic rocks in the Sveconorwegian upper crust, these dense mafic rocks were probably produced in the lower crust. Formation of these granitoids, thus, contributed to the vertical stratification of the Proterozoic continental crust and also to the transfer of water from the lower crust to the surface.  相似文献   

9.
In the Ranmal migmatite complex, non-anatectic foliated graniteprotoliths can be traced to polyphase migmatites. Structural–microtexturalrelations and thermobarometry indicate that syn-deformationalsegregation–crystallization of in situ stromatic and diatexiteleucosomes occurred at 800°C and 8 kbar. The protolith,the neosome, and the mesosome comprise quartz, K-feldspar, plagioclase,hornblende, biotite, sphene, apatite, zircon, and ilmenite,but the modal mineralogy differs widely. The protolith compositionis straddled by element abundances in the leucosome and themesosome. The leucosomes are characterized by lower CaO, FeO+MgO,mg-number, TiO2 , P2O5 , Rb, Zr and total rare earth elements(REE), and higher SiO2 , K2O, Ba and Sr than the protolith andthe mesosome, whereas Na2O and Al2O3 abundances are similar.The protolith and the mesosome have negative Eu anomalies, butprotolith-normalized abundances of REE-depleted leucosomes showpositive Eu anomalies. The congruent melting reaction for leucosomeproduction is inferred to be 0·325 quartz+0·288K-feldspar+0·32 plagioclase+0·05 biotite+0·014hornblende+0·001 apatite+0·001 zircon+0·002sphene=melt. Based on the reaction, large ion lithophile element,REE and Zr abundances in model melts computed using dynamicmelting approached the measured element abundances in leucosomesfor >0·5 mass fraction of unsegregated melts withinthe mesosome. Disequilibrium-accommodated dynamic melting andequilibrium crystallization of melts led to uniform plagioclasecomposition in migmatites and REE depletion in leucosome. KEY WORDS: migmatite; REE; trace element; partial melting; P–T conditions  相似文献   

10.
The Northern Apennine ophiolites are remnants of the MiddleJurassic–Early Cretaceous lithosphere from the LigurianTethys. New trace element and Nd–Sr isotope investigationswere performed on: (1) the rare gabbros associated with thesubcontinental mantle rocks from the External Liguride ophiolites;(2) the gabbro–peridotite association from the poorlyknown ophiolitic bodies from Cecina valley (Southern Tuscany).Clinopyroxenes from the External Liguride and Cecina valleygabbros have similar trace element compositions, which are consistentwith formation from normal mid-ocean ridge basalt (N-MORB) magmas.Sm–Nd mineral isochron ages are 179 ± 9 Ma foran External Liguride gabbro and 170 ± 13 Ma and 173·5± 4·8 Ma for two different gabbroic bodies fromthe Cecina valley ophiolites. These ages are interpreted todate the igneous crystallization of the gabbros and are slightlyolder than the oldest pelagic sediments of the Ligurian Tethys.Initial  相似文献   

11.
Many basaltic flood provinces are characterized by the existenceof voluminous amounts of silicic magmas, yet the role of thesilicic component in sulphur emissions associated with trapactivity remains poorly known. We have performed experimentsand theoretical calculations to address this issue. The meltsulphur content and fluid/melt partitioning at saturation witheither sulphide or sulphate or both have been experimentallydetermined in three peralkaline rhyolites, which are a majorcomponent of some flood provinces. Experiments were performedat 150 MPa, 800–900°C, fO2 in the range NNO –2 to NNO + 3 and under water-rich conditions. The sulphur contentis strongly dependent on the peralkalinity of the melt, in additionto fO2, and reaches 1000 ppm at NNO + 1 in the most stronglyperalkaline composition at 800°C. At all values of fO2,peralkaline melts can carry 5–20 times more sulphur thantheir metaluminous equivalents. Mildly peralkaline compositionsshow little variation in fluid/melt sulphur partitioning withchanging fO2 (DS 270). In the most peralkaline melt, DS risessharply at fO2 > NNO + 1 to values of >500. The partitioncoefficient increases steadily for Sbulk between 1 and 6 wt% but remains about constant for Sbulk between 0·5 and1 wt %. At bulk sulphur contents lower than 4 wt %, a temperatureincrease from 800 to 900°C decreases DS by 10%. These results,along with (1) thermodynamic calculations on the behaviour ofsulphur during the crystallization of basalt and partial meltingof the crust and (2) recent experimental constraints on sulphursolubility in metaluminous rhyolites, show that basalt fractionationcan produce rhyolitic magmas having much more sulphur than rhyolitesderived from crustal anatexis. In particular, hot and dry metaluminoussilicic magmas produced by melting of dehydrated lower crustare virtually devoid of sulphur. In contrast, peralkaline rhyolitesformed by crystal fractionation of alkali basalt can concentrateup to 90% of the original sulphur content of the parental magmas,especially when the basalt is CO2-rich. On this basis, we estimatethe amounts of sulphur potentially released to the atmosphereby the silicic component of flood eruptive sequences. The peralkalineEthiopian and Deccan rhyolites could have produced 1017 and1018 g of S, respectively, which are comparable amounts to publishedestimates for the basaltic activity of each province. In contrast,despite similar erupted volumes, the metaluminous Paraná–Etendekasilicic eruptives could have injected only 4·6 x 1015g of S in the atmosphere. Peralkaline flood sequences may thushave greater environmental effects than those of metaluminousaffinity, in agreement with evidence available from mass extinctionsand oceanic anoxic events. KEY WORDS: silicic flood eruptions; sulphur; experiment; Ethiopia; Deccan  相似文献   

12.
High-pressure–high-temperature experiments were performedin the range 7–15 GPa and 1300–1600°C to investigatethe stability and phase relations of the K- and Ba-dominantmembers of the crichtonite and magnetoplumbite series of phasesin simplified bulk compositions in the systems TiO2–ZrO2–Cr2O3–Fe2O3–BaO–K2Oand TiO2–Cr2O3–Fe2O3–BaO–K2O. Both seriesof phases occur as inclusions in diamond and/or as constituentsof metasomatized peridotite mantle xenoliths sampled by kimberlitesor alkaline lamprophyres. They can accommodate large ion lithophileelements (LILE) and high field strength elements (HFSE) on awt % level and, hence, can critically influence the LILE andHFSE budget of a metasomatized peridotite even if present onlyin trace amounts. The Ba and K end-members of the crichtoniteseries, lindsleyite and mathiasite, are stable to 11 GPa and1500–1600°C. Between 11 and 12 GPa, lindsleyite breaksdown to form two Ba–Cr-titanates of unknown structurethat persist to at least 13 GPa. The high-pressure breakdownproduct of mathiasite is a K–Cr-titanate with an idealizedformula KM7O12, where M = Ti, Cr, Mg, Fe. This phase possessesspace group P63/m with a = 9·175(2) Å, c = 2·879(1)Å, V = 209·9(1) Å3. Towards high temperatures,lindsleyite persists to 1600°C, whereas mathiasite breaksdown between 1500 and 1600°C to form a number of complexTi–Cr-oxides. Ba and K end-members of the magnetoplumbiteseries, hawthorneite and yimengite, are stable in runs at 7,10 and 15 GPa between 1300 and 1400°C coexisting with anumber of Ti–Cr-oxides. Molar mixtures (1:1) of lindsleyite–mathiasiteand hawthorneite–yimengite were studied at 7–10GPa and 1300–1400°C, and 9–15 GPa and 1150–1400°C,respectively. In the system lindsleyite–mathiasite, onehomogeneous Ba–K phase is stable, which shows a systematicincrease in the K/(K + Ba) ratio with increasing pressure. Inthe system hawthorneite–yimengite, two coexisting Ba–Kphases appear, which are Ba rich and Ba poor, respectively.The data obtained from this study suggest that Ba- and K-dominantmembers of the crichtonite and magnetoplumbite series of phasesare potentially stable not only throughout the entire subcontinentallithosphere but also under conditions of an average present-daymantle adiabat in the underlying asthenosphere to a depth ofup to 450 km. At still higher pressures, both K and Ba may remainstored in alkali titanates that would also be eminently suitablefor the transport of other ions with large ionic radii. KEY WORDS: crichtonite; magnetoplumbite; high-PT experiments; phase relations; upper mantle  相似文献   

13.
Two series of anhydrous experiments have been performed in anend-loaded piston cylinder apparatus on a primitive, mantle-derivedtholeiitic basalt at 0·7 GPa pressure and temperaturesin the range 1060–1270°C. The first series are equilibriumcrystallization experiments on a single basaltic bulk composition;the second series are fractionation experiments where near-perfectfractional crystallization was approached in a stepwise mannerusing 30°C temperature increments and starting compositionscorresponding to that of the previous, higher temperature glass.At 0·7 GPa liquidus temperatures are lowered and thestability of olivine and plagioclase is enhanced with respectto clinopyroxene compared with phase equilibria of the samecomposition at 1·0 GPa. The residual solid assemblagesof fractional crystallization experiments at 0·7 GPaevolve from dunites, followed by wehrlites, gabbronorites, andgabbros, to diorites and ilmenite-bearing diorites. In equilibriumcrystallization experiments at 0·7 GPa dunites are followedby plagioclase-bearing websterites and gabbronorites. In contrastto low-pressure fractionation of tholeiitic liquids (1 bar–0·5GPa), where early plagioclase saturation leads to the productionof troctolites followed by (olivine) gabbros at an early stageof differentiation, pyroxene still crystallizes before or withplagioclase at 0·7 GPa. The liquids formed by fractionalcrystallization at 0·7 GPa evolve through limited silicaincrease with rather strong iron enrichment following the typicaltholeiitic differentiation path from basalts to ferro-basalts.Silica enrichment and a decrease in absolute iron and titaniumconcentrations are observed in the last fractionation step afterilmenite starts to crystallize, resulting in the productionof an andesitic liquid. Liquids generated by equilibrium crystallizationexperiments at 0·7 GPa evolve through constant SiO2 increaseand only limited FeO enrichment as a consequence of spinel crystallizationand closed-system behaviour. Empirical calculations of the (dry)liquid densities along the liquid lines of descent at 0·7and 1·0 GPa reveal that only differentiation at the baseof the crust (1·0 GPa) results in liquids that can ascendthrough the crust and that will ultimately form granitoid plutonicand/or dacitic to rhyodacitic sub-volcanic to volcanic complexes;at 0·7 GPa the liquid density increases with increasingdifferentiation as a result of pronounced Fe enrichment, renderingit rather unlikely that such differentiated melt will reachshallow crustal levels. KEY WORDS: tholeiitic magmas; experimental petrology; equilibrium crystallization; fractional crystallization  相似文献   

14.
童英  王涛  洪大卫  韩宝福 《地质学报》2006,80(4):517-528
为进一步对阿尔泰造山带花岗岩进行物源示踪研究,本文选择几个较典型的同造山和后造山不同类型的花岗岩以及相伴生的基性岩进行长石Pb同位素的测定。结果显示花岗岩206Pb/204Pb范围为17.997~18.921,平均值为18.269;207Pb/204Pb范围为15.460~15.599,平均值为15.528;208Pb/204Pb范围为37.661~38.262,平均值为37.954;其μ值为9.19~9.71,集中于9.30~9.60,与典型的壳源花岗岩明显不同。在源岩判别图解上,主要落在洋岛玄武岩和岛弧玄武岩的范围内,所有点远离上地壳、下地壳和深海沉积物,其源区性质类似于洋岛玄武岩和岛弧玄武岩,与花岗岩同时代的伴生基性岩Pb同位素也具有相似的特征,说明两者可能具有相似的物源特征,即幔源组分。这与报道的Sr、Nd同位素的特征相一致,进一步证明阿尔泰花岗岩具有幔源组分。这种特点与其他造山带(如华南、喜马拉雅)明显不同,显示阿尔泰花岗岩的特殊性。该研究从另一个侧面证明中亚造山带存在一定规模的显生宙陆壳生长。  相似文献   

15.
Highly restitic metapelites occur at the contact of the RustenburgLayered Suite (Bushveld Complex). On the basis of previous experimentalstudies, the high (  相似文献   

16.
Crystallization temperatures (T) and oxygen fugacities (fO2)of kimberlite magma are estimated from oxides included in olivinephenocrysts from the Leslie, Aaron, Grizzly and Torrie kimberlitepipes in the central Slave Province, Canada. Crystallizationtemperatures recorded by olivine–chromite pairs at anassumed pressure of 1·0 GPa are 1030–1170°C± 50°C, with a mean of  相似文献   

17.
Orogenic peridotites occur enclosed in Proterozoic gneissesat several localities in the Western Gneiss Region (WGR) ofwestern Norway; garnet peridotites typically occur as discretezones within larger bodies of garnet-free, chromite-bearingdunite and are commonly closely associated with pyroxenitesand eclogites. The dunites of the large Almklovdalen peridotitebody have extremely depleted compositions (Mg-number 92–93·6);the garnet peridotites have lower Mg-number (90·6–91·7)and higher whole-rock Ca and Al contents. Post-depletion metasomatismof both rock types is indicated by variable enrichment in thelight rare earth elements, Th, Ba and Sr. The dunites can bemodelled as residues after very high degrees (>60%) of meltextraction at high pressure (5–7 GPa), inconsistent withthe preservation of lower degrees of melting in the garnet peridotites.The garnet peridotites are, therefore, interpreted as zonesof melt percolation, which resulted in refertilization of thedunites by a silicate melt rich in Fe, Ca, Al and Na, but notTi. Previous Re–Os dating gives Archaean model ages forthe dunites, but mixed Archaean and Proterozoic ages for thegarnet peridotites, suggesting that refertilization occurredin Proterozoic time. At least some Proterozoic lithosphere mayrepresent reworked and transformed Archaean lithospheric mantle. KEY WORDS: Archaean mantle; Proterozoic mantle; Western Gneiss Region, Norway; mantle metasomatism; garnet peridotite  相似文献   

18.
Slaby  E.; Martin  H. 《Journal of Petrology》2008,49(2):353-391
The Hercynian, post-collisional Karkonosze pluton contains severallithologies: equigranular and porphyritic granites, hybrid quartzdiorites and granodiorites, microgranular magmatic enclaves,and composite and lamprophyre dykes. Field relationships, mineralogyand major- and trace-element geochemistry show that: (1) theequigranular granite is differentiated and evolved by smalldegrees of fractional crystallization and that it is free ofcontamination by mafic magma; (2) all other components are affectedby mixing. The end-members of the mixing process were a porphyriticgranite and a mafic lamprophyre. The degree of mixing variedwidely depending on both place and time. All of the processesinvolved are assessed quantitatively with the following conclusions.Most of the pluton was affected by mixing, implying that hugevolumes (>75 km3) of mafic magma were available. This maficmagma probably supplied the additional heat necessary to initiatecrustal melting; part of this heat could have also been releasedas latent heat of crystallization. Only a very small part ofthe Karkonosze granite escaped interaction with mafic magma,specifically the equigranular granite and a subordinate partof the porphyritic granite. Minerals from these facies are compositionallyhomogeneous and/or normally zoned, which, together with geochemicalmodelling, indicates that they evolved by small degrees of fractionalcrystallization (<20%). Accessory minerals played an importantrole during magmatic differentiation and, thus, the fractionalcrystallization history is better recorded by trace rather thanby major elements. The interactions between mafic and felsicmagmas reflect their viscosity contrast. With increasing viscositycontrast, the magmatic relationships change from homogeneous,hybrid quartz diorites–granodiorites, to rounded magmaticenclaves, to composite dykes and finally to dykes with chilledmargins. These relationships indicate that injection of maficmagma into the granite took place over the whole crystallizationhistory. Consequently, a long-lived mafic source coexisted togetherwith the granite magma. Mafic magmas were derived either directlyfrom the mantle or via one or more crustal storage reservoirs.Compatible element abundances (e.g. Ni) show that the maficmagmas that interacted with the granite were progressively poorerin Ni in the order hybrid quartz diorites—granodiorites—enclaves—compositedykes. This indicates that the felsic and mafic magmas evolvedindependently, which, in the case of the Karkonosze granite,favours a deep-seated magma chamber rather than a continuousflux from mantle. Two magma sources (mantle and crust) coexisted,and melted almost contemporaneously; the two reservoirs evolvedindependently by fractional crystallization. However, maficmagma was continuously being intruded into the crystallizinggranite, with more or less complete mixing. Several lines ofevidence (e.g. magmatic flux structures, incorporation of granitefeldspars into mafic magma, feldspar zoning with fluctuatingtrace element patterns reflecting rapid changes in magma composition)indicate that, during its emplacement and crystallization, thegranite body was affected by strong internal movements. Thesewould favour more complete and efficient mixing. The systematicspatial–temporal association of lamprophyres with crustalmagmas is interpreted as indicating that their mantle sourceis a fertile peridotite, possibly enriched (metasomatized) byearlier subduction processes. KEY WORDS: Bohemian Massif; fractional crystallization; geochemical modelling; hybridization; Karkonosze  相似文献   

19.
We present an experimental and petrological study aimed at estimatingthe pre-eruptive conditions of a Holocene dacitic lava fromVolcán San Pedro (36°S, Chilean Andes). Phase-equilibriumexperiments were performed at temperatures (T) from 800 to 950°C,and mainly at 200 MPa, but also at 55, 150, and 406 MPa. Oxygenfugacity (fO2) ranged from the Ni–NiO buffer (NNO) to3·5 log units above (NNO + 3·5), and water contentsfrom  相似文献   

20.
The Miocene–Quaternary Jemez Mountains volcanic field(JMVF) is the site of the Valles caldera and associated BandelierTuff. Caldera formation was preceded by > 10 Myr of volcanismdominated by intermediate composition rocks (57–70% SiO2)that contain components derived from the lithospheric mantleand Precambrian crust. Simple mixing between crust-dominatedsilicic melts and mantle-dominated mafic magmas, fractionalcrystallization, and assimilation accompanied by fractionalcrystallization are the principal mechanisms involved in theproduction of these intermediate lavas. A variety of isotopicallydistinct crustal sources were involved in magmatism between13 and 6 Ma, but only one type (or two very similar types) ofcrust between 6 and 2 Ma. This long history constitutes a recordof accommodation of mantle-derived magma in the crust by meltingof country rock. The post-2 Ma Bandelier Tuff and associatedrhyolites were, in contrast, generated by melting of hybridizedcrust in the form of buried, warm intrusive rocks associatedwith pre-6 Ma activity. Major shifts in the location, styleand geochemical character of magmatism in the JMVF occur withina few million years after volcanic maxima and may correspondto pooling of magma at a new location in the crust followingsolidification of earlier magma chambers that acted as trapsfor basaltic replenishment. KEY WORDS: crustal anatexis; fractional crystallization; Jemez Mountain Volcanic Field; Valles Caldera; radiogenic isotopes; trace elements  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号